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Confidence Intervals: From tests of statistical significance to

confidence intervals, range hypotheses and substantial effects
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For the last 50 years of research in quantitative social sciences, the empirical evaluation of
scientific hypotheses has been based on the rejection or not of the null hypothesis. However,
more than 300 articles demonstrated that this method was problematic. In summary, null
hypothesis testing (NHT) is unfalsifiable, its results depend directly on sample size and the null
hypothesis is both improbable and not plausible. Consequently, alternatives to NHT such as
confidence intervals (CI) and measures of effect size are starting to be used in scientific
publications. The purpose of this article is, first, to provide the conceptual tools necessary to
implement an approach based on confidence intervals, and second, to briefly demonstrate why
such an approach is an interesting alternative to an approach based on NHT. As demonstrated
in the article, the proposed CI approach avoids most problems related to a NHT approach and
can often improve the scientific and contextual relevance of the statistical interpretations by
testing range hypotheses instead of a point hypothesis and by defining the minimal value of a
substantial effect. The main advantage of such a CI approach is that it replaces the notion of
statistical power by an easily interpretable three-value logic (probable presence of a substantial
effect, probable absence of a substantial effect and probabilistic undetermination). The

demonstration includes a complete example.

Tests of statistical significance, also known as null
hypothesis testing (NHT) have been highly criticized during
the last decades. The APA Task force on statistical inference
even suggested to avoid using NHT as much as possible and
to replace it with alternative procedures such as confidence
intervals and measures of effect size (Wilkinson et al., 1999).
However, many introductory courses and manuals in
statistics for psychology still teach NHT as the only
paradigm. The purpose of this article is, first, to provide the
conceptual tools necessary to implement an approach based
on confidence intervals, and second, to briefly demonstrate
why such an approach is an interesting alternative to an
approach based on NHT.
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Understanding confidence intervals

Confidence intervals are mathematically equivalent to
tests of significance. Indeed, for every test of significance, an
equivalent confidence interval can be constructed. However,
instead of providing a p value to evaluate if an effect is
statistically different from zero, confidence intervals provide
information about the wunstandardized effect size as
observed in the sample (i.e. the effect size) and the precision
of the estimation of the effect size for the population (i.e. the
parameter). The basic model of an effect size is:

CI=ES+V-xSE (1)
where the confidence interval (CI) is constructed by adding
and subtracting from the unstandardized size of an effect as
observed in the sample (ES) the product of its standard error
(SE) and the two-tailed critical value at the chosen alpha
level of statistical significance (Vc). Every value around the
unstandardized effect size and between the upper and lower

boundaries of the interval is included in the confidence
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interval. When the CI excludes zero, the equivalent test of
significance is statistically significant and vice versa.
Although the term effect size is now often used to refer
strictly to standardized, or metric-free, indexes of the size of
an effect as observed in a sample such as the d statistic
(Rosenthal, 1994), it is used in the present article in its older
and simpler form, i.e. to refer to the unstandardized size of
an effect as observed in a sample (e.g. a difference between
means or a correlation). The term parameter will be used to
refer to the unstandardized size of an effect in the
population.

A confidence interval can be conceptually defined as a
range of plausible values for the corresponding parameter
(i.e. for the unstandardized size of the effect in the
population). We could also say that conclusions that a
parameter lies within a CI will err in [corresponding alpha]
of the occasions. However, to interpret CIs beyond these
simple definitions, one has to clarify what is meant by the
notion of probability. Indeed, there are two radically
different ways to interpret Cls that are related to two
different interpretations of probability. The most commonly
taught (but least understood) interpretation comes from the
frequentist approach. It is indeed the approach on which
traditional Cls are based. According to this approach,
probability represents a long-term relative frequency. More
explicitly, if CIs could be calculated for an infinity of
random samples coming from the same population, the
parameter of the population would be included in [1-alpha]
of them. However, when a single CI is interpreted, it is
inadequate to say that there is a probability of 95% that the
parameter is included in the CL. From a frequentist point of
vue, it makes no sense to speak about probabilities for a
specific CI, it either includes the parameter or it does not.
The only meaning that can be given to a specific Cl is as a
representation of the amount of sampling error associated
with that estimate within a specified level of uncertainty. It
is thus said that all the values included in a CI can be
considered to be equivalent with a level of confidence of [1-
alpha].

Researchers and decision makers are often more
interested to know the probability that a specific CI includes
the related parameter than to measure the sampling error of
their study. What they crave for is the probability from a
subjective approach or, more simply, a reasonable estimation
of the odds of being correct if they conclude that the
parameter is included in a specific CI. Using that definition,
probability takes place in the eye of the beholder, not in the
empirical world. The subjective approach to probability is
generally called the bayesian approach because it is
mathematically based on Bayes’ theorem. It is indeed
possible to calculate a bayesian CI for which it can be
reasonably assumed that there is [1-alpha] chances that the
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parameter is included. However, to adequately calculate
such a CI, one has to take into account both the experiment’s
data and all the previous knowledge one has about that
parameter. It is a process extremely similar to a meta-
analysis, in which the resulting CI is calculated by
combining the results of all the previous studies. There is
still one case for which a bayesian CI coincides with its
frequentist counterpart: It is when the bayesian CI is based
on an agnostic prior, i.e. a judgment that one has no useful
prior knowledge or belief about a parameter’s possible
value. It can thus be said that when only the experiment’s
data are taken into account to estimate a parameter (i.e.
when an agnostic prior is postulated), a traditional CI
represents an interval for which it is reasonable to assume
that there is [l-alpha] chances that the parameter is
included. By extension, the distribution related to the CI can
be understood as the distribution of the probable values of
the parameter according to an agnostic prior.

Calculating Confidence Intervals

As explained in the previous section, confidence
intervals can be calculated for any traditional test of
significance. Although the specific formula used to calculate
a confidence interval depends on the type of data, these
formulae are all based on the same general model (see
equation 1).

The following section will present the specific formulae
used to calculate the most commonly used confidence
intervals for means, correlations, proportions and their
differences. The other confidence intervals can often be
constructed using the same general principle.

Confidence intervals for means

The CI equivalent of a one sample T-test uses the
following formulae:
CI=X*t- xS @)

2
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is the observed mean; tc
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where X is the t value
corresponding to the alpha level; S is the standard error of
the mean; S, is the standard deviation; and 7 is the number
of cases.

The CI equivalent of an independent samples T-test uses

the following formulae:

Cl=Xa—Xi*tcxSy 3, (4)
Se” S0 XX Yn-X)?

T e + ©)
X \m o mm-1)  mmp-1)

where X1 and X3 are the observed means of each group;

tc is the t value corresponding to the alpha level; 53+ is
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the standard error of the difference between the means;
lez and sz2 are the variances of each group; and n; and
ny are the number of cases in each group. If the
homogeneity of variances cannot be assumed, the formula is
used as is. It is called the separate variances formula.
However, if the homogeneity of variances is assumed (i.e.

lez = sz2 ), the pooled variance (see equation 5) replaces
both lez and szz in the standard error formula (i.e.
equation 5).

5 S =D+5,%(m-1)
Spoolad =

(6)

m+p—2
The CI equivalent of a paired samples T-test uses the
following formulae:
Cl =D +t-x5= ?)

S— =22 @)

where D is the observed mean of the differences between
the paired observations; t- is the t value corresponding to

the alpha level; SE is the standard error of the mean of the
differences; Sp is the standard deviation; and # is the

number of pairs. The procedure is exactly the same as for a
one sample T-test except that the differences between the
paired scores replace the scores.

Confidence intervals for correlations

Confidence intervals cannot be directly calculated for
correlations because the distribution of probable values
varies as a function of the size of the correlation. A simple
solution to this problem, described by Fisher (1925), is to:

(a) transform the correlation (r) into Fisher’s z’ using the

following formula:

- mn(d+r)-In(l-r) ©)
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(b) calculate the CI for the z' value using the following

formulae:
CIl = z'+z- xSE, (10)

1

SE, = (11
z — )
where z' is the observed z' value; z- is the z value

corresponding to the alpha level; SE, is the standard error of
the z' ; and n is the number of pairs.
(c) and retransform the lower and upper boundaries of the
Cl in correlations using the following formula:
e -1
r=———=tanh(z')
e +1

where tanh( z'") is the hyperbolic tangent of z'.

(12)

The basic procedure to calculate the CI of a difference
between two correlations with independent samples uses the

following formulae after each correlation has been
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transformed into a Fisher’s z’ (see equation 9):
Cl =z'5-z'1*zc xSE,;, (13)
1 1
SE, _, = + 14
277 I’ll - 3 nz - 3 ( )

where z',-z'; is the observed difference between the two z’
values; z is the z value corresponding to the alpha level;
SE, ., is the standard error of the difference between the
correlations; and n; and n, are the number of pairs for
each sample.

One problem with the resulting CI is that it cannot be
Indeed, although the

boundaries of the CI could be transformed back into

directly interpreted. resulting
correlations, the result would be meaningless, first, because
a difference between two Fisher’s z” values does not directly
translate into a difference between two correlations and,
second, because a difference between two correlations does
not directly translate into a specific amount of difference in
explained variance. One way to transform the CI of a
difference between two Fisher’s z’ values into a CI of
difference in explained variance is to use an adaptation of
Tryon’s (2001) inferential confidence intervals. Inferential
confidence intervals are mathematically equivalent to
standard confidence intervals of differences and,
consequently, to tests of statistical significance. However,
they represent the statistical significance of a difference as
confidence intervals around each effect size. The difference
is said to be statistically significant (i.e. excluding zero)
when the confidence intervals are not overlapping and non-
significant when they overlap. Technically, to obtain the
difference in explained variance for each boundary of a
confidence interval in a difference between correlations, the
two corresponding inferential confidence intervals must first

be calculated using the following formulae:

Iz'l(inferential) = Zyli_zc(inferentia 1) X SEZ'l (15)

Izvz(inferential) =7 i_ZC(inferenﬁal) XSEZ'Z (16)
— SEZ'z -z

ZC(inferentia) = Zc 17)

X—

SE,, +SE;,
where z'; and z', are the Fisher’s z’ calculated for each
correlation (using equation 9); SE,, and SE, are the
standard errors of each z' (equation 11); zc(inferential) 1S the
inferential equivalent of the critical z value; z¢ is the z value

corresponding to the alpha level; and SE is the

Zy-74

standard error of the difference (equation 14).
When the boundaries of the two inferential confidence

to be

transformed into explained variance by transforming it into

intervals are calculated, each boundary has
a correlation (using equation 12) and squaring the result.
The two boundaries of the difference in explained variance

can then be calculated (1) by subtracting the upper
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boundary of the first inferential confidence interval from the
lower boundary of the second inferential confidence interval
and (2) by subtracting the lower boundary of the first
inferential confidence interval from the upper boundary of
the second inferential confidence interval.

Confidence intervals for proportions

the CI
equivalent of chi-squares. Technically, proportions and

Confidence intervals for proportions are
probabilities are based on the binomial distribution.
However, the calculations for their Cls are generally based
on the normal distribution because its continuous scale (as
opposed to the discrete scale of the binomial distribution)
makes it easier to use. Traditionally, these CIs were
calculated using the following formula, called the simple
asymptomatic approximation or Wald method (Vollset,
1993):

P(P-1)

n

Cl=P+zx (18)

where P is the observed proportion; zc s the z value
corresponding to the alpha level; and n is the number of
cases.

The simple asymptomatic approximation for a difference
of proportions between two independent samples uses the
following formulae:

h(A-B) B(1-B)
m My

Cl=P,-P £z XV, (19)
where p; and p, are the observed proportions; z. is the z
value corresponding to the alpha level; and n; and n, are
the number of cases for each proportion.

that the
asymptomatic method do not provide a very good

However, studies have shown simple
approximation, especially when the number of cases is small
aod/or the observed proportion is near 0 or 1. The Wilson
method is an interesting method that avoids these problems
(for a review, see Brown, Cai & DasGupta, 2001; Newcombe,
1998a; 1998b). Wilson score CIs for proportions use the

following formulae:

2
=20 2 4, xsE, (20)
2(1’Z+ZC )
2
4nP(1-P
SEp = L(Z) (1)
2(1/1+ZC )

where P is the observed proportion; n is the number of
cases; z. is the z value corresponding to the alpha level; and
SEr is the standard error of the proportion.

To calculate a Wilson score CI for a difference of
proportions between two independent samples, one has first
to calculate the Wilson score CI of each proportion (using
equations 20 and 21) and then use the following formulae:

LBy p =P, B —|(By LB +UB P}’ (22)
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UBy_p, =P, ~P (P ~LB)* +UB, ~B,)

where LBr2ri and UBr2r1 are, respectively, the lower and

(23)

upper boundaries of the confidence interval of the
difference; P1 and P: are the observed proportions for each
sample; LB: and LB: are the lower boundaries for each
sample; and UB: and UB: are the upper boundaries for each
sample.

Using Confidence Intervals to Validate Your Hypotheses

Why would you need an alternative to NHT?
The logic of null hypothesis testing (NHT) has been used

for more than 50 years. However a growing number of
criticisms (i.e. more than 300 articles) pinpoint major
problems that question its usefulness as a general model of
theory appraisal and its capacity to answer many of our
research questions. Although an exhaustive coverage of
problems related to NHT is impossible to include in this
article because of space constraints, four classical problems
will be briefly described below. Interested readers are
referred to reviews of the topic (e.g. Kline, 2004; Beaulieu-
Prévost, in press).

The relation to sample size. In a test of significance, the p
value is the probability of having a result at least as
“extreme” as the one observed IF WE SUPPOSE that the
data are the result of a totally random process. It is thus
simply an index of “surprise” and it is related both to the
effect size and to the sample size. More specifically, the p
value becomes smaller as the effect size increases and as the
sample size increases. A problematic consequence is that a
statistically significant result will ALWAYS be obtained if
the sample is big enough, unless the effect size is EXACTLY
zero. An irrelevant effect can thus be highly significant just
because of sample size.

The lack of plausibility of the null hypothesis. A second
major problem with significance testing is the lack of
plausibility of the null hypothesis (Ho), especially in the
“soft” sciences. This notion called the crud factor (Meehl,
1990), can be summarized by the following statement: In the
sciences of the living (i.e. from biology to sociology), almost all of
the variables that we measure are correlated to some extent. Ho is
thus rarely plausible. It is important to specify that the crud
factor does not refer to random sampling error nor to
measurement error. A resulting consequence of the situation
is that the emergence of a statistically significant effect
cannot be claimed as support for a specific theory because
we should at least expect a small effect (e.g. correlation or
difference) for most studies in the “soft” sciences.

The logical improbability of the null hypothesis. While
there is only one specific parametric value associated with
Ho (i.e. zero), there is a range of possible parametric values
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associated with Hi (i.e. anything except zero). Ho is thus said
to be a point hypothesis while Hi is a range hypothesis (Serlin,
1993; Kline, 2004). The main problem with point hypotheses
is that they are logically improbable on a continuous scale.
Since a continuous scale is composed of an infinity of
specific values (or points), there is only one chance out of the
infinite that a specific point hypothesis is true. When
defining point hypotheses as a special case of range
hypotheses (i.e. hypotheses with the smallest possible
range), the problem can be summarized by the following
statement: The precision of a hypothesis limits its logical
probability of being true. Indeed, restricting the range of
possible values for a hypothesis reduces its probability of
being true. If the logic is applied to significance testing, a
major problem of the approach becomes obvious. As a point
hypothesis on a continuous scale, Ho is ALWAYS false, since
1/ec can clearly be considered a negligible probability.
Indeed, the probability that an intervention has an effect size
of EXACTLY =zero is infinitesimal. Therefore, H1 is ALWAYS
true and the concepts of type I and type II errors are nearly
meaningless!

The unfalsifiability of the alternate hypothesis. We can never
prove a theory although we can refute it. This statement that
summarizes the limits of inductive inference is used since
Fisher to justify the logic of significance testing. Since we
cannot prove Hi, we will do our best to refute Ho. And it
could have been an interesting idea if Ho was not already
known to be false! It is basically correct to argue that a
statement cannot be inductively proven but that it can be
refuted, but it is paradoxical to empirically test a statement’s
truth value when it is already known. As we have seen
above, Hi is always true because it includes the whole
continuum of possible results (except one point).
Furthermore, if we fail to reject Ho, we can always claim that
the sample was not big enough. Hi is thus unfalsifiable,
which makes it a scientifically problematic hypothesis if we
follow Popper’s (1959) philosophy of science.

In conclusion. Using significance testing to appraise the
validity of a scientific hypothesis implies using a decision
criterion (i.e. the p value) that confounds effect size and
sample size to test a hypothesis already known to be false
and unrealistic. And when we successfully reject this false
hypothesis, we can be tempted to infer that this test
improves the plausibility/credibility of our “scientific”
although

unwarranted. Thus, significance testing as a general model

hypothesis, such inference is generally
of theory appraisal is, at least, a problematic procedure.
However, the problem of significance testing is not so much
in the statistical principles used to evaluate the probability
of an event, but in the specific hypotheses that are
systematically tested (i.e. Ho and Hi). As will be shown in

the following paragraphs, a CI approach to statistics is an
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interesting alternative to NHT that can be used to avoid
most of these major problems.

Testing scientifically useful hypotheses

If we summarize, a scientifically useful hypothesis has to
be probable, plausible and falsifiable. All point hypotheses
(e.g. Ho) are thus scientifically problematic since they are
improbable to the point of being false. Hypotheses that
include every possible result except one (e.g. Hi) are also
scientifically problematic since they are unfalsifiable. In fact,
the only way to construct a probable and falsifiable
hypothesis is to construct a range hypothesis that both
includes and excludes a significant amount of possible
results. This type of hypothesis has the best of both worlds:
it is falsifiable because it excludes a significant amount of
possible results and it is logically probable because it also
includes a significant amount of possible results. As will be
demonstrated in the next section, range hypotheses can be
easily tested using a CI approach.

Even though an infinity of possible range hypotheses
could be
hypotheses can be summarized by one of the following

constructed, most scientifically meaningful
types: (1) There is (or not) a substantial effect, (2) There is (or
not) a harmful effect and (3) There is (or not) a trivial effect.
To understand the meaning of these types of hypotheses,
the notion of substantial effect has first to be clarified.
Basically, the concept of “substantial effect” is the equivalent
of “clinically significant effect” although it is not limited to
clinical settings. A substantial effect is simply an effect
whose size is large enough to be of interest. However, it is
important to mention that the minimal value of a substantial
effect is always context-dependent. To adequately quantify
the minimal value of a substantial effect (or the maximal
value of a trivial effect), one has to assess the important
aspects of the study such as the theoretical importance of the
effect, the practical purpose of the phenomenon, the
potential cost of an intervention and, minimally, the
sensitivity of the scale. For example, if the effect of an
intervention on depression is measured with a depression
scale from 1 to 10, it might be decided that an effect size of
one would be the smallest interesting value since it is the
smallest possible difference that can be detected by the scale.
However, if the intervention is extremely costly, it might be
decided that the effect size would need to be of at least 2.5
for the intervention to be interesting. Two different minimal
values can often be quantified for the same study: The
minimal value to consider that an effect is theoretically
interesting and the minimal value to consider that an effect
has a contextual usefulness. For example, if you are
interested to investigate a potential link between self-esteem
and school performance, you might be satisfied with

correlations of 0.09 (i.e. 1% of explained variance) or more,
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but if you plan to increase school performance through a
large-scale self-esteem intervention, you might evaluate that
only correlations of at least 0.30 (i.e. 9% of explained
variance) are deemed to be interesting. A major advantage
of having to define the minimal value of a substantial effect
is that it forces researchers to take into account the purpose
of their study because such a value cannot be defined for
meaningless studies.

As soon as the minimal value of a substantial effect is
defined, the three possible types of hypotheses can
automatically be defined:

1) The hypothesis of a substantial effect,

which evaluates whether or not the effect is at least equal to
the minimal value of the substantial effect.

2) The hypothesis of a harmful effect,

which is defined as the opposite of the hypothesis of a
substantial effect. It can be used to evaluate the possibilities
of a harmful or counter-intuitive effect of substantial value.

3) The hypothesis of a trivial effect,

which evaluates whether or not the effect is between the
minimal substantial effect and the minimal harmful effect.
When this hypothesis is tested for a comparison between
two means, it is also called a test of equivalence (see Rogers,
Howard & Vessey, 1993) since it evaluates whether or not
the means are substantially different.

Testing hypotheses with confidence intervals

As soon as adequate range hypotheses are defined and
the CI is calculated, hypothesis testing can be done at a
glance! You just have to see if the CI is either (1) totally
included within the range of the hypothesis, (2) totally
excluded from the range of the hypothesis or (3) partly
included within the range of the hypothesis. If the CI is
totally included, the hypothesis is corroborated (i.e. p > 0.95 if
alpha = .05), if it is totally excluded, the hypothesis is falsified
(i.e. p < 0.05 if alpha = .05) and if it is partly included, the
hypothesis is undetermined (i.e. 0.05 < p < 0.95 if alpha = .05).
Since point hypotheses have a range of zero (or 1/e to be
more precise), they are always too small to totally include a
confidence interval. Consequently, point hypotheses can be
falsified or undetermined but they can never be
corroborated.

It is important to realize that this graphic method
supposes that your hypotheses are two-tailed (i.e. they have
both lower and upper boundaries for their range of expected
values). If your hypotheses are one-tailed (e.g. » > 0.30), you
can still use that method although it becomes slightly
overconservative as it can falsely categorize a hypothesis as

undetermined. For example, each boundary of a 95% two-
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tailed CI is the boundary of a 97.5% one-tailed CI because
the 5% rejection area of a two-tailed CI is composed of a
2.5% rejection area on each side of the CIL. To insure that the
adequate probabilities are used to test your one-tailed
hypotheses, one can simply calculate the one-tail values of
your CI (by changing the critical value used in your
calculations) and use the same logic as before.

If more precision is required, it is also possible to
estimate the subjective probability of a hypothesis instead of
simply comparing this probability to the 5%/95% criterion
(i.e. the alpha). This type of precision is particularly
appropriate with meta-analyses when the goal is to make a
practical decision. Graphically speaking, the procedure
requires, first, to project the values corresponding to the
hypothesis on the distribution of probable scores for the
parameter (i.e. the distribution used to construct the
confidence interval) and, second, to quantify the area under
the curve between the boundaries of the hypothesis (see
Figure 1).

Mathematically speaking, the procedure requires that
the values of the boundaries of the hypothesis (e.g. the
minimal value of the substantial effect) be transformed into
z-scores centered around the observed effect size. T-scores
might have to be used instead of z-scores depending on the
distribution on which the confidence interval was based.
The second step is then to calculate the area under the curve.
When the confidence interval is based on the z distribution
(e.g. for correlations and proportions), one has simply to use
a z distribution table to find the corresponding area under
the curve. This table can be found in most introduction
When the
confidence interval is based on the ¢ distribution (e.g. for

manual of statistics for the social sciences.

means), the procedure is a bit more complex because the
shape of the t distribution depends on the degrees of
freedom. The easiest way to solve the problem is to use an
electronic calculator as found on the internet (e.g. West,
R.W., 2006). A second option, when the number of cases
exceeds 30, is simply to use the z distribution as an
approximation of the t distribution. With this procedure, the
precise value of the subjective probability can be calculated
for each hypothesis (e.g. substantial effect, trivial effect,
harmful effect).
The question of statistical power. The notion of
undetermination answers the question of statistical power: If
a hypothesis is undetermined, it simply means that the
sample is not large enough to let the test provide a clear
answer. As with tests of significance, the power of a test can
also be estimated in advance. However, in the case of
confidence intervals, the sensitivity of the test might be a
more appropriate term than its power. The relevant question
now becomes either “How much cases are required to make

sure that an observed effect of X passes as a corroboration
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Figure 1: Evaluation of the subjective probabilities for a fictional

example
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(or as a falsification) of hypothesis Y at an alpha level of Z?”
or “Assuming X cases, what effect size will be considered as
a corroboration (or as a falsification) of hypothesis Y with an
alpha level of Z”. To answer one of these questions, one has
simply to isolate either n or the observed effect size in the
equation used to calculate the CI. As with traditional tests of
significance, the standard deviation has to be estimated a
priori for means.

Confidence intervals and sample size. The relation between
sample size and statistical power is important to understand
when dealing with confidence intervals. Since both tests of
significance and confidence intervals use the same statistical
principles, sample size has the same general impact on
them. As sample size increases, both the p value (in a NHT
approach) and the width of the corresponding CI (in a CI
approach) become smaller. This is explained by the fact that
sample size directly affects the standard error of a test (e.g.
equations 3, 5, 8, 11, 14 and 21). Point hypotheses will thus
always be rejected if the sample size is big enough, unless
the effect size in the sample corresponds exactly to the point
hypothesis. From a CI point of vue, it can be said that as
sample size increases, the bayesian probability of concluding
that an effect is undetermined decreases. Since point
hypotheses cannot be corroborated (as discussed earlier),
they automatically become falsified when sample size is big
enough. However, when range hypotheses are tested
instead of point hypotheses, the problem of automatic
falsification with large sample sizes disappears. Since range
hypotheses include many possible parametric values
(instead of only one for point hypotheses), they can both
totally include or totally exclude the small-width CI of a
large-sample study. Consequently, range hypotheses do not
share with point hypotheses the problem of automatic
falsification for large samples.

A complete example. Using the example presented above, a
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researcher wants to evaluate the correlation between self-
esteem and school performance in a high school sample (1 =
200). The purpose of this study is to evaluate whether or not
a large-scale self-esteem intervention could improve school
performance in a substantial way. After an evaluation of the
situation (i.e. cost and efficiency of the intervention,
sensitivity of the scales,...), the value of a contextually
interesting effect is fixed at r > 0.30 and the value of a
theoretically interesting effect is fixed at r > 0.10. Under
these conditions, the sensitivity (or statistical power) of the test
can already be calculated. It is thus calculated that an
observed correlation of r > 0.23 will be necessary to
corroborate the presence of a theoretically interesting effect
while an observed correlation of r > 0.42 will be necessary to
corroborate a contextually interesting effect. The researcher
finds a correlation of 0.37 which he could traditionally
report as r = 0.37 (p < 0.05). Since he is not interested in the
null hypothesis, the researcher decides to estimate the
parametric value of the correlation with confidence intervals
(0.25 < r < 48).

Because the confidence interval includes both values
below and above the minimal value of the contextually
interesting effect, the hypothesis of a contextually
substantial effect is undetermined (i.e. 0.05 < p < 0.95). As for
the presence of a theoretically interesting effect (r > 0.10), it
is corroborated since the confidence interval is completely
included in the range of theoretically interesting values. If
need be, the precise subjective probabilities can also be
calculated for both the contextually interesting effect
(pesubstantial) = 0.86; priviay = 0.14; pmarmeay = 0.00) and/or the
theoretically interesting effect (p(substantial) = 1.00; p(aiviay = 0.00;
parméat) = 0.00). In this case, even though the presence of a
contextually interesting effect was not corroborated,
decision makers could still go on with the intervention if
they evaluate that an 86% chances of producing a beneficial
effect is a fair risk (especially since the chances of producing
a harmful effect is negligible). As demonstrated by this
example, the main advantage of testing for substantial
effects with CIs over a NHT approach is that it that it
immediately translates data into meaningful answers to

research questions.

Discussion

The purpose of this article was both to demonstrate why
an approach based on confidence intervals and range
hypotheses is an interesting alternative to an approach
based on NHT and to provide the conceptual tools necessary
to make the transition from a NHT logic to a logic of
confidence intervals and substantial effects. The research
community is becoming more and more aware of the limits
of NHT: CIs are now officially preferred over NHT by most

APA journals and some scientific journals are now reluctant
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NHT
standardized effect sizes are also presented (e.g. Memory &

to publish traditional studies unless Cls or
Cognition). Transforming your NHT habits into CI habits is
relatively easy since both approaches are based on the same
statistical model. Most of what you learned in your
statistical courses is still relevant. And after reading this
article, you already have all the tools you need to
immediately start using ClIs. In addition, a CI approach
expands the possibilities of a NHT approach and improves
the potential impact of a study because it allows you to
easily test scientifically relevant hypotheses instead of
automatically testing a single, false and unrealistic
hypothesis (i.e. the null hypothesis). Such an approach will
simply give you an edge in the “publish or perish” challenge

as soon as you will adopt it.

Advices for an easy and enjoyable transition to a CI
approach

Because most popular statistical softwares were created
in a pro-NHT era, they always provide p values, they do not
always provide their CI counterpart and they rarely provide
a way to test range hypotheses. However, it is rarely a big
problem since many solutions are easy to implement. A first
solution is simply to copy the CI equations you want on a
spreadsheet (e.g. Excel) and keep your spreadsheet for
further use. You can then take the information you need
from your statistical output (e.g. mean, standard
deviation,...) and instantly translate your NHT result into a
CI. A second solution is to find a spreadsheet or a CI
calculator on the internet. Cls are becoming more and more
popular and many researchers provide downloadable
spreadsheets or online calculators to calculate them (e.g.
Hopkins, 2006; Beaulieu-Prévost, 2006). These calculators
can generally be found with an internet search using
keywords such as “confidence intervals”, either
“spreadsheet” or “calculator”, and a keyword describing the
type of CI you want to calculate (e.g. “correlations”).
Naturally, as with any information downloaded from the
internet, you have to evaluate the quality of your calculator
from the author’s credibility or at least test your calculator
with known data.

If you know the upper and lower boundaries of your CI
but have no information about the standard error used in
the calculations (as might happen with some statistical
softwares), you might believe that you cannot calculate the
precise subjective probability of a hypothesis. However, as
long as you know the formula used to calculate the CI, the
standard error can be calculated by isolating it in the CI
formula. Using the general formula (see equation 1) as a

model, the formula to calculate the standard error is:
SE = UB-ES (24)
Ve
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where SE is the standard error; UB is the upper boundary of
the confidence interval; ES is the size of the effect in the
sample; and V- is the critical value for the specified alpha
level.

Finally, if you are interested to calculate confidence
intervals that were not presented in this article (e.g. Cls for
linear regressions), you can either verify if your statistical
software provides these confidence intervals, browse the
internet for calculators or look for the formula in a statistical
manual. Remember that for each test of significance, there is
a corresponding CI. As soon as you have your CI, you can
test your hypotheses using the approach presented in this
article.

Towards more precise confidence intervals

The formulae presented in this article represent the basic
CI formulae used in social sciences. It is important to realize
that when Cls are built for complex distributions such as the
t distribution, the CI calculated with these formulae
represents an approximation. Recently, a more exact method
called noncentrality interval estimation (Steiger & Fouladi,
1997) has been proposed to improve the precision of CIs for
these complex distributions. However, such a method is
mathematically demanding and user-friendly softwares that
can handle these calculations are still rare. Other methods
such as the bootstrap procedure are also proposed to
improve the precision of CIs (Kline, 2004). We can probably
expect these new algorithms to be included in our future
statistical softwares as the CI approach gradually grows in
popularity in social sciences.

Limits of a CI approach

As some readers might have realized, the article did not
discussed CI equivalents of ANOVAs, ie. situations in
which more than two groups or two conditions are
involved. CI equivalents of ANOVAs do exist but are very
difficult to interpret because the metric used in these tests is
not directly related to meaningful unstandardized units.
Indeed, this problem is already acknowledged by NHT
researchers: As soon as more than two groups or conditions
are included in an ANOVA, a statistically significant result
can only indicate whether or not there is at least one
One has
additional post-hoc tests to find out exactly where is this

(statistically significant) difference. to use
difference and, consequently, to adequately interpret the
results. It is thus generally useless to use CI equivalents of
ANOVAs. However, CI equivalents of different post-hoc

tests are available and can be used as any other CL

Conclusions

Null hypothesis testing systematically quantifies the
plausibility of a “known-to-be false” hypothesis (Ho) to
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evaluate the validity of an unfalsifiable “known-to-be-true”
alternate hypothesis (Hi). It is thus, at least, a problematic
procedure if one wants to evaluate the validity of a scientific
hypothesis. A CI approach that uses range hypotheses
avoids these pitfalls and offers a very interesting alternative.
Using such an approach, researchers can easily evaluate
relevant scientific hypotheses by operationalizing them as
falsifiable range hypotheses, estimating the minimal value of
a substantial effect and constructing confidence intervals
from their data. As demonstrated in this article, it is
relatively easy to change your NHT habits into CI habits
since both approaches are based on the same statistical
model. As a last argument, remember that if you are more
interested by the substantial significance of your results than
by their statistical significance, such a change will improve
the impact of your publications. Whether you see it as an
alternative to a NHT approach or simply as an additional
statistical tool, this approach can give you an edge over
researchers using exclusively a traditional NHT approach!
You will find on the journal’'s web site an Excel
spreadsheet with the simulated data used in the school
performance example above on the first worksheet and a

confidence intervals calculator for correlations on the second

worksheet.
References
Beaulieu-Prévost, D. Projet mémoire, [Online].
http://www.projetmemoire.info/materiel. htm (Page

visited march 1st, 2006).
Beaulieu-Prévost, Dominic. (in press). Statistical decision
and falsification in science: Going beyond the null
In Benoit Hardy-Vallée (Ed).
Empirical

hypothesis! Cognitive

decision-making: and  foundational  issues.
Cambridge Scholar Press.

Brown, L. B, Cai, T. T., and DasGupta, A. (2001). Interval
Estimation for a Binomial Proportion. Statistical Science,
16, 101-133.

Fisher, R. A. (1925). Statistical Methods for Research Workers.
London: Oliver & Boyd.

Hopkins, Will G. New view of statistics: Confidence limits,
[Online].
http://www .sportsci.org/resource/stats/generalize.html
(Page visited march 1st, 2006).

Kline, R. B. (2004). Beyond significance testing. Washington:
American Psychological Association.

Meelh, P. E. (1990). Why Summaries of Research on
Psychological Theories Are Often Uninterpretable.
Psychological Reports, 66, 195-244.

Newcombe, R. G. (1998a). Two-sided Confidence Intervals
for the Single Proportion: Comparison of Seven
Methods. Statistics in Medicine, 17, 857-872.

Newcombe, R. G. (1998b). Interval Estimation for the

19

Difference Between  Independent  Proportions:
Comparison of Eleven Methods. Statistics in Medicine, 17,
873-890.

Popper, K. R. (1959). The Logic of Scientific Discovery. London,
UK: Hutchison

Rogers, J. L., Howard, K. I. and Vessey, J. (1993). Using
Significance Tests to Evaluate Equivalency Between Two
Experimental Groups. Psychological Bulletin, 113 (3), 553-
565.

Rosenthal, R. (1994). Parametric measures of effect size. In
H. Cooper & L. V. Hedges (Eds.), The handbook of research

(pp.- 231-244). New York: Russel
Foundation.

Serlin, R. C. (1993). Confidence intervals and the scientific
method: A case for the Holm on the range. Journal of
Experimental Education, 61, 350-360.

Steiger, J. H., and Fouladi, R. T. (1997). Noncentrality
interval estimation and the evaluation of statistical
models. In L. L. Harlow, S. A. Mulaik and J.H. Steiger
(Eds), What if there were no significance tests? Mahwah, NJ:
Lawrence Erlbaum Associates.

Tryon, W. W. (2001). Evaluating statistical difference,

and

synthesis Sage

equivalence, indeterminacy using inferential
confidence intervals: an integrated alternative method of
conducting null hypothesis statistical tests. Psychological
Methods, 6, 371-386.

Vollset, S. E. (1993). Confidence Intervals for a Binomial
Proportion. Statistics in Medicine, 12, 809-824.

West, R. W.
http://www stat.sc.edu/~west/applets
march 1st, 2006).

Wilkinson, A. and the Task Force on Statistical Inference.
(1999).
Guidelines and explanations. American Psychologist, 54,
594-604.

[Online].
visited

Cybergnostic applets,

(Page

Statistical methods in psychology journals:

Submitted March 8", 2006

Corrections received April 25, 2006
Accepted April 27", 2006.



