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Abstract Determining a lack of association among two or more categorical variables is frequently

necessary in psychological designs such as comparative outcome analyses, assessments of group

equivalence at a baseline level, and therapy outcome evaluations. Despite this, the literature rarely

offers information about, or technical recommendations concerning, the appropriate statistical

methodology to be used to accomplish this task. This paper explores two equivalence tests for

categorical variables, one introduced by Rogers et al. (1993) and another by Wellek (2010), as well

as a proposed strategy based on Cramér’s V (1946). A simulation study was conducted to examine
and compare the Type I error and power rates associated with these tests. The results indicate that

an equivalence-based Cramér’s V procedure is the most appropriate method for determining a lack
of relationship among categorical variables in two-way designs.
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Introduction
In psychological research, investigators are often inter-

ested in confirming a lack of association among two or

more categorical variables. This is frequently the case for

designs such as comparative outcome analyses and the as-

sessment of group equivalence on categorical variables at

a baseline level. For instance, researchers may wish to

demonstrate that two or more treatments are equal based

on their therapeutic outcomes, such as return to work, re-

duction of debt, medication adherence, or abstinence from

gambling (Chen, Tsong, & Kang, 2000). In addition, ex-

perimental groups are frequently assessed at the start of

a study in an effort to establish the equivalence of demo-

graphic and/or clinical variables (Rogers et al., 1993). In

these circumstances, it is crucial for researchers to employ

the appropriate methodology to conclude that categorical

variables are equivalent across the groups.

Buoli, C., A., and Altamura (2015) provide a practical

example of statistical efforts to establish equivalency. The

authors examined the efficacy of differing pharmacologi-

cal classes of antidepressants on the long-term treatment

of major depressive disorder. At baseline, the investigators

needed to demonstrate the equivalence of the experimen-

tal groups on demographic characteristics (e.g., work and

marital status) and clinical characteristics (e.g., family his-

tory of mental problems, number of suicide attempts, and

substance abuse involvement). The authors applied chi-

square tests of independence to determine whether the ex-

perimental groupswere equivalent on these variables. The

goal was to find a non-significant result so as to retain the

null hypothesis that the groups showed equal outcomes.

Another example derives from a study by Bailine et al.

(2010) who sought to assess whether bipolar and unipo-

lar depression patients responded equally to electrocon-

vulsive therapy. It was necessary at baseline for the ex-

aminers to prove the equality of the unipolar and bipolar

subjects in terms of demographic traits (such as gender,

race, education, and marital status) and clinical variables

(such as the presence or absence of psychosis). Moreover,

to evaluate the hypothesis that electroconvulsive therapy

would affect these groups equally, the authors compared

the two groups in terms of their responses to treatment,

identifying a 50% reduction from baseline on the Hamil-

ton Rating Scale for Depression as a positive outcome. Cor-

respondingly, chi-square tests of independence were con-
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ducted for both the baseline comparisons and the response

to treatment hypotheses, with the goal of demonstrating

the absence of statistical significance (i.e., the traditional

null hypothesis is not rejected).

These two examples highlight investigations in which

researchers explore a lack of relationship among categor-

ical variables; they also illustrate the misuse of traditional

null hypothesis tests for identifying such an absence. It is

important to state outright that we are not interested in

criticizing the decisions made by the authors in the above-

discussed examples; indeed, these two studies were se-

lected from among countless others that followed similar

procedures. Rather, we wish to emphasize that suitable

tests for assessing lack of relationship among categorical

variables are not widely known at present nor are they reg-

ularly available in statistical software packages. Further-

more, explicit discussions of the limitations of traditional

methods for assessing equivalence among categorical vari-

ables are scarce. Also, while these examples provide illus-

trations of situations that explore homogeneity (i.e., equiv-

alence of the proportions across groups), the same issues

apply when investigating independence. This paper ad-

dresses the relative dearth of information regarding the

insufficiencies of conventional methods for assessing the

absence of a relationship among categorical variables and

suggests more robust methodological tools better suited to

this task.

Introduction to Equivalence Testing
As the previous examples demonstrate, researchers com-

monly try to infer the equivalence of groups or establish

the lack of a relationship among variables based on the

absence of significant differences or associations. How-

ever, this method is not appropriate for several reasons.

First, as Quertemont (2011) notes, non-significant results

are often due to insufficient statistical power. Thus, previ-

ously statistically insignificant differences between groups

may actually become significant once the sample size is in-

creased sufficiently. Second, the failure to reject a null hy-

pothesis does not mean that the null hypothesis is true; it

simply means that there is inadequate evidence at present

to conclude that it is incorrect (Walker & Nowacki, 2011).

The theoretical statement of the null hypothesis for equiv-

alence tests is exactly opposite to the assertion of the null

hypothesis for traditional difference-based tests (Cribbie,

Arpin-Cribbie, & Gruman, 2009). These dynamics suggest

the need for statistical procedures dedicated specifically to

testing for a lack of association among variables, which is

precisely the aim of equivalence testing.

To be able to test for a lack of a relationship among vari-

ables, investigators begin by choosing the smallest degree

of association that their study will recognize as practically

significant. In practice, sampling error makes nil associa-

tions (e.g., identical means, zero correlations) impossible

(Counsell & Cribbie, 2015). The purpose of equivalence

testing is not to test for a total lack of association among

variables, but rather to examine whether the differences

discovered are relevant (Cribbie, Gruman, & Arpin-Cribbie,

2004). To accomplish this task, researchers must quantify

their conception of irrelevant difference by deciding upon

a specific range of values called an equivalence interval, of-

ten denoted symmetrically using (−δ, δ); δ may represent
any effect of interest, such as a lack of correlation or an

irrelevant difference in proportions. The equivalence in-

terval generally has both an upper and a lower limit, with

that particular range representing the smallest association

(e.g., a difference in population proportions) that would be

considered meaningful given the framework of the study.

The null hypothesis of equivalence testing asserts that

the relationship among the variables is at least as large as

the effect specified by the investigator through the equiva-

lence interval. Conversely, the alternative hypothesis con-

tends that the relationship among the variables is smaller

than the one specified through the equivalence interval.

Equivalence or lack of association is established when the

data provide enough evidence to conclude that the magni-

tude of the relationship falls within the equivalence inter-

val (Schuirmann, 1987; Walker & Nowacki, 2011). There

are no fixed rules for establishing equivalence margins;

their justification depends heavily on the nature of the

research, the outcome variable of interest, previous find-

ings in specific research areas, and the risk/benefit judg-

ments of relevant experts (Committee for Medicinal Prod-

ucts for Human Use, 2006). For example, O’Reilly et al.

(2007) tested the equivalence of telepsychiatry and face-

to-face psychiatric consultation. One of the outcome mea-

sures was the proportion of participants with psychiatric

admissions during the twelve months after the initial as-

sessment. The investigators, in consultation with psychia-

trists, decided that a difference in proportions of 10% be-

tween groups would be the smallest clinically significant

difference, resulting in a nondirectional equivalence mar-

gin of (−δ, δ) = (−.10, .10).

Equivalence Tests for the Relationship among Categor-
ical Variables
In this project we examined three approaches for testing

for a lack of association among categorical variables. The

first, described by Rogers et al. (1993), is a modified ver-

sion of the two one-sided tests (TOST; Schuirmann, 1987)

procedure, which aims to examine the equivalence of two

proportions, denoted as p1 and p2. The test is based on
the normal approximation of the difference between two

proportions. We will refer to this test of the equivalence
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of two proportions as the “EP” test. Although framed as

a test of homogeneity, it can also be used to assess the in-

dependence of two categorical variables. For example, re-

searchers could utilize this test to show that the propor-

tion of males and females in the control and experimental

groups are similar, or that sex (male/female) is minimally

related to choice of pain medication (Drug A vs. Drug B).

The first null hypothesis,H01: p1−p2 ≤ −δ, is rejected
if z1 ≥ z1−α, and the second,H02: p1 − p2 ≥ δ, is rejected
if z2 ≤ zα, where:

z1 =
(p̂1 − p̂2)− (−δ)

sp̂1−p̂2

z2 =
(p̂1 − p̂2)− δ

sp̂1−p̂2

where p̂ is the sample proportion, and z1−α and zα are val-
ues from a standard normal distribution that cut off the

lower 1 − α and α proportions of the distribution, respec-
tively. Note that (−1)zα = z1−α. The standard error of
the difference between two proportions can be calculated

using:

sp̂1−p̂2 =
√
p̂1 (1− p̂1) /n1 + p̂2 (1− p̂2) /n2,

where n1 and n2 are the sample sizes for groups one and
two, respectively. When both null hypotheses of the EP

method are rejected, investigators can reject the null hy-

pothesis that the difference in the proportions is greater

than δ (−δ < p1 − p2 < δ; the difference in the pro-
portions falls within the equivalence interval) or, in other

words, that there is no relationship among the two dichoto-

mous variables. The EP procedure is operationally compa-

rable with the simple asymptotic interval (SAI) approach

(Barker, Rolka, Rolka, & Brown, 2001). According to the

SAI method, if the p̂1−p̂2 ± zαsp̂1−p̂2 confidence interval
(CI) for p1 − p2 is within the equivalence interval (−δ, δ),
then both H01 and H02 are rejected at a predetermined α
level. An important limitation of the EP test is that it is only

applicable to 2× 2 designs.
Another equivalence testing procedure, described by

Wellek (2010), is based on Euclidean distance (i.e., the dis-

tance between two points in Euclidean space). We will re-

fer to it as the “ED” procedure. The null hypothesis for this

test states that the sum of the squared distances (D∗2
) be-

tween the observed cell probabilities, denoted as π, and the
expected cell probabilities (the product of marginal totals),

denoted as g(π), in the population, is at least as large as the
critical distance. Wellek suggested ε = .15 as the largest
acceptable distance between π and g(π) (i.e., between the
vector of observed probabilities and the vector of expected

probabilities), however researchers should consider what

value of ε is most appropriate given the nature of their re-
search (and more research is required on understanding

themagnitude of ε in order to assist investigators in setting
appropriate values for ε). Again, this test could be used for
investigating either independence or the homogeneity of

group proportions. Thus,H0: D
∗2 ≥ ε2 is rejected if:

D2 + z1−αvn/
√
n < ε2

where vn/
√
n is the standard error and:

D2 =

r∑
i=1

c∑
j=1

(πij − g (πij))
2

=

r∑
i=1

c∑
j=1

(πij − πi+π+j)2

where i, j specifies the row and column, respectively, r is
the number of rows, c is the number of columns, πi+ are
the sum of the observed probabilities for row i, and π+j
are the sum of the observed probabilities for column j. An-

other way to frame the ED test is that the null hypothesis of

an important relationship among the two categorical vari-

ables can be rejected if the upper limit of the CI for D2
is

less than ε2. The variance, v2n, can be expressed as:

v2n =

r∑
i=1

c∑
j=1

d̂2ijπij−
r∑

i1=1

c∑
j1=1

r∑
i2=1

c∑
j2=1

d̂i1j1 d̂i2j2πi1j1πi2j2 ,

where

d̂ij = 2
(

(πij − πi+π+j)−
r∑
a=1

((πaj − πa+π+j)πa+)−

c∑
b=1

((πib − πi+π+b)π+b)
)

Finally, we propose an approach based on Cramér’s V
(Cramér, 1946), referred to in this paper as CV. Cramér’s

V , an effect size measure for the association among cate-
gorical variables, takes into account the dimensions of the

frequency table, implying that V for tables of different di-
mensions can bemeaningfully compared (Smithson, 2003).

Thus, Cramér’s V can be used to determine a lack of asso-
ciation among categorical variables in general two-way (or

higher) tables, and since V ranges from 0 to 1 the task of
finding an appropriate equivalence interval is made eas-

ier.

To reject the null hypothesis of nonequivalence for the

CV approach (H0: V ≥ δ), the upper limit of the Cramér’s
V CI should lie below the prespecified equivalence bound
δ. Cramér’s V is computed as:

V =
√
χ2/(n(k − 1)),
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Table 1 Conditions for the Monte Carlo Study.

2× 2 Design
Condition a11 a12 21 a22 d EBED PD EBEP EBCV

Type I Error Conditions

1 .175 .325 .325 .175 .150 .150 .300 .300 .298

2 .250 .250 .100 .400 .150 .150 .300 .300 .312

3 .050 .450 .200 .300 .150 .150 .300 .300 .344

Power Conditions

1 .250 .250 .250 .250 0 .150 0 .300 .400

2 .100 .400 .100 .400 0 .150 0 .300 .400

3 .270 .230 .250 .250 .020 .150 .040 .300 .400

4 .260 .240 .240 .260 .020 .150 .040 .300 .400

5 .050 .450 .150 .350 .100 .150 .200 .300 .400

6 .200 .300 .300 .200 .100 .150 .200 .300 .400

2× 4 Design
Condition a11 a12 a13 a14 a21 a22 a23 a24 d EBED EBCV

Type I Error Conditions

1 .050 .050 .050 .050 .659 .050 .050 .041 .150 .150 .507

2 .100 .050 .250 .150 .181 .100 .050 .119 .150 .150 .410

3 .200 .050 .050 .050 .166 .300 .150 .034 .150 .150 .399

4 .150 .150 .150 .150 .253 .050 .050 .047 .150 .150 .382

Power Conditions

1 .125 .125 .125 .125 .125 .125 .125 .125 0 .15 .4

2 .120 .120 .120 .120 .130 .130 .130 .130 0 .15 .4

3 .145 .105 .125 .125 .125 .125 .125 .125 .02 .15 .4

4 .149 .120 .120 .120 .130 .130 .130 .101 .02 .15 .4

5 .200 .070 .190 .220 .080 .090 .125 .025 .1 .15 .4

6 .100 .150 .134 .100 .150 .120 .046 .200 .1 .15 .4

Note. aij = cell proportions in the 2 × 2 and 2 × 4 tables; d = Euclidean distance; EBED = equivalence bound for the
ED test; PD = p1 − p2; EBEP = upper bound on the equivalence interval for the EP test; EBCV = equivalence bound for
Cramér’s V test.

where k is the smaller of the number of rows r or columns
c. Following Smithson (2003), the CI for Cramér’s V is cal-
culated as:

VL =
√

(∆L +m)/(n(k − 1))

and

VU =
√

(∆U +m)/(n(k − 1))

where m = (c − 1)(r − 1) and δL and δU represent the
lower and upper confidence limits of the noncentrality pa-

rameter for noncentral χ2
(which are determined through

iteration, see Signorell et al., 2017). We have included an

applied example for all three methods (see Appendix).

Method
A Monte Carlo study was conducted to evaluate the Type

I error and power rates of the EP, ED and CV equivalence

testing procedures for categorical variables in 2 × 2 (EP,
ED, CV) and 2 × 4 (ED, CV) designs. We used α = .05 and

performed 5000 simulations for each condition using the

open-source statistical software R (R Core Team, 2016). The

manipulated variables were sample size, degree of associ-

ation (for the power condition) and study design (the spe-

cific conditions can be found in Table 1 at the end). Sample

sizes of 50, 100, 200, and 1000 were investigated because

these are commonly used in psychological research. We

focused only on the case of equal row sums for the 2 ×
2 study design, while in the 2 × 4 study design row sums
were not necessary equal. Note that Wellek (2010) recog-

nizes the liberal nature of the ED procedure (i.e., the em-

pirical Type I error rates can exceed α) and therefore rec-
ommends using an adjusted nominal level α∗ < α “when-
ever strict maintenance of the prespecified level is felt to

be an indispensible requirement” (p. 277). Thus, a nomi-

nal α level of .05 was employed for all tests except the ED,
where we used both α = .05 and α = .025.
When the degree of association between variables ex-

actly matches the equivalence interval, the empirical Type
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I error rate is expected to equal the nominal Type I error

rate (α). We used Bradley’s (1978) liberal bounds, α ± .5α,
as the criteria for having satisfactory Type I error control.

Thus, with α = .05, Type I error rates are acceptable if
they fall between .025 and .075. Since the EP, ED and CV

tests use different scales, the procedures for determining

the equivalence intervals were different as well. Follow-

ing Wellek’s (2010) recommendations for the ED test, the

equivalence bound was set as ε = .15. Thus, for the Type
I error conditions, we chose values for the population cell

proportion that produced the Euclidean distanceD∗ = .15
(the specific 2 × 4 cases were actually sampled from those
derived by Wellek, 2010, p. 276). These cell proportions

were then used to calculate comparable equivalence inter-

vals for the EP and CV procedures (i.e., we computed the

difference in proportions and Cramér’s V for the popula-
tion cell proportions that produce D∗ = .15). As a result,
in the Type I error conditions, the equivalence bound for

the ED test was always the same, ε = .15, while for the EP
and CV the interval changed for different population ma-

trices (see Table 1).

For the power conditions, the strength of the associa-

tion between two dichotomous variables, measured by the

Euclidean distance, was set up to be equal to 0, .02 and .10.

For the power conditions, the upper limit of the equiva-

lence bound was at ε = .15 for the ED test, .30 for the EP
test, and .40 for the CV test. As stated earlier, Wellek (2010)

recommends ε = .15 for use with the ED test, and the values
for EP and CV were comparable in strength to that for ε =
.15.

We also conducted a chi-square test of independence

to compare the performance of the traditional approach

with that of the equivalence tests. It is important to high-

light that since the goal is to demonstrate a lack of asso-

ciation (independence/homogeneity), this test would not

be appropriate since the goal would be to not reject the

null hypothesis; it is included though since this is often the

method used by researchers to demonstrate a lack of asso-

ciation. In order to have a comparable outcome for each

test, the outcome variable was the proportion of simula-

tions in which the conclusion related to “no association”.

For the equivalence tests this means rejecting H0, but for

the traditional chi-square test of independence this means

not rejecting H0. Note, therefore, that in the Type I error

condition and the nonzero effect power condition for the

equivalence tests that the reported rates for the traditional

chi-square test are Type II errors, and for the null effect

power condition for the equivalence tests this translates

into rates of correct nonrejections for the chi-square test

(with an expected proportion of 1− α).

Results
2× 2 Design
Type I Error Rates. The proportion of cases in which a
lack of association between two dichotomous variables is

falsely concluded for the EP, ED, and CV tests (Type I error

rates), as well as the probability of a Type II error for the

chi-square test of independence, are presented in Figure 1.

Both the EP and CV procedures had Type I error rates

that fell within Bradley’s limits (.025 - .075). Contrary to

both the EP and the CV, sample size significantly influenced

the Type I error rates of the ED test; with a small sample

size (N = 50) the Type I rates were twice as large as com-
pared to N = 1000 when α = .05, and on average three
times larger forN = 50 as compared toN = 1000when α
= .025. Only withN = 1000 does the ED’s empirical Type I
error rates fall within Bradley’s limits.

The proportion of non-rejections of the null hypothesis

for the chi-square test, when in fact it is false (Type II error

rates), is presented herein for comparison with the equiv-

alence tests. As expected, Type II error rates for the chi-

square test are strongly related to sample size. Thus, for

small sample sizes, such asN = 50, the chi-square test has
the greatest probability of declaring equivalence in com-

parison to all the equivalence tests examined by this paper,

whereas it has the lowest probability of declaring equiva-

lence when the sample size increases to n = 1000. Both of
these results are expected given that what is recorded are

Type II errors.

Power Rates. The probabilities of correctly concluding
equivalence for the ED, EP, and CV procedures (power

rates) are presented in Figure 2. All the equivalence tests

examined in this paper produce similar patterns in terms

of power rates, i.e., as expected they increase as sample

size increases. The EDwith α = .025 and CV tests have simi-
lar power rates across different degrees of association. The

EP procedure displays less power than other equivalence

tests when the sample size is N = 50. However, this dif-
ference in power rates disappears when the sample size

increases to N = 200. As anticipated, the degree of asso-
ciation among categorical variables has a substantial influ-

ence on power, with D∗ = 0 producing markedly higher
probabilities thanD∗ = .1. Population cell proportion pat-
terns moderately impact the power for the EP procedure

(e.g., .250, .250, .250, .250 versus .100, .400, .100, .400), but

not for the ED or CV tests.

In the power condition, when D∗ = .02 or D∗ = .10,
the reported rates for the traditional chi-square test of in-

dependence are the probabilities of not rejectingH0 (Type

II error). As Figures 1 and 2 reveal, as expected, a bigger

(rather than a smaller) Euclidean distance – which reflects

the degree of association between categorical variables –
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Figure 1 Type I error rates for the equivalence-based tests, Type II error rates for the traditional χ2
test of independence

in the 2× 2 design. CS = traditional χ2
test of independence, CV = Cramer’s V , ED025 = Euclidian distance test (α = .025),

ED05 = Euclidian distance test (α = .05), EP = equivalence of proportions test; green highlighted area = Bradley’s liberal
limits (.025-.075). See Table 1 for condition information.

results in smaller Type II error rates.

2× 4 Design
Type I Error Rates. Figure 3 displays the empirical Type
I error rates for the ED and CV tests and the probability of

a Type II error for the chi-square test of independence in

the 2 × 4 study design. The ED test with α = .05 reveals
inappropriate empirical Type I error rates (predominantly

for Condition 1) for sample sizes less thanN = 200. When
α = .025, the ED test’s Type I error rates remain within
Bradley’s limits for all but one condition. Although slightly

conservative, the Type I error rates for the CV procedure

always fell within Bradley’s limits for robustness. Both the

ED and CV approaches were sensitive to the population

cell proportions with Type I error rates varying slightly

across the conditions. All the equivalence tests considered

for the 2 × 4 study design are influenced by sample size,
with smaller Type I error rates occurring with larger sam-

ples. As in the 2 × 2 condition, the proportion of cases
in which the traditional chi-square test of independence

falsely concluded that the association was nil was moder-

ate for the N = 50 condition but equal to or near zero for
allNs > 50.

Power Rates. An examination of the values in Figure 4 in-
dicates that the ED and CV tests show similar power rates

when d = 0 (Conditions 1 and 2) andD∗ = .02 (Conditions
3 and 4), although the ED test was generally more power-

ful. When D∗ = .1 (Conditions 5 and 6), power rates de-
crease, particularly for the CV test, because the extent of

the association comes very close to the equivalence inter-

val. As expected, as the sample size increases, the power

rates for both equivalence tests grows. For the traditional

test, when the association is nil, the recorded rates were, as

expected, approximately equal to 1 − α. When the associ-
ation was greater than zero but within the equivalence in-

terval, the Type II error rates decreased for the traditional

chi-square test of independence as sample sizes increased.

However, these rates highlight the problem with using a

difference-based test to evaluate equivalence; with a small

sample size the chi-square test often incorrectly concluded

equivalence, whereas with a large sample equivalence was

rarely or never concluded. In other words, the probability

of inappropriately declaring a lack of association among

the variables decreased, rather than increased, as sample

sizes increased.
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Figure 2 Power rates for the equivalence-based tests, correct decision (Conditions 1, 2)/Type II error rates (Conditions

3-6) for the traditional χ2
test of independence in the 2× 2 design. CS = traditional χ2

test of independence, CV = Cramer’s

V , ED025 = Euclidian distance test (α = .025), ED05 = Euclidian distance test (α = .05), EP = equivalence of proportions
test. See Table 1 for condition information.

Discussion
Many psychological studies explicitly aim to show that

there is no association among the categorical variables un-

der investigation. Often, a researcher wishes to show that,

before beginning a study, certain key characteristics (such

as ethnicity, job status, health condition, and educational

standing) are equal among the different groups. Another

typical example is that of an investigator who wishes to

demonstrate that different treatment approaches produce

similar frequencies for different groups (e.g., males vs. fe-

males, or urban vs. rural residents).

Despite the commonality of these circumstances, ef-

forts to prove the equivalence of groups or treatments rou-

tinely suffer from two core problems. First, testing for a

lack of association is often riddled with complications re-

lating to the selection of an appropriate statistical method.

Second, difficulties arise in adequately defining “equiva-

lence”, which are related to the concept of an equivalence

bound.

With regard to the issue of selecting an appropriate

statistical test, this study evaluated the statistical proper-

ties of three different approaches for testing a lack of as-

sociation among categorical variables in 2 × 2 and 2 × 4

designs. Additionally, we investigated the relationship of

these equivalence tests to the traditional chi-square test of

independence with the objective of presenting recommen-

dations for behavioural researchers concerning their suit-

ability and practicality. Several key differences distinguish

the various equivalence tests examined in this paper. The

ED procedure is based on the difference between observed

and expected frequencies, and its logic is close to that of

the traditional chi-square test of independence. The EP test

is rooted in differences between proportions. The CV ap-

proach adopts a correlation metric, and thus potential val-

ues range from 0 to 1. To compare the statistical properties

of these three equivalence tests, it was necessary to deter-

mine a way in which their equivalence intervals could be

equated (keeping in mind that each is measured accord-

ing to a different scale). Thus, the equivalence interval for

the ED test follows the recommended Euclidean distance,

D∗ = .15 (Wellek, 2010), which yields a set of two-way
frequency tables that allowed us to examine Type I error

rates and power (see Table 1). Given these derived popula-

tion frequency tables, equivalence intervals for the EP and

CV tests were then determined in order to match the popu-

lation association (Type I error conditions) or to be propor-

tional to the Euclidian distance measure used with the ED
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Figure 3 Type I error rates for the equivalence-based tests, Type II error rates for the traditional χ2
test of independence

in the 2× 4 design. CS = traditional χ2
test of independence, CV = Cramer’s V , ED025 = Euclidian distance test (α = .025),

ED05 = Euclidian distance test (α = .05), green highlighted area = Bradley’s liberal limits (.025-.075). See Table 1 for
condition information.

test. Our results indicate that the proposed test based on

Cramér’s V provided the best balance between Type I er-
ror control and power and is available for both 2 × 2 and
larger two-way designs.

With regard to the issue of selecting an appropriate

equivalence interval, some important issues arose in this

this study. As noted in the results tables, a Euclidian dis-

tance of .15 relates to differences in proportions and cor-

relations that are theoretically controversial. Although it

was necessary for the purposes of this study to equate the

intervals for the EP and CV tests with those of the ED test

so that fair comparisons could be made among the proce-

dures, many would argue that differences in proportions

and correlations greater than .3 are too large to signify

a lack of association among variables. For example, con-

sider the equivalence intervals used by Rogers et al. (1993)

with the EP test. The authors employed the EP procedure

to compare twenty-seven baseline characteristics between

two groups ofwomen, one that carried their pregnancies to

term and another that aborted. The researchers indicated

differences in proportions and equivalence intervals for

every characteristic measured. Importantly, the equiva-

lence intervals their investigation utilized (20% of the con-

trol groups value) ranged from .001 to .199. Thus, com-

pared to the work by Rogers et al. (1993), the equivalence

interval used for the EP test in our study (i.e., .3) appears

markedly liberal. For this reason, researchers must decide,

based on the metric chosen for investigating a lack of asso-

ciation, the smallest value they would consider meaning-

ful.

Recommendations
Barker et al. (2001) suggest that recommendations regard-

ing which kind of equivalence test ought to be used should

be based on the relationship between the empirical and

nominal Type I error rates as well as the power of the test

under consideration. In the 2× 2 study design, the ED test’s
empirical Type I error rates are substantially higher than

the nominal rate. This outcome excludes the ED procedure

from further consideration, despite the fact that it shows

better power rates than the other procedures in many con-

ditions. Both the CV and EP tests produce viable Type I

error rates for the full range of examined conditions, with

the CV approach being slightly more conservative than the

EP. Thus, we recommend using the CV or the EP tests for

the 2× 2 and the CV approach for 2× 4 study designs.
To summarize, tests of equivalence allow researchers

to assess the research hypothesis that two categorical vari-
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Figure 4 Figure 4. Power rates for the equivalence-based tests, correct decision (Conditions 1, 2)/Type II error rates

(Conditions 3-6) for the traditional χ2
test of independence in the 2 × 4 design. CS = traditional χ2

test of independence,

CV = Cramer’s V , ED025 = Euclidian distance test (α = .025), ED05 = Euclidian distance test (α = .05). See Table 1 for
condition information.

ables are negligibly related. Establishing a ‘minimally im-

portant relationship’ (or equivalence interval) is a difficult

and subjective aspect of testing for a lack of association. It

is hoped that future discussions will highlight the issues in-

volved in determining an appropriate interval and make it

a less daunting task for researchers. However, even per-

mitting a slight amount of subjectivity in establishing an

equivalence region is better than inappropriately using the

nonsignificance of a traditional chi-square test of indepen-

dence to explore a lack of association among categorical

variables.
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Appendix: Applied example using an equivalence-based version of Cramér’s V , the EPmethod, and the EDmethod.
A researcher is interested in demonstrating that there is no association between the sex of a child and whether he or

she scores high on a measure of attention-deficit disorder (ADD) in grade 8. The data (cell percentages of the total in

parentheses) were as given in Table 2 (note that the data were generated for the purposes of this demonstration).

Cramér’s V
In the chi-square test, the expected cell counts, Eij = (RiCi)/N , must be estimated first:

E11 =
168× 57

372
= 25.74

E12 =
168× 315

372
= 142.25

E21 =
204× 57

372
= 31.25

E22 =
204× 315

372
= 172.74

such that the whole matrix E is

E =

[
25.74 142.25
31.25 172.74

]
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The χ2
score is found with

χ2 =
∑ (Oij − Eij)2

Eij

=
(25− 25.74)

2

25.74
+

(143− 142.25)
2

142.25
+

(32− 31.25)
2

31.25
+

(172− 172.74)
2

172.74
= 0.046

from which we derive Cramér’s V with

V =

√
χ2

n (k − 1)

=

√
0.046

372 (2− 1)

=0.0111262

and its lower and upper bounds with

VL =

√
∆L +m

n(k − 1)
=

√
∆L + 1

372(2− 1)

VU =

√
∆U +m

n(k − 1)
=

√
∆U + 1

372(2− 1)

The researcher evaluates the null hypothesisH0: V ≥ δ against the alternate hypothesis thatH1: V < δ. Given the lack of
theoretical background, the equivalence bound was set at δ = .3, which was found to be the approximate value at which
correlations between variables become meaningful (Beribisky, Davidson, & Cribbie, submitted). Recall that∆L and∆U

represent the lower and upper CIs for the noncentrality parameter for the χ2
distribution. There is no direct method

for computing ∆L and ∆U , and therefore we utilize a function in R called CramérV from the DescTools package
(Signorell et al., 2017). This function uses an iterative approach to determine values for∆L and∆U (see Smithson, 2003).
For example, the code

DescTools::CramérV(mat)
where mat is the matrix of observed frequencies returns the 90% CI (.000, .082). Since the upper bound on the 90% CI
for Cramér’s V (.082) falls below the equivalence bound of δ = .3, we reject H0: V ≥ δ and conclude that there is a
negligible relationship between the sex of the child and scoring high on ADD. The value of Cramér’s V (.011) can be used
as an effect size and, since it can be interpreted along the lines of a positive correlation, we could say that the effect is

very small.

Equivalence of Two Proportions (EP)
H01: p1 − p2 ≤ −δ and H02: p1 − p2 ≥ δ are rejected if the 90% CI for p̂1 − p̂2 falls completely within the equivalence
interval, in this case set at (−δ, δ) = (−.10, .10). Computing

p̂1 =
25

168
= .149

p̂2 =
32

204
= .157

we find

p̂1 − p̂2 = .149− .157 = −.008

The standard error of the difference between two proportions is calculated by:

sp̂1−p̂2 =
√
p̂1(1− p̂1)/n1 + p̂2(1− p̂2)/n2

=
√
.1488(1− .1488)/168 + .1569(1− .1569)/204

=0.037
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and the confidence interval is

90%CI =p̂1 − p̂2 ± z1−αsp̂1−p̂2
=− .008± 1.65× 0.037

=(−0.070, 0.054)

Since the CI for p̂1 − p̂2 falls completely within the equivalence interval (−δ, δ) = (−.10, .10), both H01 and H02 are

rejected and we conclude that the proportions for boys and girls are equivalent.

Euclidean Distance (ED)
Following Wellek (2010),H0: D

∗2 ≥ ε2 is rejected if the upper limit of the 1−α CI forD2
falls below ε2, where the upper

limit forD2
is calculated as:

D2 + z1−αseD2 ,

where seD2 = vn/
√
n and

D2 =

r∑
i=1

c∑
j=1

(πij − g (πij))
2

=

r∑
i=1

c∑
j=1

(πij − γi (π) ηj (π))
2

where πij = (nij/N represents the observed probabilities and g (πij) represents the expected probabilities. Conse-
quently,

π11 =
25

372
= .067,

π12 =
143

372
= .384,

π21 =
32

372
= .086,

π22 =
172

372
= .462.

The π matrix is thus

π =

[
.067 .384
.086 .462

]
As of the gs, they are obtained with the equation

g (πij) = πi+π+j

so that we get for each

g (π11) = (.067 + .384) (.067 + .086) = .069

g (π12) = (.067 + .384) (.384 + .462) = .382

g (π21) = (.086 + .462) (.067 + .086) = .084

g (π22) = (.086 + .462) (.384 + .462) = .464

Assembling them into the g matrix, we have

g (π) =

[
.069 .382
.084 .464

]
Computing the differences with

dij = πij − g (π)
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we have

d11 = .067− .069 = −.002,

d12 = .384− .382 = .002,

d21 = .086− .084 = .002,

d22 = .462− .464 = −0.002

or in matrix form

d =

[
−.002 .002
.002 −.002

]
Finally

D2 (π, g (π)) =

r∑
i=1

c∑
j=1

(πij − γi (π) ηj (π))
2

=
∑

dij
2

=
(
−.0022

)
+
(
.0022

)
+
(
.0022

)
+
(
−.0022

)
=.00002

The variance, v2n,can be expressed as:

v2n =

r∑
i=1

c∑
j=1

d̂2ijπij −
r∑

i1=1

c∑
j1=1

r∑
i2=1

c∑
j2=1

d̂i1j1d̂i2j2πi1j1πi2j2,

where:

d̂ij = 2

{
(πij − πi+π+j)−

r∑
a=1

[(πaj − πa+π+j)πa+]−
c∑
b=1

[(πib − πi+π+b)π+b]

}
The computation of v2n is extremely cumbersome, even for this simple 2× 2 matrix. Thus, using the function gofind_t
from the EQUIVNONINF package, νn = .003. Finally, to determine if the upper limit of the confidence interval for
D2 < ε2,

CI1−α
(
D2
)

= D2 + z1−α
vn√
n

= .00002 + 1.65
.003√

372
= .0003

Since CI1−α
(
D2
)
(.003) < ε2 (.152 = .0225) the nullH0: D

∗2 ≥ ε2 is rejected and a lack of association is concluded.
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