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An Introduction to Model Selection: Tools and Algorithms 
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Model selection is a complicated matter in science, and psychology is no exception. In particular, 
the high variance in the object of study (i.e., humans) prevents the use of Popper’s falsification 
principle (which is the norm in other sciences). Therefore, the desirability of quantitative 
psychological models must be assessed by measuring the capacity of the model to fit empirical 
data. In the present paper, an error measure (likelihood), as well as five methods to compare 
model fits (the likelihood ratio test, Akaike’s information criterion, the Bayesian information 
criterion, bootstrapping and cross-validation), are presented. The use of each method is 
illustrated by an example, and the advantages and weaknesses of each method are also 
discussed. 
 

 The main goal of scientific investigation is to explain and 
predict empirical phenomena. The former is usually handled 
by formulating theories which explain the observations using 
one or several abstract concepts that are causally related to 
the experience (Humes, 1888). However, explaining 
observed phenomena is not sufficient: the tentative 
explanation, expressed as a particular theory, must also 
account for new observations (prediction). This is often 
achieved by operationalizing the theory into a model. A 
model is a specification of a theory1 which makes the 
prediction of new phenomena possible. As a result, the 
predictions of a given model can be empirically tested in 
order to assess its desirability. In particular, Karl Popper 
argued in favour of a simple way to determine the scientific 
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validity, and thus the desirability, of a theory:  the 
falsification principle (Popper, 1959). This principle states that, 
in order to be deemed scientific, there must exist an 
empirical way of showing the falsity of the theory. 

The main consequence of the falsification principle is 
that a scientific theory must be translatable into a model 
which generates falsifiable predictions. Also, a model which 
makes finer-grained predictions is easier to falsify and thus 
more desirable. This second consequence is responsible for 
the gradual shift from qualitative models (e.g., the Atkinson-
Shiffrin memory model; Atkinson & Shiffrin, 1968) to 
quantitative models (e.g., the Context Model; Medin & 
Schaffer, 1978). The former type of models allows 
predictions such as “task A is harder than task B” while the 
latter permits more precise predictions such as “task A is 
two times more difficult than task B”. 

In psychology, the shift from qualitative to quantitative 
models has been particularly difficult (Cousineau, 2005). 
Several reasons might explain this difficulty but chief among 
them is the complexity of human behaviour: Many variables 
influence the performance of human participants, some of 
them being external (e.g., group membership, the weather, 
etc.; Feldman, 1998; Rosenthal, 1993), while others are 
internal (e.g., the limits of cognitive processes, background 
knowledge, etc.; Simon, 1972; Tanaka & Taylor, 1991). While 
this list is far from exhaustive, it does makes a clear point 
about the impossibility for experimenters to control all 
variables affecting human behaviour. Therefore, 
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contradicting results are common in psychology and clear 
falsification of a model is almost impossible. The desirability 
of quantitative models is thus often assessed by some error 
measure of the model’s prediction on the observed data. 
However, in most cases, the asymptotic distribution of the 
error measure is unknown, which prevents the use of 
Fisherian statistics to distinguish between models that fit the 
data equally well and models which truly differ as to their 
error measure. 

Many techniques have been developed to cope with the 
difficulty of distinguishing between true statistical 
difference and noise in the absence of Fisherian statistics. 
This paper surveys some of these methods from the fields of 
mathematical statistics (Larsen & Marx, 2001), Bayesian 
statistics (Jeffreys, 1961), information theory (Goldman, 
1953), and machine learning (Bishop, 1995; Hastie, 
Tibshirani & Friedman, 2001). The remaining of this tutorial 
is organized as follows. First, the concept of likelihood is 
introduced. This measure is used throughout the text to 
compare models. Second, the likelihood ratio test is 
presented (Chernoff, 1954; Wilks, 1938). This is the only 
statistical test that leads to a clear conclusion concerning the 
difference between the likelihood of two models. However, 
its use is limited by the strong assumption that the models 
are nested. Next, two methods, the Akaike Information 
Criterion (AIC; Akaike, 1973) and the Bayesian Information 
Criterion (BIC; Bishop, 1995; Hastie et al., 2001), are 
presented. The aim of these methods is to penalize the error 
of the model on the training data (internal error) to estimate 
the error on unseen cases (generalization error). Finally, 
simulation methods (bootstrapping and cross-validation), 
which directly estimate the generalization error without 
using the internal error, are presented. 

An important measure: The likelihood 

The likelihood of a model is defined as the joint 
probability that each datum was generated by the model. 
More precisely, if the data are independent: 
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where l[•] is the likelihood measure, X is the data set, n is 
the number of elements in X, xi is a particular datum and θ 
is the list of the model’s parameters. Because, this measure is 
a probability, it is bounded between [0, 1], one representing 
the certainty that a particular model generated the data set 
and zero representing the impossibility that the model 
generated the data. While this measure is easily 
interpretable, it is seldom used because the multiplication of 
a list of numbers between zero and one can never increase. 
Hence, the likelihood is always a very small number which 
results in underflow in modern computers (the smallest 
representable number is usually of the order of 1 × 10-17). 

A good solution to the underflow problem is to use the 
logarithmic transformation. Because the Log is a monotonic 
increasing function, this transformation does not affect the 
order of the measures (e.g., if a > b, Log[a] > Log[b]). Also, in 
the logarithmic scale, the products become sums. Hence, 
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where ll[•] is the log-likelihood. This new function is 
bounded between ]-∞, 0], minus infinity representing the 
incapacity of a model to generate the data set and zero 
representing the certitude that a model generated the data. 
However, this function is always negative, which is 
counterintuitive for an error function. Therefore, the 
negative of the log-likelihood is usually used (-ll[•]). This 
function varies between [0, ∞[, infinity representing the 
certitude that a model did not generate the data set 
(maximum error) and zero representing the absolute 
certainty that a model generated the data (minimum error). 

Example 

One of the most important applications of the likelihood 
measure is estimating the best-fitting parameters of a given 
model. For example, it is known that the distribution of 
Intelligence Quotients (IQs) is Gaussian (because of the 
central limit theorem). Still, the free parameters of the 
Gaussian distribution must be estimated in order to generate 
precise predictions. This ubiquitous model is described by 
Equation 3. 
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where θ = {μ, σ} are the free parameters to be estimated. 
These parameters could be estimated by numerically 
minimizing –ll[P(X | μ, σ)] (Box, Davies & Swann, 1969; 
Dion & Gaudet, 1996). Here, the negative log-likelihood is 
defined by: 
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To accelerate computation time, only the second term of 
Equation 4 needs to be minimized, because the first term is 
not affected by the data set. However, in the particular case 
of the Gaussian distribution, one does not need to minimize 
the function because there is a well-known exact solution. 
The following system of equations can be solved for μ and σ: 
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Thus, the Maximum Likelihood Estimator (MLE) of the 
parameter μ is the sample mean and the MLE of the 
parameter σ is the biased sample standard deviation. 

To sum up, -ll[•] can be directly interpreted as the 
internal prediction error of the model. In particular, this 
measure is equivalent to the well known mean squared error 
used in linear regression: the same solution is obtained by 
minimizing any of these measures (Bishop, 1995; Ruck et al., 
1990). Therefore, in addition to being useful to estimate best-
fitting parameters, the likelihood can be used to quantify a 
model’s desirability. 

The likelihood ratio test 

The likelihood ratio test is the only existing statistical test 
which allows to directly compare the adequacy of two 
models. However, one of its assumptions is stringent: the 
two compared models must be nested. In other words, this 
implies that a second model must be obtainable by 
constraining one or several of the free parameters in the first 
one. When this assumption is met, only the likelihood 
measures for both models and the number of free 
parameters are needed. This test is based on an important 
result by Chernoff (1954), which states that: if a first model 
(M1) has n free parameters, a second (M2) has n + m free 
parameters and M1 ⊂  M2, then: 
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where χ2(m) is the centered chi-square distribution with m 
degrees of freedom. In words, twice the difference between 
the models’ respective –ll[•] is subject to a standard chi-
square test. 

Example 

In cognitive psychology, response time (RT) 
distributions of participants in simple tasks are often used to 
test assumptions about the relations between the processes 
responsible for a given response (Cortese & Dzhafarov, 1996; 
Cousineau, Goodman & Shiffrin, 2002; Dzhafarov & Cortese, 
1996; Hockley, 1984; Logan, 1992; Luce, 1986). In particular, 
one possible relation is that of a race (Cousineau, Lacroix & 
Hélie, 2004). In a race model, many processes are 
individually computing a response and the first process to 

produce an output wins the race and is responsible for the 
answer. If this hypothesis turns out to be correct, the RTs 
should follow a Weibull distribution (Weibull, 1951). For 
instance, after 300 trials in a given psychological task, the 
RTs obtained might look like those presented by the 
histogram shown in Figure 1. The Weibull hypothesis allows 
two different models described by Equations 7 and 8: 
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where α is the position parameter and represents the 
minimum RT, β is the spread parameter (proportional to 
variance) and γ is the shape parameter (proportional to 
skewness). 

In the present example, Equation 7 is obtained by setting 
α to zero in Equation 8. Thus, if M1 is defined as Equation 7 
and M2 is defined as Equation 8, M1 is a nested model of M2 
and the likelihood ratio test can be applied to decide if M2 is 
a better model of the data than M1. It is important to note 
that because M2 has more free parameters than M1 and M1 
is nested in M2, M2’s fit will always be better or equal than 
M1’s. The likelihood ratio test aims at deciding between 
these two alternatives. 

The best fitting models have been numerically estimated 
using Mathematica (also shown in Figure 1) with the 
following results: -ll(M1) = 1795.03 and –ll(M2) = 1783.88. 
The hypotheses of the likelihood ratio test are the following: 

H0: M1 and M2 fit the data equally well. 
H1: M2’s fit is better than M1’s. 
Next, the probability of committing a Type I error is 

chosen. In the present case, .01 was chosen as the decision 
criterion. The test can now be applied (Equation 6): 2(1795.03 
- 1783.88) = 22.3. By looking at a chi-square table with 3 – 2 = 
1 degree of freedom, the cutoff score is found to be 6.6349. 

Figure 1. Data used to illustrate the application of the
likelihood ratio test. The histogram shows the data, the solid line
is the best-fitting Weibull distribution with three free parameters
(M2) and the dashed line the best-fitting Weibull distribution
with two free parameters (M1). 
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Thus, M2 fits the data better than M1 (χ2(1) = 22.3, p < .01). 
The addition of a position parameter is therefore required to 
explain the present data. 

Estimation of the generalization error by penalization of 

the internal error 

The likelihood ratio test is a simple yet efficient way to 
compare nested models. The problem is that nested models 
are very rarely compared. Therefore, other methods are 
needed to compare models which have nothing in common 
except the data set on which they are to be tested. The 
following methods are based on another kind of 
assumptions: when a model is chosen, the goal is not only to 
explain observed data but also to generalize and explain 
future data. However, the modeller only has access to the 
internal error of the model: this error is biased and 
underestimates the generalization error because the same 
data have been used to find the best-fitting parameters and 
test the model’s performance. Thus, the internal error 
always underestimates the generalization error (Hastie et al., 
2001). In particular, 

 OptimismErrErrgen += int  (9) 

where Errint is the internal error, Errgen is the generalization 
error and Optimism is a term representing the expected 
difference between the true error of the model (Errgen) and 
the observed error (Errint). Following Hastie et al. (2001), it 
can generally be shown that: 
 ( )yyOptimism ˆ,Covariance     ∝  (10) 
where ŷ is the model’s estimates and y is the data set. In 
words, the magnitude of the underestimation is 
proportional to the covariance between the model’s 
estimates and the observations. That is, the better the fit, the 
higher the optimism (underestimation). 

An obvious way of estimating the true error of a model 
is to estimate the optimism and add this estimation to the 
internal error. While the covariance between the training set 
and the model’s estimations can be directly computed, this 
measure is dependent on the variance of each of these 
individual variables. The variance in the data set is constant 
for all candidate models and can be ignored. However, the 
variance resulting from a model should not handicap its 
adequacy. Therefore, a different estimation of the Optimism, 
which is invariant to a model’s variance, is needed. This is 
exactly what the AIC (Akaike, 1973) and the BIC (Bishop, 
1995; Hastie et al., 2001) are. 

Akaike’s Information Criterion 

The AIC (Akaike, 1973) estimates the covariance between 
the model’s predictions and the observations by simply 
using a measure of the model’s complexity. As with the 

likelihood ratio test, only the error measure (-ll[•]) and the 
number of free parameters in the model are needed. More 
precisely, 
 AIC = 2[-ll(data)] + 2d (11) 
where d is the number of free parameters. One simply 
chooses the model with the smallest AIC. The advantage of 
choosing this measure instead of the smallest –ll[•] is that 
the latter method always select the more elaborate model 
while the former penalizes the models for their complexity. 

The Bayesian Information Criterion 

The BIC (Bishop, 1995; Hastie et al., 2001) is similar to the 
AIC (Akaike, 1973) except that it is motivated by the 
Bayesian model selection principle (Hastie et al., 2001). In 
addition to the information required to compute the AIC 
(number of free parameters and –ll[•]), the computation of 
the BIC requires the number of observations. The 
computation and origins of this criterion are now described. 

First, the fundamental theorem in Bayesian statistics is 
that of reverse probabilities: 

 )(
)()|()|(

ZP
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where M is a model and Z is the data set. This theorem 
states that the probability of a model, given a specific data 
set, is equal to the probability of the data set given the model 
(likelihood) times the probability of the model. The 
denominator is just a normalizing term which ensures that 
the result is between zero and one. Therefore, without loss 
of generality, this term can be dropped and Equation 12 
becomes: 
 )()|()|( MPMZPZMP ∝  (13) 

When two candidate models are compared, it is common 
to use the odd: 

 )2|(
)1|(

)2(
)1(

)|2(
)|1(

MZP
MZP

MP
MP

ZMP
ZMP

=  (14) 

where M1 and M2 are the candidate models. If the odd is 
greater than one, M1 is more probable than M2 and if it is 
smaller than one, M2 is more probable than M1. If no prior 
knowledge is available and there is no reason to favour a 
model over the other, the first term equals one and Equation 
14 simplifies as: 
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Equation 15 is also called the Bayesian Factor and is 
fundamental to the Bayesian approach to statistics (Jeffreys, 
1961; Kass & Raftery, 1995). Each P(Z | Mi) is an integral 
which needs to be computed. By a Laplace approximation, 
and after some simplification, this integral is equal to (Hastie 
et al., 2001): 
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where n is the number of observations. Equation 16 is also 
equivalent to twice Schwartz’s criterion (Schwartz, 1979). 

The first thing to be pointed out is that the BIC (Equation 
16) is similar to the AIC (Equation 11), except that the factor 
multiplying the number of free parameters is Log[n] instead 
of two. Therefore, when the number of observations is 
greater than e2 (≈ 7.4), the BIC’s estimation of the optimism 
term is higher. More generally, Equations 12-16 shows that 
choosing the model with the smallest BIC is equivalent to 
choosing the model with the highest posterior probability. 
As a result, the BIC can be used not only to choose the best 
model (smallest BIC) but also to assess the relative merit of 
each of the tested models: 
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where Mj is a given model and l is the number of models 
considered. Also, the BIC is asymptotically consistent; that 
is, if a set of models is tested (including the true model), as n 
tends towards infinity, the probability that the true model 
has the smallest BIC tends towards one. In contrast, when n 
tends towards infinity, the AIC (Akaike, 1973) chooses 
models that are too complex. However, for a finite n, the BIC 
chooses models that are too simple. The use of both these 
methods is next illustrated by an example. 

Example 

Nowadays, many models of categorization allow 
quantitative predictions. One of the most popular models in 
categorization is the Generalized Context Model (GCM; 
Nosofsky, 1986), which is an implementation of the 
exemplar theory of categorization (Medin & Schaffer, 1978). 
Nosofsky (1987) has applied the GCM to five experimental 
conditions involving integral stimuli (Garner, 1970; Hélie et 
al., 2002). Ten years later, Nosofsky’s data were fit with 
another categorization model, the Exemplar-Based Random 
Walk (EBRW; Nosofsky & Palmeri, 1997). In this second 
paper, the performance of the EBRW was compared to the 
performance of the GCM using the –ll[•] measure. The 
obtained results are shown in Table 1. The –ll[•] columns 
show the results reported by Nosofsky and his colleague. As 
seen, the EBRW is a better explanation of the data in the first 
three conditions, as well as in the Pink – Brown condition. 
However, the EBRW has more free parameters than the 
GCM. Because the likelihood, the number of free parameters 
and the number of observations is provided, the calculation 
of the AIC (Akaike, 1973) and the BIC (Bishop, 1995; Hastie 

et al., 2001) is straightforward. As seen, the penalization of 
the internal error by the AIC does not change the order of 
the models in most conditions. However, according to the 
AIC, the GCM is a better explanation of the Pink – Brown 
condition: the advantage of the EBRW in this condition was 
a result of its additional free parameter.  

Table 1 also shows the BIC in each condition. Because 
there are twelve data points and Log[12] ≈ 2.485 ≈ 2, the BIC 
gives the same results as the AIC. If more data points had 
been involved, the difference between the AIC and the BIC 
would have been more important.  

Estimation of the generalization error using simulations  

Another method used to assess a model’s desirability is 
to directly estimate its generalization error using Monte Carlo 
simulations (Metropolis et al., 1953). Here, two such 
methods will be detailed: bootstrapping and cross-
validation (Bishop, 1995; Hastie et al., 2001). Unlike the 
previously presented methods, bootstrapping and cross-
validation possess no constraints or assumptions 
whatsoever: all that is needed is a data set. Any error 
function can be used, but –ll[•] is used in the following 
example for simplicity. 

Bootstrapping 

The bootstrap method is used with small data sets 
(Hastie et al, 2001). The following algorithm is used for the 
simulations: 

Input: A data set of size n and a model 
Output: A list of m error measures 

1) Pose the data set as the population; 
2) Repeat m times: 

1) Define a sample by randomly performing n 
draws with replacement from the population; 

2) Numerically estimate the best-fitting 
parameters of the model using the sample; 

3) Compute and keep the model’s error on the 
population. 

Once the simulations are complete, one can use any of 
the available statistical tools (Hays, 1973) to analyze the list 
of error measures. 

Bootstrapping has two major inconvenients. First, like all 
simulation methods, it only considers the error measures of 
the models. Therefore, models with more free parameters 
have a head start on simpler models. Second, because the 
data used to form and test the models are the same, the 
postulate of independence is violated. Therefore, the 
generalization error is underestimated. Hastie and his 
colleagues (2001) provide a simple example to illustrate this 
point. First, when drawing a particular sample, the 
probability that a particular datum is drawn at least once is 
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binomial and described by: 
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where Z is a particular sample, i is a particular data point 
and n is the number of data points. If n is large, this binomial 
distribution can be approximated by the Poisson (Ross, 
1998): 

 632.0                                       
1   ) sample  datum( 1

≈
−≈∈ −eZiP

 (19) 

In words, the probability that datum i is part of sample Z 
is 0.632. Accordingly, the probability that sample Z does not 
contain datum i is: 1 – 0.632 = 0.368. If the data set is 
composed of two equiprobable categories (“A” and “B”) and 
no other information is available, the best thing a model can 
do is constantly answer “A”2. Clearly, the generalization 
error of this model is 0.5. However, if datum i is part of 
category “A”, the model is correct each time i is drawn. 
Moreover, when datum i is not drawn, the model is 
incorrect only half the time (remember that P(A) = P(B) = 
0.5). As a result, the estimated generalization error by 
bootstrapping is 0.5 × 0.368 = 0.184, which clearly 
underestimates the true generalization error (0.5). This 
limitation of bootstrapping is solved by the next simulation 
technique. 

Cross-validation 

The difference between cross-validation and 
bootstrapping is that the former splits the data set into 
several independent subsamples, one of which is used to 
test the model while the remaining are used to estimate the 

                                                                 
2 The exact same argument applies if “B” is constantly 
chosen. 

best-fitting parameters (Bishop, 1995; Hastie et al., 2001). As 
a result, the training set and the test data are independent 
(unlike in bootstrapping). However, because the data set 
must be split, more data points are necessary to use this 
method. Cross-validation is done by performing the 
following algorithm: 

Input: A data set of size n and a model 
Output: A list of k error measures 

1) Split the data set into k subsamples of equal size; 
2) Repeat k times, each time using a different test set: 

1) Numerically estimate the best-fitting 
parameters of the model using k – 1 
subsamples; 

2) Compute and keep the model’s error on the 
unused subsample (test set); 

As for bootstrapping, any statistical tool can be used on 
the list of error measures. However, the choice of k is critical. 
Before discussing the consequence of this choice, another 
decomposition of the error term must be introduced 
(Bishop, 1995; Geman, Bienenstock & Doursat, 1992; Hastie 
et al., 2001): 
 Error = Bias + Variance (20) 

The first term, the bias, typically decreases with 
increasing model complexity and is not affected by the data. 
The second term, variance, increases with model complexity 
and is affected by the data. While this short explanation is 
sufficient to understand the following discussion, the 
interested reader is referred to Geman et al. (1992) for a 
particularly clear derivation and discussion of this 
decomposition. 

 

Table 1. Fit of the GCM and the EBRW to data collected in Nosofsky (1987) 

 GCM (2) EBRW (3) 

Conditions (n = 12) -ll[•] AIC BIC -ll[•] AIC BIC 

Saturation A 46 96 97 41.1 88.2 89.7 

Saturation B 58.8 121.6 122.6 43.4 92.8 94.3 

Brightness 60.3 124.6 125.6 45.1 96.2 97.7 

Criss-Cross 50.4 104.8 105.8 52.9 111.8 113.3 

Pink-Brown 70.9 145.8 146.8 70.6 147.2 148.7 

Diagonal 99.6 203.2 204.2 106.7 219.4 220.9 

Note. Grey cells are the chosen model according to a particular measure. Numbers in parenthesis are
the number of free parameters. 
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The choice of k in cross-validation affects each term of 
the preceding decomposition (Equation 20) differently 
(Hastie et al., 2001). Choosing a large k results in small bias 
because, in each iteration, the estimate of the free parameters 
is stable (each training set is large). However, large ks also 
results in high variance, because the k training sets are 
strongly overlapping. On the other hand, choosing a small k 
increases the model’s bias but diminishes the variance. 
Typical choices for k are five, ten, or n. The last case is called 
leave-one-out and produces (almost) unbiased estimates of 
the model’s error (accompanied by extremely high 
variance). A useful rule of thumb is to look at the effect of 
sample size (n) on the error estimate. In all cases, a large n 
improves the error estimation but, if the slope of the effect of 
n is large (a small change in n strongly improves the 
estimate), a small k can be chosen (five or ten). Otherwise, a 
large k must be chosen and the computation time increases. 

Example 

The following example is an extension of the one 
presented in the likelihood ratio test section. A data set of 
200 RTs was collected and distribution models are used to 
infer the relationship between the processes implied in the 
generation of the responses. The collected data are shown in 
Figure 2. As in the preceding example, the race hypothesis is 
considered, so Equation 7 is the first model. Three other 
models are also introduced.  

Another type of processing often considered in cognitive 
psychology is the random walk (RW; Nosofsky & Palmeri, 
1997; Ratcliff, 1978). In RWs, evidence in favour of one of 
two alternatives is accumulated over time until a criterion is 
reached. When the criterion is reached, the associated 
response is given. Therefore, RWs are akin to race models 
(Cousineau et al., 2003) except that in the former, and not the 
latter, evidence in favour of one alternative is necessarily 
against the other. If the processes involved in a participant’s 

response are RWs, the resulting RTs follow a Wald 
distribution (Burbeck & Luce, 1982; Wald, 1947), which is 
described by: 
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where λ represents the spread and μ is related to the 
distribution’s mean. 

For many years, psychologists have postulated that 
cognitive processes were conducted by a series of modules 
and that the resulting RTs were a function of each individual 
module’s processing time (e.g., Atkinson & Shiffrin, 1968). If 
processes are a series of modules, two of the possible ways 
they can interact are hermetically and permeably. In the 
former, each module completes its computation before 
passing the result to the next. As a result, the final RT is 
simply the sum of each individual module’s RT. In 
particular, if an exponentially distributed module is 
additively affected by Gaussian noise, the resulting RT 
distribution is the Ex-Gaussian (Heathcote, Popiel & 
Mewhort, 1991; Hockley, 1984; Luce, 1986):  
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where μ and σ are the free parameters of the Gaussian noise, 
τ is the free parameter of the exponential process and Erf(•) 
is the error function encountered in integrating the Gaussian 
distribution.3 

In the case of permeability, the modules are leaky and a 
given module can start its computation before the preceding 
module has finished. With leaky processes, the model is 
multiplicative and the resulting RT distribution is the 
Lognormal (Ulrich & Miller, 1993). 
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where μ and σ are related to the mean and spread 
respectively.  

These four models of RTs (Equation 7, Equations 21 - 23) 
were used to explain the data in Figure 2 using 
bootstrapping and cross-validation (Bishop, 1995; Hastie et 
al., 2001). The results of bootstrapping for m = 50 is shown in 
Figure 3. As seen, the Weibull distribution constitutes the 
best model for the current data set with an error measure of 
1174 ± 1.12. This result is good news, because the data were 
artificially generated by a Weibull random generator. The 
Ex-Gaussian distribution, which uses one more free 
parameter than the other models, comes as a close second 
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Figure 2. Data used to illustrate the application of the Monte 
Carlo simulation methods 
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with an error measure of 1179±1.12. However, the error bars 
do not cross, which suggests that the Weibull distribution is 
significantly better than the Ex-Gaussian. The other two 
models’ predictions clearly differ from the data set. 

Figure 4 shows estimations of the error for each model 
using cross-validation. For k = 5, the best models are the 
Weibull and the Ex-Gaussian with estimated errors of 
236±1.77 and 237±1.99 respectively. However, in this case, 
even though the two models are better than the remaining, 
they are not statistically distinguishable. Therefore, the 
modeller must keep in mind that the Ex-Gaussian model is 
more complex, and should parsimoniously prefer the 
Weibull distribution in the present case. The same pattern of 
results is found when k = 10 and k = n = 200. The Weibull and 
Ex-Gaussian models are better than the remaining and are 
statistically indistinguishable with estimated errors of 
118±0.80 and 118±0.91 respectively when k =10 and 
estimated errors of 5.89±0.05 and 5.91±0.05 when k = n = 200. 

Conclusion 

In the first section of this paper, the likelihood measure 
was presented as an interesting alternative to estimate a 
model’s error on the training data. Using this error function, 
the best-fitting parameters can be estimated and several 
models can be compared to assess their relative desirability. 
Following the presentation of the error measure, several 
methods used to compare the models’ adequacy were 
presented. First, in the ideal case where the models are 
nested, the likelihood ratio test can be applied (Chernoff, 
1954; Wilks, 1938). This is the only statistical test (in the 
Fisherian sense) that allows the comparison of likelihoods. 
In the remaining cases, two different approaches were used 
to estimate the models’ generalization error: penalization of 
the internal error and Monte Carlo simulations. In the 
former, two methods were presented, the AIC (Akaike, 
1973) and the BIC (Bishop, 1995; Hastie et al., 2001). The AIC 
is based on information theory (Goldman, 1953) while the 

BIC is based on Bayesian statistics (Jeffreys, 1961; Kass & 
Raftery, 1995). Both methods are justified by the fact that the 
internal error of a model always underestimates the 
generalization error (because the same data are used to 
estimate the parameters’ values and compute the models’ 
error). 

The second approach, Monte Carlo simulations, does not 
use the internal error measure to estimate the generalization 
error: this error is directly estimated by splitting the data in 
training and test sets. A different separation is made during 
each iteration and several estimations of the generalization 
error are obtained. Following these estimations, standard 
statistics can be computed. The difference between the two 
presented methods, bootstrapping and cross-validation 
(Bishop, 1995; Hastie et al., 2001), is that the former uses the 

1150

1250

1350

1450

Weibull ExGaussian Lognormal Wald

-ll
[•]

Figure 3. Estimation of the model’s error using bootstrap 
(m = 50) 

Figure 4. Estimation of the model’s error using cross-
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same data to train and test the model while the latter uses 
independent data sets. 

Overall, the bootstrap method always underestimates 
the generalization error and the use of cross-validation 
requires a lot of data points and much computation time4. 
On the other hand, the AIC and the BIC are biased 
estimators because they only consider the model’s 
complexity in the penalization of the internal error: the data 
set is ignored (Hastie et al., 2001). The Monte Carlo 
simulation methods are less biased but they result in high 
error variance (Equation 20), because their estimation only 
relies on the data set (the model is ignored). 

To conclude, it seems that there is no absolute best way 
to compare non-nested models. Particular attention should 
be allotted to experimental control in order to reduce the 
variance in empirical data. Therefore, the falsification 
principle could be re-established in psychology. Also, when 
creating or evaluating a model, it must be kept in mind that 
any data set can be fit with arbitrary accuracy if model 
complexity is not an issue. As a result, simple models in 
which each axiom refers to a psychological process should 
be preferred over models with smaller estimation errors on 
the data. After all, the interpretations given to a model’s 
axioms are what distinguish a good model from a mere 
mathematical equation. 
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