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Collecting and analyzing data in multidimensional scaling

experiments: A guide for psychologists using SPSS

Gyslain Giguére
Université du Québec a Montréal

This paper aims at providing a quick and simple guide to using a multidimensional scaling

procedure to analyze experimental data. First, the operations of data collection and preparation

are described. Next, instructions for data analysis using the ALSCAL procedure (Takane, Young
& DeLeeuw, 1977), found in SPSS, are detailed. Overall, a description of useful commands,

measures and graphs is provided. Emphasis is made on experimental designs and program use,

rather than the description of techniques in an algebraic or geometrical fashion.

In science, being able synthesize data using a smaller
of descriptors
understanding. Hence, when one must extract useful

number constitutes the first step to
information from a complex situation implying many
hypothetical variables and a huge database, it is convenient
to be able to rely on statistical methods which help finding
some sense by extracting hidden structures in the data
(Kruskal & Wish, 1978). Torgerson (1952), among others,
proposed such a method, called multidimensional scaling
(MDS). At the time, he believed that while the use of
psychophysical measures was appropriate for certain types
of experimental situations in which comparing dimension
values turned out to be fairly objective (Weber’s law and the
Just Noticeable Differences paradigm, for example), most of
the situations encountered by experimental psychologists
involved knowing neither beforehand the identity nor the
number of psychologically relevant dimensions stemming
from the data set.

In essence, MDS is a technique used to determine a n-
dimensional space and corresponding coordinates for a set
of objects, strictly using matrices of pairwise dissimilarities
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between these objects. When using only one matrix of
similarities, this is akin to Eigenvector or Singular value
decomposition in linear algebra, and there is an exact
solution space. When using several matrices, there is no
unique solution, and the complexity of the model
commands an algorithm based on numerical analysis. This
algorithm finds a set of orthogonal vector dimensions in an
iterative fashion, slowly transforming the space to reduce
the discrepancies between the inter-object distances in the
proposed space, and the corresponding scaled original
pairwise dissimilarities between these objects.

A classic example, found in virtually all introductory
books on multidimensional scaling (see for example Kruskal
& Wish, 1978), fully illustrates the usefulness of MDS (see
Figure 1). Estimating distances between a few pairs of U.S.
cities could be executed quite easily by using a ruler and a
map of the United States of America.. But what if the
opposite had to be done? What if an individual was given a
matrix of distances between pairs of cities and had to draw
the map using strictly these distances? This task would be
quite tenuous. That is where MDS becomes useful.

In psychology, one rarely needs to use direct physical
distances. However, measuring the similarity between
objects similarity is an important concept in most areas of
MDS is “help
systematize data in areas where organizing concepts and

cognition. therefore mainly used to
underlying dimensions are not well-developed” (Schiffman,
Reynolds & Young, 1981, p.3). It can be used to explore and
discover the defining characteristics of unknown social and
psychological structures, but also to confirm a priori
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Figure 1. Upper panel: data matrix containing intercity distances for 10 U.S. cities. Lower panel: optimal two-dimensional

configuration computed by SPSS ALSCAL.
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Dimension 1
hypotheses about these structures. Usually, MDS analysis
starts from data representing similarity scores between Experimental design
objects, and tries to identify which dimensions could have
been used for object comparison, for instance. MDS can also Collecting data

be used to test the validity of hypotheses about specific
psychological measures used in differentiating objects
(Broderson, 1968, in Borg & Groenen, 1997), and identify
significant object groupings.

In the present paper, the basics of collecting and
analyzing similarity data are described. The first section
focuses on data collection methods and experimental design
in general, while the second section concentrates on
program use and output interpretation.

Practically any matrix of data, representing individual
degrees of relation between items, can be used in MDS,
those of interest for cognitive psychologists being primarily
similarities and dissimilarities (of course), rank-orders, and
confusion data. The exact MDS model to be used is
influenced by the goal of the analysis, but is mainly
determined by the data set’s characteristics (which are
defined later in the text).

Different psychological tasks can be used to collect
similarity data. In the most common experimental task,
namely pairwise comparison (as used in Shin & Nosofsky,
1992), participants are asked to judge the resemblance or



difference between two objects which are presented
simultaneously or sequentially. They are often instructed to
respond by moving a cursor to the desired position on a
continuous visual scale defining a similarity continuum.
This is called the graphic rating method (Davison, 1983).
Another way of collecting these judgments is to ask
participants to report the perceived similarity level using a
choice of discrete numbers from a predefined scale. For
example, in a pairwise comparison task, the number “1”
could mean “highly similar”, while the number “9” would
mean “highly dissimilar”, and all discrete numbers in
between would represent various levels of similarity.
Because the possible answers are limited in number and
discrete, this is called the category rating method of collection
(Davison, 1983).

In magnitude estimation tasks (Stevens, 1971), a certain
stimulus pair is chosen as a standard on each trial. Each of
the remaining pairs of stimuli is to be judged against the
standard, in a relative way. For example, if the objects from
a given pair look four times as dissimilar as the standard,
the participant would give “4” as an answer, and if another
pair looks half as dissimilar as the standard pair, the
participant would give “1/2” as an answer. The estimated
dissimilarity of a specific pair is equal to the geometric mean
of all the judgments assigned to it by different participants.
Therefore, only one matrix of dissimilarities is produced,
whatever the number of participants.

Another variant which uses a standard is the conditional
rank-ordering task (see Schiffman et al., 1981; also called the
anchor stimulus method, Borg & Groenen, 1997): for each
round of trials, all stimuli are presented simultaneously, and
a single stimulus is chosen as a standard. The participant is
asked to determine which other stimulus from the set is
most similar to the standard. This stimulus is given the
highest rank, and is removed from the set. In an iterative
fashion, the participant must decide which remaining
stimulus is now most similar to the standard, until all
stimuli have been ranked. The standard, which is chosen
randomly, must be different for each round of trials, so that
at the end of the experiment, every stimulus has played that
role. Ranking can also be constraint-free. For that purpose,
each object pair is typically presented on a card. The
participant is then asked to sort these cards so that the most
similar object is on top of the card stack and the most
dissimilar one at the bottom.

In a free sorting task, a participant is presented with all
stimuli simultaneously, and is asked to divide the set in an
undefined number of subsets containing objects that appear
similar in some sense. At the end of the task, two objects
from the same group are given a similarity of “1”, as
opposed to stimuli from different groups, who are given a
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score of zero. One has to be careful with this tasks, since the
well-known fact that participants naturally tend to judge
inter-object similarity using very few attributes could lead to
a very low number of subsets (see Ahn & Medin, 1992;
Regehr & Brooks, 1995).

A related task is the category sorting task (Davison, 1983).
Here, each possible pair of stimuli is printed on a separate
card. Participants must classify pairs in a specified number
of groups each representing a specific level of similarity.
Once the task has been achieved, each pair is given a score
according to its similarity category membership. For
example, pairs from the “highly similar” category are given
the lowest ranking score, “1”, while pairs from the “highly
dissimilar” group are given a rank equal to the number of
predefined categories. The experimenter can decide to
constrain the number of cards per group, and ask that all the
groups contain at least one card to avoid use of too few
similarity levels.

Finally, when few stimuli are used, discrimination and
identification tasks can provide indirect similarity measures.
The logic behind these two tasks is that as two items are
more and more similar, they should be more and more
difficult to discriminate. Hence, stimulus confusability can
be used as a measure. Stimulus-stimulus confusions in
discrimination tasks occur when a participant is presented
with a pair of different stimuli and asked if the two stimuli
are the same or different. The number of “same” responses
to “different” pairs is the measure of confusability (and
indirectly, of similarity) for a given pair of stimuli.

Experimental design issues

Similarity or dissimilarity?

For technical reasons, most authors (such as Young &
Harris, 2004) encourage the use of dissimilarities as input to
the MDS program, because their relationship to distances is
direct and positive (that is, the higher the dissimilarity, the
larger the perceived psychological distance). If similarities
have been collected, Kruskal & Wish (1978) recommend that
they be transformed by substracting the original data values
from a constant which is higher than all collected scores.

Trial ordering

In a MDS task, stimulus ordering is subject to two
particular problems, namely position and timing effects.
Position effects occur when an item is too often in the same
position of presentation within a pair (for instance, if items
are presented simultaneously, it appears too often on the left
part of the screen). Timing effects for a given stimulus occur
when the pairs in which that stimulus appears are not
equally spaced throughout the trial list. To avoid these



effects, the scientist may choose to use Ross ordering (Ross,
1934), a technique used to balance position and time effects
by explicit planning when the number of items to be
compared is low. If this is not the case, random ordering
should then be used: there is however no guarantee that
position and timing effects are avoided, but they are kept to

a minimum over replications.

Reducing the number of necessary judgments

In multidimensional scaling, the more judgments are
collected for each stimulus pairs, the more points can be fit
in an n-dimensional space. An analysis with more points
provides a more robust and precise stimulus space. That is
why researchers wusually prefer obtaining complete
judgment matrices from many participants. However, with
n items, a complete square similarity matrix is composed of
n(n-1) possible cells or comparisons (when excluding
identical pairs), and this number grows rapidly when
adding more stimuli. Because the number of produced
stimulus pairs in a design may be too high to be judged by a
single participant, there are a few ways to reduce this
number that have been proposed. First, if theoretically
supported, one may assume that judgments are symmetric:
this reduces by one half the number of required trials. This
assumption is actually taken for granted in most
psychological experiments, even if it was never proven
(Schiffman et al., 1981). To avoid unknown asymmetry
effects and respect acceptable ordering characteristics, the
experimental program may be made to “flip the coin” before
each trial to randomly determine the position of each
stimulus in the presentation (left or right if the items are
presented simultaneously, first or second if they are
presented sequentially).

Second, pairs may be randomly distributed over
participants, with the set of pairs judged by different
participants being either completely independent or
overlapping (in both cases, no pair should be excluded).
With a large number of participants, these subsets can be
created in a random fashion (Spence & Domoney, 1974).
This produces a robust result when using Classical MDS
(CMDS), mainly because judgments are generally averaged
over participants, and this produces a complete matrix, but
is not recommended when using models with replications or
weights (RMDS and WMDS). Missing data also leads to this
robustness difference, and should be avoided at all costs
when not using CMDS.

In all cases, the number | of recommended judgments
per pair of stimuli used in the MDS analysis should be equal

to: 40D
i
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where D equals the maximal anticipated number of
dimensions, and I represents the number of items used in
the experiment (MacCallum, 1979).

Analyzing dissimilarity data
Data and measurement characteristics

Data Levels

With MDS, data matrices can be defined by considering
many of their characteristics, namely their measurement
level, shape, and conditionality. According to Coombs’
(1964) data theory, generally speaking, there are four levels
of data measurement, which are ordered from the weakest
to the most stringent. The first one is the nominal (or
categorical) level, where objects are simply sorted into a
limited number of groups. This level of data is not
recommended for use unless the number of categories is
quite large. With the ordinal level, objects are arranged in
order of magnitude, but the only available information is
their comparative ranking. No numerical relationship holds
between objects. When using the interval or ratio levels,
objects are placed on a scale such that the magnitude of the
differences between objects is shown by the scale. The
difference between these levels is that while the ratio level
can lead to relative differences (as in “object x is twice or
three times as large or fast as object y”), in the interval level,
there is no absolute zero, which prevents this kind of
conclusion. In both types of measurement levels, however, a
precise difference between values is always the same,
wherever it is situated on the scale (e.g. the difference
between 20 and 50 is the same as the difference between 70
and 100).

Data shapes

Data shapes are twofold. Square data occurs when the
same objects are represented by the rows and columns of the
matrix. This generally happens when all objects are
compared to each other. Hence, the number of rows and
columns are identical. When the order of presentation
within a trial has no effect, that is if the similarity between
objects a and b is the same whichever object is presented
first, then the data is said square symmetric. In the opposite
case, if the order of presentation affects the value of
similarity, the data is square asymmetric. Rectangular data
usually occurs when the objects represented by the rows are
different than the ones represented by the columns. An
example would be if the rows represented different
individuals, and the columns different psychological test
scores'. By definition, rectangular data is asymmetric. In this
paper, emphasis is put on square data.



Figure 2. Two-dimensional Euclidian space. The Euclidian
distance between points i and j is the hypothenuse of the
hypothetical right triangle.
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Measurement conditionality

The result of data collection is that a certain number of
square or rectangular dissimilarity matrices equal to the
number of participants are obtained. Depending on the role
played by individual differences and the shape of the data,
different conditionality statuses define measurement.

Data
hypothesized individual differences. This means that data

is said to be matrix conditional if there are
from a specific data matrix can meaningfully be compared to
each other, but cannot be compared to data from other
matrices. Data from direct similarity rating usually falls in
this data
meaningfully compared to each other. For example, if one

category. Unconditional matrices can be
were to measure response times from confusion errors, this

objective measure could be compared across participants.

The Euclidian model

MDS algorithms such as SPSS ALSCAL use the Euclidian
model as a basis to compute optimal distances between
objects in an n-dimensional stimulus space. The related
distance function, Euclidian distance, corresponds to our
everyday experience with objects (Schiffman et al., 1981). It
is derived from the Pythagorean Theorem, and is defined as
the length of the hypotenuse linking two points in an
hypothetical right triangle (Figure 2). The distance function
for a Euclidian stimulus space is given by:

2 2
dij =2 (Xia = Xja)
a

where d iJ? is the squared Euclidean distance between points
iand j, and x;, and xj, are the respective coordinates of
points i and j on axis a.

If perceptual/cognitive differences in the wuse of

psychological dimensions are assumed, the distance
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calculation becomes:
2 2
dij = 2 Wi (Xig = Xj4)
a

where d%k is the squared Euclidean distance between points
i and j for participant k, x;, and xj are the respective
coordinates of points i and j on coordinate a, and wk (0< wka
<l) represents the weight given to dimension a by
participant k. A higher weight on a given dimension has the
effect of stretching the stimulus space on that particular
dimension, while a lower weight has the opposite effect,

namely shrinking.

The metric vs. nonmetric distinction

To create an n-dimensional map of distances, MDS
algorithms must use a function to scale the original
dissimilarities into “disparities”, which are directly
comparable to the obtained distances from the analysis. For
this purpose, two types of function may be used (Figure 3).
Torgerson (1952) proposed the use of a linear function to

map the original data onto “disparities”:
51“ = f(Si]'): {ZSI']' + b

where &;; is the calculated disparity between objects i and j,
Si
and a and b are the slope and intercept of the linear function

j is the original dissimilarity score for this pair of objects,

(a>0). An analysis using this transformation function is
called metric MDS.

Shepard (1962a, 1962b) later discovered that metric
information could be recovered even with weaker, non-
metric data. He found that with rank-order data, the choice
of a linear function was too stringent, and proposed the use
of any positive monotonic function (not necessarily a linear
one) as sufficient to achieve the analysis. A positive
monotone function is defined as a transformation which
respects the rank order of the data, or more precisely where
the following relationship is respected:

(sif) < (six) = f(sij) < f(si)

where S is the original dissimilarity measured between
objects i and j, s; is the original dissimilarity measured
between objects i and k, f is a positive monotonic function,
f(sij) is equal to 6;;, the disparity between objects i and j, and
f(sir) is equal to &y, the disparity between objects i and k. An
analysis using this type of function is called nonmetric MDS.
When MDS, a
transformation is used, while with nonmetric Replicated

using nonmetric Classical single
MDS, a different function is used for each different data
matrix. All models discussed in this paper can be used with

both function types.
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Figure 3. Left panel: example of a positive linear function. Middle panel: example of a positive monotonic function which

is not linear, namely the exponential functions. Right panel: example of a non-monotonic function.
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Defining specific MDS models?

Classical MDS (CMDS) is a model which uses only one
matrix of raw or averaged data, which is matrix-conditional.
When using this model, the algorithm produces a
hypothetical Euclidian stimulus space which matches the
original data as much as possible. The first step is to
transform the original dissimilarities into disparities using a
linear (I(S) — for metric MDS) or monotonic (m(S) - for
nonmetric MDS) function.

The model equation to be fit by ALSCAL is then:

T(S) = D* + SSE

where S is the original dissimilarities matrix, T(S) is a
disparity matrix stemming from the transformation T, equal
to I(S) or m(S) depending on whether the data are
interval/ratio (metric MDS) or ordinal (nonmetric MDS), D?
represents the squared Euclidian distances fit by ALSCAL,
and SSE is the sum of squared errors between the distances
and disparities. CMDS is the less robust analysis, because
the algorithm only gets to fit a number of points equal to the
number of stimulus pairs (or less if the matrix is symmetric
or if an incomplete data scheme has been used).

In Replicated MDS (RMDS), several matrices of data are
used. These data are usually defined as matrix conditional.
Once again, only one stimulus space is produced. Because
systematic response bias differences between participants
are included in the analysis (reflecting the different ways
they use the response scale), the first step is to determine
several transformation functions, one for each dissimilarity
matrix. Once again, these transformations can be either all
linear or all monotonic, but within these constraints, can all
be different. All matrices are judged to be linearly or
monotonically related, except for error. The model equation
to be fit by ALSCAL is then:

Ty (S¢) = D? + SSE,

where Sk is the original dissimilarities matrix for participant
k, T«(Sx) is an individual disparities matrix for participant k
stemming from a unique transformation Tk, once again equal
to Ix(Sk) or mx(Sk) depending if the analysis is metric or non
metric. D? represents the squared Euclidian distances fit by
ALSCAL for the common stimulus space, and SSEk is the
sum of squared errors between the distances and disparities
for participant k. RMDS is far more robust than CMDS,
because the algorithm can use an increased number of
points, stemming from the fact that all data from all matrices
are used in the analysis.

The last type of MDS explored in this paper is Weighted
MDS (WMDS - also known as Individual differences scaling
or INDSCAL). In this type of analysis, SPSS ALSCAL
provides the usual stimulus space, but also a participant
space which indicated the differential weighting given to
dimensions in the common stimulus space by each
participant, and the models fit to each participant’s data. In
this model, several matrices of either matrix-conditional or
In WMDS,
participants’ personal distances need not be related by any

unconditional data are used. any two
linear or monotonic function. The model equation to be fit
by ALSCAL is then:

Ty (Sg) = D2 +SSE;,

where S is the original dissimilarities matrix for participant
k, T«(Sx) is an individual disparities matrix for participant k
stemming from a unique transformation Tk once again equal
to Ix(Sk) or mx(Sk) depending if the analysis is metric or non
metric. D,% represents the squared Euclidian distances fit by
ALSCAL for participant k, and SSEk is the sum of squared
errors between the distances and disparities for participant
k. The distances are found in participant ks personal
stimulus space, which can be recovered by applying the
personal weights to the common distance space, as in:
X; = XW,//?



Table 1. Decision table relating data characteristics to their appropriate MDS model
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Shape of data?
Number of matrices? One
Perceptual/cognitive
differences assumed? N/A
Measurement Unconditional
Conditionality?
Interval Ordinal
Data level? or Ratio or Nominal
Metric Nonmetric
MDS Model CMDS CMDS

Square
Several
No Yes
Matrix Matrix
conditional conditional
Interval Ordinal Interval Ordinal
or Ratio or Nominal or Ratio or Nominal
Metric Nonmetric Metric Nonmetric
RMDS RMDS WMDS WMDS

Note. To find the appropriate model, one must answer all questions sequentially, from top to bottom. For example, if
working with several square matrices of interval data, where no perceptual/cognitive differences are assumed, the user’s
path would be “Square— Several—No— Matrix conditional—Interval or Ratio, and the reader should conclude that the

use of metric RMDS is appropriate.

where Xi is the coordinate matrix representing participant
K's stimulus space, X is the coordinate matrix from the
common stimulus space, and Wi is the weight matrix for
participant k. WMDS possesses the robustness of RMDS, but
also provides some flexibility, because the stimulus space
does not have to “directly” fit every matrix of data.

The reader is encouraged to use Table 1 to determine the
exact MDS model needed for the analysis, depending on the
shape and level of the data, the number of similarity
the the
conditionality, as well as the decision to take into account

matrices used in analysis, measurement

psychological differences between participants.

entering many matrices, no identifier has to be provided for
each matrix; ALSCAL achieves the file separation by itself.
Using this file, the user can produce different RMDS or
WMDS, assuming that the data are either

To use the ALSCAL procedure in SPSS syntax, the user
must enter the ALSCAL command, followed by the list of
variables (names of the data columns), in the following
fashion:

ALSCAL VARIABLES =vl1tovn

where vl represents the first column of data, and vn
represents the last one. Following this command, many

Figure 4. SPSS file representing three data matrices. Each matrix contains inter-

Syntax use

To achieve an MDS analysis, the data must first
be entered in matrix fashion in an SPSS data file.

object dissimilarity judgments. The reader is encouraged to analyze the
example data using the corresponding file found on the journal’s website
(www.tqmp.org), and the code examples from Table 2.
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Table 2. Default values and typical examples of syntax for
different MDS models

Default values

/SHAPE=SYMMETRIC

/LEVEL=ORDINAL

/CONDITION=MATRIX

/MODEL=EUCLID

/CRITERIA=CUTOFF(0) CONVERGE(.001)

ITER(30) STRESSMIN(.005)DIMENS(2)
/PRINT=DATA
/PLOT=DEFAULT
Metric CMDS or RMDS
ALSCAL VARIABLES = v1 to vn

/LEVEL=INTERVAL or RATIO

/CRITERIA= DIMENS(1,6)

/PRINT=DATA HEADER

/PLOT=DEFAULT ALL.

Metric WMDS
ALSCAL VARIABLES = v1 to vn

/LEVEL=INTERVAL or RATIO

/MODEL=INDSCAL

/CRITERIA= DIMENS(2,6)

/PRINT=DATA HEADER

/PLOT=DEFAULT ALL.
Note. When achieving a nonmetric analysis, the LEVEL
subcommand values are ORDINAL or NOMINAL. In
WMDS, note that the minimal dimensionality is always 2.
Any block of syntax in SPSS must end with a period; else the
program is not executed.

subcommands can be entered to specify the type of analysis
needed, and other necessary criteria. Each subcommand
must be preceded by a backslash. Examples of typical syntax
blocks for different MDS types are detailed in Table 2.

The first subcommand is SHAPE, which describes the
shape of the data. The eligible values are SYMMETRIC (for
square symmetric data)) ASYMMETRIC (for square
asymmetric data), and RECTANGULAR. The following
subcommand concerns the LEVEL of the data. It determines
if the algorithm should use a metric or nonmetric
transformation function. The values which can be entered
are ORDINAL, INTERVAL, RATIO and NOMINAL.
Measurement conditionality is defined by the CONDITION
subcommand, which takes the values MATRIX (for matrix-
conditional data), ROW (for row-conditional data), or
UNCONDITIONAL. Next is the MODEL subcommand. Five
options are available, but the user usually limits himself to
the basic Euclidian model (represented by the value
EUCLID) or the Individual differences scaling model (for
which the appropriate value is INDSCAL).3

The CRITERIA subcommand is special, because it is
composed of many parameters, for which different values
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must be provided. For each parameter, the wanted values
must be inserted between parentheses. The first parameter is
the CUTOFF, which specifies the lower bound for the scores
found in the data matrices. By default, this is left at zero
(“0”), so that only negative scores are eliminated. The three
next parameters provide a disjunctive stopping rule for the
algorithm (i.e. as soon as the algorithm reaches a critical
value for one of the parameters, the fitting procedure ends).
CONVERGE represents the minimal S-STRESS (a measure
defined in the next section) improvement needed for a
supplemental iteration. ITER defines the maximal number of
iterations for the analysis. Finally, STRESSMIN defines a
minimal cutoff for the S-STRESS value. For a given iteration,
if the value is equal to or lower than the cutoff, the program
stops.

One last parameter is the number of dimensions of the n-
dimensional space. If a single value is put in the
parentheses, only one solution is computed. If a pair of
values (min, max) are inserted, ALSCAL computes different
solutions for all values included in the specified interval. If
the researcher has an hypothesis about the number of
necessary dimensions, it is then recommended to repeat the
analysis using from d-3 to d+3 dimensions, d being the
number of hypothesized dimensions. ALSCAL can produce
outputs using from one to six dimensions.

The last relevant subcommand pertains to the content of
SPSS’s output. For the PRINT subcommand, putting the
DATA value cause ALSCAL to print all matrices of original
and transformed data, while adding the HEADER value
produces a summary of all options. It is recommended to
include both values.

Interpreting the output

Measures of fit

To determine the badness-of-fit between the
hypothesized structure and the original data, SPSS ALSCAL
uses a loss function called S-STRESS, which is derived from
the STRESS* measure proposed by Kruskal (1964). When
analyzing similarity data, S-STRESS Formula 1 (SS1) should
be chosen to fit the model:

2(51? - dl? )2
_[ G
>(dF)?
()

1/2

where 5,% is the squared disparity between items i and j, d%
is the related squared distance, I is the number of rows and |
is the number of columns in the matrix. When data are
symmetric, the sums can be constrained to the cases where 1
=i <j =n, where n represents the dimension of the square



Figure 5. Optimal two-dimensional configuration computed
by SPSS ALSCAL for the data presented in Figure 4.
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matrix, i represents the row number, and j represents the
column number. In other words, only data from the lower
triangular part of the matrix should be used. A value of zero
means a perfect fit.

When using CMDS, RMDS or WMDS, the user is
provided with the S-STRESS measure computed after each
complete program iteration. This is called the “iteration
history”. SPSS ALSCAL also gives the STRESS measure for
the last iteration, as well as the R-squared (r?), which
represents the level of variance in the data which is
explained by  the
configuration.®

If using RMDS or WMDS, the S-STRESS measure given
in the iteration history is calculated differently; for example,

hypothesized n-dimensional

SS1 is calculated using the following formula:
L 1/2
SS1= {—2(551,{)2}
m- g

where SS1;
calculated for participant k, and m is the number of data

is the corresponding S-STRESS measure

matrices (or participants) entered in the analysis. In RMDS,
STRESS and r? are then displayed for each stimulus in every
data matrix, as well as averaged for each matrix. In WMDS,
only the matrix averages are displayed.

There are unfortunately no guidelines to interpret the
level of fit from S-STRESS. However, some hints have been
given for the original STRESS measure, which is also given
by SPSS ALSCAL after completion of the analysis. It should
be kept in mind that all fitting is done using S-STRESS
however, so the final STRESS score may actually not be
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optimal. For STRESS, Kruskal & Wish (1978) have proposed
meanings using the following levels: STRESS > .20: Poor; .10
< STRESS < .20: Fair; .05 < STRESS < .10: Good; .025 < STRESS
<.05: Excellent; .00: Perfect. Of course, one has to be careful
with such straightforward interpretations, since STRESS is
known to vary according to many other factors. It is higher
when using a metric distance function, as well as a higher
number of stimulus pairs or data matrices, or if there is a
high level of error in the data. It decreases with higher space
dimensionality, missing data, and when using a nonmetric
distance function.

Configuration

Following the fit measures, the optimal configuration
derived in the number of required dimensions, is displayed
as a list of n-dimensional coordinates for all stimuli. Also,
the matrix of disparities calculated during the last iteration
is printed. This information is paired with a n-dimensional
graph of the configuration (n<3) which can be hand rotated
(stimulus points and dimensions simultaneously) using
SPSS’s graph options to facilitate dimension interpretation
(Figure 5).

If WMDS is used, the output also includes information
related to the participant space. The first supplemental
information is the matrix of subject (participant) weights
and weirdness indexes. These weights have the effect of

Figure 6. Example of a subject weight space for three
participants. The points represent the endpoints of the
corresponding weight vectors. For participant 1, dimension 1
is mostly used, while for participant 3, it is dimension 2 that
is mostly used in similarity judgements. For participant 2,
dimension 1 is almost twice as important as dimension 2
when judging similarity.
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Figure 7. Upper panel (a): Linear fit scatterplot for the
example exposed in Figure 4. Lower panel (b): Example of a
transformation scatterplot. This plot is only produced when
nonmetric MDS is used.
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“morphing” the common stimulus space to fit each
participant’s data. For each participant, the coordinates for
his weight vector are given. The direction of this vector from
the origin of the configuration represents the relative
weighting of each dimension. The Euclidian norm ||w k" for
participant k’s weight vector wk is calculated using the

"Wk" = /Zwik
a

represents the square of the coordinate on

following formula:

where w2
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dimension a for participant k, and it is also equal to 12 or the
level of variance from the data explained by the weight
vector for this participant.

The weirdness index is a measure of the fit of the general
configuration to each data matrix. If, from a participant’s
weight vector, it can be seen that some of the weights are
quite higher than the others, then the optimal configuration
fits this participant’s data very poorly. Weirdness indexes
range from zero to one. One should be careful about
including data from a participant showing an index higher
than 0.5.

Second, the user is also given a graph containing the
subject space (Figure 6). The subject weights are represented
by points, which are the endpoints of the weight vectors.

Goodness-of-fit graphs

With CMDS, apart from the stimulus configuration, the
user is given only one graph by default. It is the “linear fit
scatterplot” (Figure 7a), where disparities are plotted against
distances. Because there is only one matrix of data, there are
usually very few points in the graph. Thus, it can be
advantageous to look at this graph, since it can reveal
problems which have occurred during the analysis such as a
lack of convergence for the optimal solution. This
phenomenon occurs when the program has stopped before
the necessary number of iterations, and is shown by clear
non-linear or negative patterns in the graph. It can be
corrected by raising the number of iterations (non-linear
patterns) and verifying if the data have been transformed to
dissimilarities (negative patterns). In RMDS & WMDS, this
lack of linear fit could be much harder to detect, because
data points from all matrices are used. The key here is to
look for an obvious linear trend. If unsure about the fit, one
could use the given disparities and calculate the distances
from the configuration coordinates to use linear regression.

If using nonmetric MDS, another graph plotting the
original data (observations) against the disparities calculated
by ALSCAL, called the “transformation scatterplot”, is
provided (Figure 7b). If the plot does not show a positive
monotonic relationship between the variables, it could once
again mean that the program was not given a sufficient
number of iterations to find a suitable transformation
function, or that the data input to the program have not be
pre-transformed. Transformations in the shape of a few
horizontal steps could mean that a degenerate solution has
been found. It is recommended to retry the analysis with the
same number of dimensions if this occurs. In nonmetric
RMDS & WMDS, a transformation scatterplot is printed
separately for each data matrix. If only a few participants’
graphs do not show a positive monotonic trend, they could
then be considered as outliers and removed from the



Figure 8. Example of a scree plot, with the S-STRESS
measure for each number of dimensions. Here, there is an
elbow at the three dimension mark, which usually means
that a three-dimensional configuration should be chosen.
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analysis. If too many participants show this trend, then it
can be a sign of an incomplete or degenerate solution.

Post-analysis issues

Choosing the right dimensionality using S-STRESS

It is recommended that any MDS analysis be repeated
using different dimensionalities. SPSS ALSCAL offers from
1 to 6 dimensions for model fitting. Once all the analyses
have been made, S-STRESS becomes a useful measure to
determine the optimal dimensionality of the stimulus space.
By the use of “scree plots”¢ (Figure 8), one can determine if
adding an extra dimension significantly decreased the
badness-of-fit. To achieve this, one should look for an
“elbow” on the scree plot, which should appear in the graph
one dimension beyond D, the correct number of dimensions.
However, this is not an infallible solution. Davidson (1983),
among others, proposed that one should generally choose
the most interpretable dimensionality level; if adding a
dimension does not help the interpretation, but removing
one affects it, then the right level has been chosen.

Dimension interpretation

Once the n-dimensional map of distances and the
coordinates matrix are produced by SPSS, the user may try
to identify the meaning of the dimensions. Sometimes,
interpreting dimensions can be quite straightforward (such
as in Figure 1, where the dimensions are clearly the East-
West and North-South axes). In other cases, the task can be
simplified by using some transformations that can be
applied to the dimension set or the coordinate matrix. These
are called similarity transformations, since they preserve the
ratio of distances between the points in the space. Apart
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from orthogonal rotation, which can be done by hand using
SPSS output’s graph options, the other operations such as
permutation, reflection, central dilation and translation
(Young & Hamer, 1987) can be done using mathematical
software such as Mathematica or Matlab. Using the matrix
of coordinates from the n-dimensional stimulus space, it is
possible to modify the basis by postmultiplying the matrix
by:

- an n-dimensional, square matrix with a single “1” in each
row and column. This matrix has the effect of permuting the
order of the dimensions;

- an n-dimensional, square, orthogonal matrix with +1s on
its diagonal. These properties produce a reflection of the
whole space on the dimensions to which the number “-1”
has been applied;

- a diagonal, n-dimensional matrix containing equal positive
values. If the values are larger than 1, the postmultiplication
has the effect of stretching the dimensional space. If they are
smaller, then the space is shrinked;

- adding a matrix which is the product by of a n-dimensional
column vector of 1s and an n-dimensional row vector of
constants, produces a shift of the set of points from one spot
to the other in the stimulus space).

A combination of these transformations can be applied
to the same space in a sequential way. Note that one has to
be careful when using transformations with a WMDS model.
It has been shown, among others, by Young & Hamer (1987),
that stimulus spaces can not be rotated in that particular
case..

Summary

This paper was intended as a hands-on guide to MDS-
based experiments, mainly using SPSS. The reader is
encouraged to reproduce the simple examples found in the
paper. The files for these examples can be found on the
journal’s website, at www.tqmp.org.

While MDS like a
straightforward way of exploring stimuli spaces, one should

seems very practical and
always be careful about giving strong interpretations about
this type of analysis. There are no convincing statistical tests
for validating common space interpretations, nor are there
any ways to test the inter-participant differential weighting
in WMDS. MDS remains to this day an exploratory method,
which can get us “out of the dark”, but does not provide

certainty about the conclusions. Use with care.
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1 This classification is weakly linked to the actual shape of
the matrix: a matrix with an equal number of rows and
columns is still considered rectangular if its rows and
columns represent different objects.

2 In the following section, the notation and model definitions
proposed in Young & Harris (2004) are used.

3 For a more detailed discussion of available options, please
refer to the SPSS Syntax Guide.

4 The formula for STRESS-1 can be obtained by replacing
each squared disparity and distance in the S-STRESS1
formula by their positive square root.

5 These last two measures should be interpreted with care,
because they are probably sub-optimal; the program fits the
model using S-STRESS.

¢ The name comes from the resemblance between the plot
and the side of a mountain; scree refers to the debris fallen
from a mountain and lying at its base.
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