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AbstractAbstractAbstractAbstract � A common measure of association between two variables x and y is the bivariate Pearson correlation coefficient ρ(x,y) 
that characterizes the strength and direction of any linear relationship between x and y. This article describes how to determine 
the optimal sample size for bivariate correlations, reviews available methods, and discusses their different ranges of applicability. 
A convenient equation is derived to help plan sample size for correlations by confidence interval analysis. In addition, a useful 
table for planning correlation studies is provided that gives sample sizes needed to achieve 95% confidence intervals (CI) for 
correlation values ranging from 0.05 to 0.95 and for CI widths ranging from 0.1 to 0.9. Sample size requirements are considered 
for planning correlation studies. 
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IntroductionIntroductionIntroductionIntroduction    

This article describes how to determine by confidence 
interval analysis the optimum sample size for studies 
that measure the strength of bivariate correlations 
between characteristics (variables) x and y. In cross-
sectional correlational research for example, the x 
variable may measure exposure to some experience 
while the y variable may measure some subsequent 
behaviour or outcome. The Pearson correlation 
coefficient ρ(x,y) describes the strength and direction 
of an assumed linear relationship between x and y 
(Corty, 2007, Field, 2009). For a given correlation 
value, sample size determines the width of the 
confidence interval (CI), and conversely the width 
determines the sample size. Estimating sample size 
before conducting a study, or at the early stage of a 
study, is scientifically important in order to maximize 
the probability to detect any existing significant 
correlations (Beaulieu-Prévost, 2006, Corty, 2007, 
Field, 2009, Kelley, 2008). This article reviews existing 
methods of sample size estimation for measuring the 
strength of a correlation, and discusses their different 
ranges of applicability. A convenient equation is 
derived and presented to plan sample size to achieve a 
desired (narrow) CI width for correlations. In addition, 
a useful table for planning correlation studies is 
provided that gives sample sizes needed to achieve a 
95% confidence interval (CI) for correlation values 
ranging from 0.05 to 0.95 and for CI widths ranging 
from 0.1 to 0.9. Sample size requirements are 

considered for planning correlation studies.      
Alternative sample size estimations based on 

statistical power analyses have been described by 
Descoteaux (2007), Lachin (1981) and Lenth (2001). A 
power analysis allows defining for example a 95% 
power (probability) of rejecting a null hypothesis H0 of 
no correlation in the sample and accepting an 
alternative hypothesis H1 that a correlation exists. 
However, Beaulieu-Prévost (2006) and Cumming 
(2014) pointed out serious problems with the null 
hypothesis power analysis, and recommended instead 
that estimations should be based on effect sizes and 
confidence intervals. This article follows their 
recommendation.  

Statistical Concepts and their Connection to Sample SizStatistical Concepts and their Connection to Sample SizStatistical Concepts and their Connection to Sample SizStatistical Concepts and their Connection to Sample Sizeeee    

The Pearson correlation coefficient is a    numerical index 
that measures the strength and the direction of a linear 
relationship between two variables, x and y.  If one 
variable increases (or decreases) as the other increases 
(or decreases), then the coefficient is positive (or 
negative). The strength of a relationship is indicated by 
the numeric value of the coefficient, which can take a 
range of values from +1 to -1. Formal requirements 
are: the selection of x,y pairs is random and 
independent, the joint distribution is multivariate 
normal, the linear regression line is straight for the 
relationship between variables x,y; and the variables 
are measured on a numerical  interval scale (Corty, 
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2007, Field, 2009). A correlation coefficient (CC) that 
characterizes the entire population is denoted by 
ρ(x,y), while a CC evaluated for a particular sample of 
size N is denoted by r(x,y). When variables are 
correlated, knowledge of one allows estimating 
(predicting) the other. Medium to strong correlations 
are useful for establishing a predictive relationship 
between the variables. A CC value of zero means that 
there is no linear relationship between the two 
variables.  

Consider the sampling distribution of the CCs, the 
probability distribution of all the CCs obtained from a 
large number of random data sampled from a large 
(parent) “population”, each sample having size N. The 
sampling distribution for large N is expected to be 
approximately normal, with a single central peak at the 
mean value of ρ and with standard deviation equal to σρ 
(Corty, 2007, Field, 2009). The σρ value may be 
estimated using an infinite series given by Hotelling 
(1953), for which the first two terms are:  

 . (1) 

For planning purposes, since the population 
correlation ρ is usually not known, a measured sample 
statistic r may be used to approximate ρ, or it may be 
estimated from previous research. Hotelling (1953) 
shows explicitly that the distribution shape is 
approximately symmetric and normal for N ≥ 55 and  
||||ρ||||  ≤ 0.7. For these conditions, the first term of Eq. 1 
provides better than 5% precision for the evaluation of 
σr: 

  (2) 

The American Psychological Association (APA, 
2010) recommends that researchers provide estimates 
of the strength of a measured characteristic (effect size) 
of a population by means of a confidence interval. This 
procedure is usually referred to as accuracy in 
parameter estimation (AIPE). Beaulieu-Prévost (2006) 
and Cumming (2014) described this method in detail 
and emphasized its importance for presenting research 
results and for estimating sample size. The effect size of 
interest here is the smallest value of Pearson’s ρ that 
the researcher decides would be scientifically 
meaningful to measure. Accuracy for a given sample 
size measures how close a measured r is to the true 
population size ρ. Although it may improve as sample 

size increases, it depends strongly on controlling 
systematic errors that may lead to various forms of 
bias. By contrast, precision as measured by the 
standard deviation σr improves as the sample size 
increases, approximately following Eq. 2. In the context 
of AIPE, “accuracy” is defined as the square root of the 
mean square error, which includes both precision and 
bias errors (Kelley, 2008). The “confidence interval 
analysis” discussed below deals only with sample size 
precision errors, not with bias errors. 

Sample Size Estimation Associated with Confidence Sample Size Estimation Associated with Confidence Sample Size Estimation Associated with Confidence Sample Size Estimation Associated with Confidence 
Interval AnalysisInterval AnalysisInterval AnalysisInterval Analysis    

A two-sided confidence interval (CI) for the Pearson 
correlation coefficient ρ is an observed range of values 
that consists of a lower limit (LO) and an upper limit 
(UP), within which the true value of ρ is found with a 
specified probability (Corty, 2007; Field, 2009). The CC 
and its standard deviation σr for N measurements of x,y 
data pairs may be computed using standard statistics 
programs. Consider that a CC is determined as CC = r ± 
σr for a certain sample N. The CI provides an estimate of 
the unknown ρ value, and also indicates the reliability 
of the estimate. A 95% CI would capture the true value 
of ρ with 95% level of confidence, within lower (LO) 
and upper (UP) limits:  

 , (3a)  

 . (3b)  

The total CI width will be here denoted by CI2w 
(CI2w = UP - LO), and the CI half-width by w.  

The z-score multiplier 1.96 is used to define the 
95% CI of a normal distribution (Corty, 2007; Field, 
2009). This is so since 95% of the area under the 
standard normal distribution curve falls within the z-
score interval [-1.96, 1.96]; or equivalently because the 
area under the standard normal curve for z < 1.96  
equals 0.975. The z-score measures the deviation from 
the mean expressed in units of standard deviations.  
The values z = 1.645, 1.96, 2.576 define 90%, 95%, 
99% CIs respectively. A 95% CI is associated with an 
α = 0.05 level of significance (0.95 probability), via the 
relationship confidence level = 1 - α.  

For example, consider that ρ = 0.316, and that the 
95% CI measurement gives LO = 0.204 and UP = 0.428 
for a given sample size.  If the measurement were 
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repeated many times, 95% of the random sample 
intervals from LO to UP would "cover" (i.e. include) the 
population value ρ = 0.316.  A narrow CI means that ρ 
is estimated with high precision. The research goal is to 
choose a sample size N that achieves a sufficiently 
narrow confidence interval for measuring the smallest 
CC of potential interest. 

Methods for Methods for Methods for Methods for Confidence Interval Analysis Confidence Interval Analysis Confidence Interval Analysis Confidence Interval Analysis     

Method 1.Method 1.Method 1.Method 1. Bonett’s open source R function CIcorr.R 
(Bonett, 2014, R Foundation, 2011) and the StatsToDo 
internet calculator allow calculating CI widths for given 
values of r, sample size N, and significance α. A slightly 
modified version of Bonett’s program, CIxcorr.R shown 
in Appendix A, can be used to iteratively find N. The 
iteration is carried out to find the highest value of N for 
which the output CI width CI2w is closest to but does 
not exceed a pre-specified CI width. This iteration 
method was previously described by Bonett and Wright 
(2000). The CIxcorr program output is shown in 
Appendix A for r = 0.9, where N = 62 is the highest 
value of N for which the output CI2w is closest to but 
does not exceed a pre-specified CI width of 0.1. Based 
on such iterations, Table 1 gives sample sizes needed to 
achieve 95% CIs for r values ranging from 0.05 to 0.95 
and for CI half-widths w ranging from 0.05 to 0.45. 
Bonett and Wright calculated sample sizes by iteration 

for CI half-widths w = 0.05, 0.10, 0.15, and their results 
for these w values agree exactly with those of Table 1. 
Bonett’s open source R function  sizeCIcorr.R  (Bonett, 
2014, R Foundation, 2011), shown in Appendix B,  may 
alternatively be used to compute a sample size N 
required to estimate a chosen Pearson correlation 
coefficient r with  a given significance α and total width 
CI2w. The sizeCIcorr program and the CIxcorr iteration 
procedure give identical results (within 1 count) for all 
the values shown in Table 1.    
Method 2.Method 2.Method 2.Method 2. Bonett and Wright (2000) presented a two-
stage approximation (based on a set of six equations 
given in their Eqs. 2, 3, 5) for precisely estimating 
sample size for a correlation with desired CI. Their two-
stage approximation results agree very well with 
method 1 above.   
Method 3.Method 3.Method 3.Method 3. A sample size equation by Corty and Corty 
(2011) is available to estimate N for a given choice of r, 
w and α. Their equation is derived using Fisher's r-to-z 
transformation (Corty, 2007, Field, 2009, Fisher, 1915) 
to obtain a normal distribution in Fisher's z-variable:

. The two z-values [z(r) ± 
1.96/√(N-3)] define the 95% CI for the associated z-
distribution, considering that the variance of the z-
distribution is given by V(z) = 1/(N-3). The inverse z-
to-r transformation is then used to construct a CI for r. 
Beaulieu-Prévost (2006) previously outlined and 

Table 1Table 1Table 1Table 1 � Sample Size Requirements for Desired 95% Confidence Interval Half-Widths w for different 
Pearson Correlation Values | r |, based on CIxcorr. 
 

     w     
| r | 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 
0.05 1530 383 171 97 62 43 32 25 20 
0.10 1507 378 168 95 61 43 32 25 20 
0.15 1469 368 164 93 60 42 31 24 19 
0.20 1418 355 159 90 58 41 30 23 19 
0.25 1352 339 151 86 55 39 29 22 18 
0.30 1274 320 143 81 53 37 28 21 17 
0.35 1185 298 133 76 49 35 26 20 16 
0.40 1086 273 123 70 46 32 24 19 15 
0.45 980 247 111 64 42 30 22 18 14 
0.50 867 219 99 57 37 27 20 16 13 
0.55 751 190 86 50 33 24 18 15 12 
0.60 633 161 74 43 29 21 16 13 11 
0.65 517 132 61 36 25 18 14 12  _ 
0.70 404 105 49 30 20 15 12  _  _ 
0.75 299 79 38 23 17 13  _  _  _ 
0.80 205 56 28 18 13  _  _  _  _ 
0.85 125 36 19 13  _  _  _  _  _ 
0.90 62 20 12  _  _  _  _  _  _ 
0.95 22 _  _  _  _  _  _  _  _ 
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described this method. Corty and Corty’s resulting 
sample size equation, where r = | r |,,,, is:  

 ,  (4) 

where . 

Corty and Corty provided a table similar to Table 1, 
based on Eq. 4. A comparison of Eq. 4 values with Table 
1 values (based on CIxcorr) shows that Eq. 4  gives 
values up to one count too low in the range r ≤ 0.3; and 
as many as 12 counts too low in the range r > 0.3. For 
planning purposes therefore, the more precise Table 1 
is preferred.     
Method 4.Method 4.Method 4.Method 4. An alternative equation to plan sample size 
to achieve a desired (narrow) CI width for correlations 
is now derived. Referring to Eqs. 3, for 95% CI,   

   (5) 

For a planned sample size N, one may approximate 
 by the sampling distribution’s standard deviation σr, 

given in Eq. 2. Combining Eq. 5 with Eq. 2 gives: 

 , (6) 

and therefore:  

 . (7)  

Eqs. 6-7 are convenient because of their particularly 

simple r and w dependences. Comparing Eq. 7 and 
Table 1 N-values (based on CIxcorr) shows that Eq. 7 
gives values up to one count too low in the range ||||r| | | | ≤ 
0.5; and as many as 5 counts too low in the range ||||r| | | | > 
0.5. The excellent agreement for small r follows 
considering that the Eq. 2 approximation is most 
precise for small r.  Eq. 7 based on Eq. 2 has a greater 
range of applicability than Eq. 4 based on Fisher r-to-z 
transformation. Eq. 7 provides the basis for deriving the 
useful Eqs. 8, 9 which follow.  The Bonett and Wright 
(2000) first-stage equation (their Eq. 3) discussed 
previously differs from Eq. 7 by an additive constant 
(+3 replaces +1 in Eq. 7) that arises as a result of its 
derivation based on the variance of Fisher’s z-
distribution.   
Method 5.Method 5.Method 5.Method 5. Eq. 8 is based on a simple and small addition 
(6r2) to Eq. 7; the addition is expressed mathematically 
as ∆N = 6r2. The resulting equation is:  

 . (8) 

The corresponding equation for w is: 

 . (9) 

Eqs. 8, 9 provide an accurate alternative to method 2 
of Bonett and Wright (2000). Eq. 8 may be conveniently 
used to a precision of 1 count for all r and w values in 
the range of Table 1. 
Comparison of methods.Comparison of methods.Comparison of methods.Comparison of methods. Table 2 gives sample size 
estimates for | r | = 0.1 - 0.95 for all the methods 
discussed above for the particular choice CI width 
= CI2w = 0.1, for ease in comparing the different 
methods. All sample size values shown are rounded up 
to the next higher integer; for example 49.4 is rounded 
up to 50. The CIxcorr value shown is the highest value 
of N for which the output CI is closest to but does not 
exceed the input value CI = 0.100. The contents of 
Tables 1 and 2 were  verified using Monte Carlo 
simulations. A very large number of correlations 
(50,000) were generated to obtain the lower and upper 
2.5% percentiles. The difference between the two 
percentiles corresponds to the range CI2w for a 95% CI. 
Simulation results agreed very well with the CIxcorr 
and Eq. 8 methods. 

Comparing results for r = 0.9, α = 0.05,  
CI2w = 0.10, Eqs. 4, 7, 8, and CIxcorr give N = 50, 
N = 57, N = 62, N = 62, respectively. More generally, 
the CIxcorr, sizeCIcorr and Eq. 8 methods give 

Table 2Table 2Table 2Table 2 � Sample Size Requirements for 95% Confidence 
Interval Width CI2w=0.1 for different Pearson 
Correlation Values | r |, based on CIxcorr, Eqs. 4, 7, 8.  
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the most precise sample size values. For | r | and w 
values not shown in Table 1, CIxcorr.R or 
sizeCIcorr.R  or a simple interpolation based on 
Table 1 may be used. Finally, regarding the equations of 
methods 2-5, Eq. 8 is recommended; it is more accurate 
than Eqs. 4 and 7, and easier to use than the method 2 
equations.     

Sample Size PlanningSample Size PlanningSample Size PlanningSample Size Planning    

For illustration, consider sample size requirements for 
planning a research project dealing with a binary 
correlation between characteristics x and y. Table 1 
shows that if the correlation is ρ = 0.1, it can be 
measured with CI [0.05, 0.15] via a sample size 
N = 1507; and with CI [0.0,0.20] via  a sample size 
N = 378. For another example, Table 1 shows that a 
sample size N = 1086 allows estimating ρ = 0.4 within 
CI [0.35, 0.45]; while N = 273 would yield CI [0.30, 
0.50].  If  one aims to measure ρ = 0.2 within CI [0.09, 
0.31], meaning that w ~ 0.11, Table 1 by interpolation 
or Eq. 9 shows that this can be achieved with N ~ 300. 
These examples show that the sample size depends on 
the choices made of the minimum effect size (ρ) and CI 
width to be measured. Based on these choices, Eqs. 8 or 
Table 1 can conveniently help researchers select the 
optimal sample size for their planned projects.    

Conclusions  Conclusions  Conclusions  Conclusions      

The importance of estimating sample size before 
conducting quantitative research studies has been 
stressed. This article reviewed statistical concepts 
needed for estimating the sample size N to determine 
correlation coefficients (CCs) between two 
characteristics, reviewed available methods, and 
discussed their different ranges of applicability. A 
convenient equation was derived to help plan sample 
size for correlations by confidence interval analysis. In 
addition, a table for planning correlation studies was 
provided that gives sample sizes needed to achieve a 
95% confidence interval (CI) for correlation values 
ranging from 0.05 to 0.95 and for CI widths ranging 
from 0.1 to 0.9. Sample size requirements were 
considered for planning correlation studies.  
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Appendix AAppendix AAppendix AAppendix A    

R-function CIxcorr is shown here based on CIcorr of Bonett (2011), with his permission. It calculates a confidence 
interval for a Pearson correlation (lower and upper levels LL and UL, width CI2w = UL-LL) for chosen correlation 
coefficient corr, significance alpha, and sample size N.  

CIxcorr <- function(alpha, corr, N) { 

  # Computes a confidence interval for a Pearson correlation 

  # Args:  

  #   alpha: alpha level for (1-alpha) confidence 

  #   corr:  value of correlation  

  #   N:     sample size 

  # Returns: 

  #  confidence interval 

  Z   <- qnorm(1 - alpha/2) 

  # Z = 1.9599640 for 95% CI 

  se  <- sqrt(1/((N - 3))) 

  zr  <- log((1 + corr)/(1 - corr))/2 

  LL0 <- zr - Z*se 

  UL0 <- zr + Z*se 

  LL  <- (exp(2*LL0) - 1)/(exp(2*LL0) + 1) 

  UL  <- (exp(2*UL0) - 1)/(exp(2*UL0) + 1) 

  CI2w <- UL – LL 

  #  CI width CI2w output added to Bonett’s CIcorr R-function 

  CI  <- c(LL, UL, CI2w) 

  return(CI) 

 } 

For example, with alpha = 0.05 level of significance, 95% CI, and |r| = 0.9, input function arguments  

CIxcorr(0.05, 0.9, 62)  

to get function output  

c(LL,UL,CI2w)= 0.83878, 0.93875, 0.09996; 

and input function arguments  

CIxcorr(0.05, 0.9, 61)  

to get function output  

c(LL,UL,2CIw)= 0.83813, 0.93901,0.10088 

Appendix BAppendix BAppendix BAppendix B    

R-function sizeCIcorr by Bonett (2011) is shown here with his permission, with a minor change in a variable name. It 
computes a sample size N required to estimate a chosen Pearson correlation coefficient corr with  a given 
significance alpha and CI width CI2w.   

sizeCIcorr <- function(alpha, corr, CI2w) { 

  # Computes sample size required to estimate a correlation with desired precision 

  # Args:  

  #   alpha: alpha level for 1-alpha confidence 

  #   corr:  planning value of correlation 

  #   CI2w:     desired confidence interval width 

  # Returns: 

  #   required sample size 

  z   <- qnorm(1 - alpha/2) 

  n1  <- ceiling(4*(1 - corr^2)^2*(z/CI2w)^2 + 3) 

  zr  <- log((1 + corr)/(1 - corr))/2 

  se  <- sqrt(1/(n1 - 3)) 

  LL0 <- zr - z*se 

  UL0 <- zr + z*se 

  LL  <- (exp(2*LL0) - 1)/(exp(2*LL0) + 1) 
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  UL  <- (exp(2*UL0) - 1)/(exp(2*UL0) + 1) 

  N   <- ceiling((n1 - 3)*((UL - LL)/CI2w)^2 + 3) 

  return(N) 

} 

For example, with alpha = 0.05 level of significance, 95% CI, and |r| = 0.85, and CI width CI2w = 0.1, input 
function arguments  

sizeCIcorr(0.05, 0.85, 0.1)  

to get function output  

N = 125. 

CitationCitationCitationCitation    

Moinester, M., & Gottfried, R. (2014). Sample size estimation for correlations with pre-specified confidence interval. 
The Quantitative Methods for Psychology, 10 (2), 124-130. 

 

Copyright © 2014 Moinester & Gottfried. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, 

distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is 

cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. 

 

Received: 15/12/13 ~ Accepted: 10/03/14 


