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The Newell and Rosenbloom (1981) depiction of the power law of learning implies that
improvements in task performance that result from practice can be described by a power

function with one variable for amount of practice. We suggest that performance on all but the

simplest of tasks relies on component skills that differ in their practice history. As a result,

power functions with one term for practice could not be expected to provide accurate

descriptions of learning curves. In particular, transfer situations that involve a mixture of old

and new skills are likely to lead to perturbations in learning curves that require more than the

simple version of the power law to describe. We explore the types of functions that are necessary

in these situations and note the impact of transfer factors on learning rates.

Learning curves are used extensively in psychology for
depicting how the accuracy or speed of performance on a
task improves with practice. These curves, particularly those
measuring speed, have characteristic shapes. Early in
practice, speed improvements are dramatic, but taper off
with continued practice - a case of diminishing returns.
Snoddy (1926) was the first to note that when the logarithm
of performance time is plotted against the logarithm of
amount of practice, a straight line typically results. This
indicates that performance time can be described as a power
function of practice, as indicated by the following equation:

T=X+NP¢ 1)
In Equation 1, T is the performance time on a task, P is the
amount of practice on the task, X + N is performance time on
the first trial of the task, and X is the performance time after
an infinite amount of practice. Power functions where X =0
often provide very good fits to data, especially where large
amounts of practice are involved. The parameter c in
Equation 1 is the learning rate. The value of c is less than
zero, to match the negative accelerated feature of the
learning curve, and is also usually a value between 0 and -1.
The closer the value of c is to -1, the faster the learning rate.
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Crossman (1959)
experiments in varying domains, such as card sorting,

re-analysed the data of many
addition of digits and cigar rolling, and noted that learning
in all of these tasks conformed to what he referred to as “de
Jong's law”. De Jong (1957) had also noted the power
Newell
Rosenbloom (1981) also examined learning curves in a wide

function regularity in learning curves. and
range of domains. They examined the ability of power
functions to fit learning curves in comparison to other
functions that are also negatively accelerated, such as the
exponential function and the hyperbolic function, and
concluded that the power function regularly provided a
closer fit to the data. The general form of the exponential
function used to describe performance improvements with
practice is:

T=X+Ne® (2)
where the meaning of each parameter is the same as in the
general form of the power function presented above
(Equation 1). Newell and Rosenbloom, like Crossman, were
impressed with the apparent lawfulness of the regularity in
the learning data, so much so that they referred to the
regularity as the power law of practice, and noted that it was
one of the few laws in Psychology.

Indeed the presence of power functions in human
learning data is so ubiquitous that the power law of practice
has almost become an accepted fact in Psychology. The
acceptance of the power law of practice within Psychology

has grown to the extent that some researchers (e.g.,
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Anderson, 1983; Logan, 1988) have suggested that for any
theory of skill acquisition to be considered seriously, it must
be able to provide an account of the law. Certainly anyone
who has proposed a theory of skill acquisition in the last
twenty-five years has promoted the ability of the theory to
account for the power law as an important indicator of the
theory's validity. It is important to note, however, that there
have been suggestions recently that the power law may not
be as lawful as has generally been believed. In addition,
there is evidence that the shape of learning curves is affected
by transfer. Both of these issues are considered in this paper,
although it is the latter that is of main interest here. Given
that the nature of learning curves is one of the important
facts about skill acquisition that all theories strive to account
for, it is imperative that a valid theory can account for
factors that impact on transfer as well as their influence on
learning curves.

The Power Law of Learning and its Alternatives

As would be expected with any law, once the power law
of learning was suggested, many objections and challenges
to its status as a law of human behaviour were mounted. In
this paper we present a number of these challenges that
demonstrate that describing the relationship between
practice and improved performance with a power function
is not a straightforward matter.

The apparent lawfulness of power function learning has
been called into question recently, with strong arguments
being presented for exponential function learning (e.g.,
Heathcote, Brown & Mewhort, 2000). When Newell and
Rosenbloom (1981) first presented the case for the power
law of learning, they explicitly compared the ability of the
power function and the exponential function to account for a
number of sets of learning data. Although Newell and
Rosenbloom's comparisons found that learning data were
consistently described better by power functions, doubt has
been cast upon the validity of that conclusion.

At least three objections have been raised to the proposal
that performance time is a power function of practice. The
first objection concerns the quality of the evidence that
supports the power law. Several researchers (e.g., Heathcote
et al., 2000; Myung, Kim & Pitt, 2000) have pointed out that
when power functions are most evident, the data being
analysed represents average data from several individuals.
This result is considered misleading because an artifact of
the process of calculating a linear average of individual
learning functions is that it will result in a learning curve
that is described better by a power function than an
exponential function, even if the individual functions were
exponential (Myung et al., 2000). The second objection to the
power law concerns evidence that favours exponential
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learning functions. Following the first objection, when
individual learning curves are analysed, exponential
functions regularly provide a better fit to the data than
power functions (Heathcote et al., 2000; Josephs, Silvera &
Giesler, 1996; Rosenbloom & Newell, 1987). Finally, the third
objection to the power law concerns the suggestion that
there may not be one pure function that describes all
learning curves. For instance, there is evidence that
exponential functions are best for describing performance in
some conditions, whereas other conditions result in learning
curves that are best described by power functions (Carlson,
1997, pp. 59-60). Other researchers have suggested that
learning curves on complex tasks may represent the
operation of several underlying learning functions (Delaney,
Reder, Staszewski & Ritter, 1998; Rickard, 1997, 1999). The
combination of component learning functions could even
involve a mixture of power and exponential functions
(Heathcote et al., 2000).

Several years ago we also proposed that learning curves
should be considered as summaries of many learning
functions. This argument is detailed in the next section. It
should be immediately obvious that, despite the foregoing,
we have maintained the use of power functions as
descriptions of learning. The main reason is that the model
takes as its starting point Anderson's (1982) ACT* theory of
skill acquisition, and in particular the ACT* account of the
power law. Ultimately this feature of our argument for a
componential view of the learning curve is of no
consequence, as the final message applies no matter what
form learning functions take, as long as they are negatively
accelerated.

Learning Rate

Snoddy (1926) was the first to report that learning data,
when plotted on log-log axes, approximated a straight line.
Snoddy also reported that the learning rate of his subjects, as
indicated by the slopes of their learning curves on log-log
axes, were identical:

We have already indicated that the facilitation lines

(learning curves) for all types of practice are parallel

on log paper, which means that the slopes of the log

equations are equal. From this it would be a good

guess that all individuals, whether high or low in
efficiency, might have the same slope for their

facilitation lines. This turns out to be the case and n,

which is equal to 0.25, is the universal slope. We have

studied about 300 children, 500 insane, and over 1000

low, normal and superior adults among college

students, and have invariably found the same
average slope of the log equation in facilitation
practice. It is of interest that many of our insane



subjects are well below the normal distribution curve
for adults, and yet these have the same slope n. In
our study of children of all age levels the slope of the
facilitation lines is seen to be the same as for normal
adults. This constancy of the slope of the log
equations for all subjects is not only a thing of much
interest mathematically and physiologically, but it
simplifies enormously the mathematics involved in
the treatment of clinical data. (pp. 22-23, parentheses
inserted)

This finding of identical learning rates amongst such a
disparate sample of people is indeed remarkable, for at least
two reasons. First, it is unlikely that measurement of any
other feature of human performance would yield an
identical value across a group of people. Second, no mention
is ever made of this remarkable observation in modern
discussions of learning curves. The reason for this omission
is clearly because no one observes any degree of consistency
in learning rates amongst people. This may be due to the
greater precision in curve fitting afforded by today's
computers compared to the analytical techniques available
to Snoddy. Certainly, our experience is that learning rates
are just as variable as any other measurable characteristic of
human performance.

Although the learning rate parameter of power functions
is usually found to be between -1 and 0 there appears to be
substantial variation within this range between tasks and
subjects (e.g., Newell & Rosenbloom, 1981). However a
systematic relationship between type of task and subjects'
learning rate has yet to be established. This paper presents
an account of this relationship, an account that shows how
transfer and learning rate are intimately connected. This
model was originally developed as part of Speelman's (1991)
doctoral research, and elements of it have been presented
and evaluated in Speelman and Kirsner (1993), Speelman
(1995), Kirsner and Speelman (1996), Speelman and Kirsner
(2001), and Speelman and Kirsner (2005).

Anderson's (1982) ACT* theory of skill acquisition
included an account of the power law of learning that is
probably the only account to be explicit about the
determinants of learning rate. This account basically
suggests that, all things being equal, learning rate is a
constant for each person. Given the fact that subjects exhibit
varying learning rates dependent on task situation, this
account is obviously not sufficient. However, Anderson's
account can be used as a starting point for the development
of a more precise model. This model assumes that learning
rate is affected by the relative amounts of practice of
particular task components and also the relative number of
processing steps involved in these components. Thus this
model, which we refer to hereon as the linear component
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model, is in fact designed to account for the shape of
learning curves following transfer, but will account for
changes in learning rate as a matter of course. In the next
section, Anderson's account of learning rate is described,
followed by a description of the linear component model.
Predictions that follow from the linear component model are
compared with previously published data. It should be
noted that development of the linear component model pre-
dated Anderson's (1993, Anderson & Lebiere, 1998) revision
of the ACT* theory, and so does not accurately reflect some
of the details of the ACT-R account of the power law of
learning. The ultimate message of the linear component
model, however, is unaffected by the choice of theoretical
starting point.

ACT* and Learning Rate

ACT* predicts that performance will become faster with
practice as a result of both algorithmic improvement and
strengthening. ACT* states that the process of compilation
improves the procedure for performing a task by reducing
the number of steps involved in the procedure. It is assumed
that the number of steps is reduced by a constant fraction
with each improvement. Anderson (1982) suggests that this
algorithmic improvement follows a standard power function
for improvement to an asymptote:

N=N*+NoP ¥ (3)
In this equation N represents the number of processing steps
performed on Trial P (where P represents the amount of
practice), N* + No represents the number of steps performed
on Trial 1, and N¥, the asymptote of this function, represents
the minimum number of steps that constitute the optimal
procedure for performing the task. The exponent f
represents the constant fraction by which the number of
steps is reduced with each improvement.

The other contributing factor to performance time
reduction in the ACT* theory is that of strengthening. In
ACT* it is assumed that the representation of task-specific
information is strengthened in memory with practice. The
strength of a memory element then determines the speed at
which it can be accessed and applied. Anderson (1982)
shows that this reduction in application time with increased
strength can also be described by a power function:

T=C+AP= 4)
In this equation T represents the time to execute a series of
production rules, or productions, P represents the amount of
practice, A is a constant that represents the time it takes to
execute a certain number of productions and is therefore
proportional to the number of productions involved in
performing a task, the asymptote C represents the minimum
time for execution of a certain number of productions, C + A
represents the maximum time for execution, and the



exponent g is a constant that represents the rate at which the
strength of a memory element decays, and is a value greater
than zero.

In order to derive a function that describes total time to
perform a task Anderson (1982) combined Equation 3, which
represents the number of productions involved in
performing a task, and Equation 4, which represents the
time per production. This combination resulted in Equation

5:

TT=(N*+NoP+) x(C+AP=) 5)
This equation simplifies to Equation 6:
TT=No AP+ 6)

if N* and C are assumed to be zero. Anderson makes this
assumption because Equation 5 is not a perfect power
function, although it is a good approximation to one.
Eliminating N* and C results in a pure power function that
can be further simplified to the equation introduced above
as the general form of a power function that describes
learning;:

T=N P (7)
As described above, N is a constant related to the initial
number of productions involved in performing the task and
P is the amount of practice. This equation has a zero
asymptote.

The step from Equation 5 to Equation 7 suggests that the
learning rate for any task (c) is a negative constant that is
determined by two other constants: the fraction by which
the number of productions is reduced with compilation (f),
and the decay rate of production strength (g). The latter two
constants, according to Anderson (1982), are parameters of
the cognitive system. Therefore learning rate is itself a
parameter of this system. This implies that learning rate is
determined by particular characteristics of a subject's mental
functioning, that it is a constant which is “built in’ to each
subject. Thus, in Anderson's account, there is no apparent
facility for type of task to affect learning rate.

If learning rate is some form of constant for each subject,
then presumably the range of learning rates that are
observed between experiments is a result of different
combinations of results from subjects with different learning
rates. However this suggestion is not supported by
experiments where learning rate was observed to vary from
task to task within individuals and groups (e.g., Fitts, 1964;
Grose & Damos, 1988; MacKay, 1982; Newell &
Rosenbloom, 1981; Smith & Sussman, 1969; Snyder &
Pronko, 1952). Therefore it does not appear that variation in
observed learning rates results only from a sampling
distribution of combinations of various constant learning
rates. Variation in learning rate is also likely to result from
an interaction between subject characteristics (i.e., their
intrinsic learning rate) and task features. The form of this
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interaction is considered below.

Old and New Task Components

The form of the interaction between a constant learning
rate and task features could involve the fact that, except for
infants, most tasks have components that involve previously
learned skills as well as components that are peculiar to the
new task (Fitts & Posner, 1967, p. 19). The latter components
will include both components for performing the new part
of the task and components that integrate the functioning of
the old and new components. This conception suggests that
for any task there will be some components that have had
more practice than others. The obvious consequences of
such a suggestion are that (1) the older components will be
faster than the new components (if the number of steps
involved in the two sets of components is equivalent), and
(2) the older components will have less room for
improvement than the new components. These predictions
in turn suggest further consequences. However, they also
rely on a number of assumptions.

The first assumption underlying the above predictions is
that for any one person the rate at which new skills are
learned is a constant. This is as suggested by Anderson's
(1982) conception of the power law of learning. A ‘new” skill
here is conceived of as a skill that involves no components
that have had previous practice. This includes those skills
that are necessary for integrating the functioning of old and
new skills into the same goal structure. The second
that all
performance of a task will improve according to the power

assumption is components underlying the
law of learning and, with practice, will continue to do so at
the same learning rate. It should be noted that this is a
convenient starting assumption, but because of the
objections raised about the validity of the power law, there
is cause to doubt the validity of this assumption.

In summary then, the above conception suggests that, in
most cases, learning a new task involves continued practice
on old skills. These are skills that have been practised in the
context of some other task. Learning a new task will also
involve the development of new skills. These are skills that
are required to fill the gap between the repertoire of old
skills possessed by the trainee and the skills necessary to
perform the new task. These new skills will involve both
task-related skills and skills for integrating the functioning
of old and new task-related skills. In order to evaluate the
predictions based upon this concept of task learning it will
be informative to contrast this concept with an idealised
situation where all components of a task are learned from
scratch.

The idealised situation is a simple one - improvement is
a function of practice and follows the power law of learning.



The initial time to perform the task is a function of the
number of components or steps involved in the task. Thus
the whole situation can be described by one power function.
In contrast, the more realistic situation is unlikely to be
accurately described by one power function. The simple
reason is that in this situation each component will not have
had equal amounts of practice. As a result a power function
with one term that describes amount of practice is not
sufficient. This then raises the question of how varying
amounts of practice can be incorporated into a function that
describes improvement on a task with old and new
components.

One possibility is suggested by Anderson, Conrad and
Corbett (1989) who propose that “acquisition of ... skill can
be predicted by composing simple learning functions for
(the) units (p. 503)” underlying tasks. One interpretation of
this proposal is that it is suggesting that components of a
task have their own learning functions and that the learning
function for the task as a whole is a combination of these
separate functions. With respect to the current discussion,
this would suggest that old and new components of a task
improve with practice according to their own learning
functions. These separate functions would then include the
fact that the components have had unequal amounts of
practice. The learning function for the task would then be a
combination of these “old” and “new” learning functions.

The form of this combination needs to be considered
before the implications of this suggestion can be examined.
Underlying a great deal of the research into skill acquisition
is the assumption that the more steps involved in a task the
longer it takes to perform (e.g., Anderson, 1982; Carlson,
Sullivan & Schneider, 1989; Staszewski, 1988). The
assumption implies a serial process where each step
contributes a particular amount of time to the total task time.
Following this logic with the combination of old and new
skills requires the combination to be a serial one. That is, the
processing of one set of components should not impinge
upon the processing of the other set except to provide input
information. If this is the case then the learning function for
the whole task should be a simple linear combination of
power functions describing improvement in each of the
underlying components. If the components can be separated
into old and new then this function will have the following
form (Speelman, 1991):

Task = Totd + Thew
= No Po° + Nu Pu¢ 8)
This equation represents the linear combination of two
power functions of the form described in Equation 7. Terms
with the subscript o represent parameters of the old
components of the task, and terms with the subscript n
represent parameters of the new components. Equation 8,
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then, is the mathematical expression of the model we refer to
as the linear component model.

There are a number of implications of the linear
component model that should be made explicit. The first is
that the contribution of each set of components to the total
task time is weighted by the number of steps involved in
each set. That is, the greater the number of steps in a set of
components, the greater will be the contribution of this set.
The second implication is that this weighted combination
will be qualified by the amount of practice that the sets of
components have had prior to the combination. This
qualification has two related forms: (1) the more practice a
set of components have had, the faster they will be, and so
practice serves to reduce the contribution of a set of
components to the overall performance time of a task; (2) as
the amount of practice of a set of components increases the
room for improvement decreases.

The most important implication of the linear component
model concerns the rate at which improvement will occur in
the total task. In this model the learning rate (c) of the two
separate power functions is the same in each function. This
represents the assumption described above that the learning
of all components of a task for any one person is a constant.
Incorporating this assumption into the model results in a
power function describing improvement in the overall task
that has a different learning rate to that of each of the
components. This difference is always in the direction of a
reduction: the learning rate of the total task will be slower
than the learning rate of its underlying components. The
amount by which the learning rate will be reduced is a
function of the relative number of steps in the old and new
components, and of the relative amount of practice each set
of components had prior to combination.

For example, consider the case of a subject who has
practiced a task for 6 sessions. Let the task have 100 steps
(N=100) and the learning rate be -0.8 (c = -0.8). The
improvement in the time to perform the task can now be
described by the equation T = 100 P -8 (this is only a loose
description as N in Equation 7 is only proportional to the
number of processing steps/productions involved in a task,
not equal to this number). Now suppose the subject is given
a new task to practice that includes all of the steps in the old
task plus a new set of steps that number 20. The subject will
be able to perform the old steps quickly but will be starting
from scratch with the new steps. The time to perform such a
task that includes old and new components can be described
by the combination of the power functions that would
describe improvement on the separate components. Thus,

T = Tota + Thew
=100 Poia®8 + 20 Prew 08
where Poid = Prew + 6.
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Figure 1: Learning rate as a function of the ratio of the number of
steps in old skills vs. the number of steps in new skills. The data
points were generated from a learning example described in the
text. The line represents an interpolation of the data points.

This function now has an overall learning rate of ¢ = -0.44
(i.e., plot values for T against Puew on log-log axes and the
gradient of the resulting straight line is -0.44). Therefore,
learning rate has been attenuated as a result of combining
two skills that differ in the amount of practice they have had
and the number of steps involved with their execution. The
rate of improvement in the overall task is slower than in the
components underlying performance in the task. However
the attenuation will not always be as dramatic as in this
example. As mentioned above, the amount of attenuation is
moderated by two factors.

The first moderating factor on the amount of attenuation
in learning rate is the relative number of steps in the old and
new components of a task. The effect of this factor on the
overall learning rate is depicted in Figure 1. The data points
were generated from the above example, where Pout = Prew + 6
and ¢ =-0.8. The number of steps in the new component was
varied from 0 to 500 and the number of steps involved in the
old component was kept constant at 100. It is clear from this
figure that an increase in the ratio of old to new steps
increases the attenuation of the learning rate. The function
depicted in Figure 1 has minimum and maximum
boundaries. The minimum boundary corresponds to the
situation where there are no old steps involved in the task.
The learning rate in this situation corresponds to the
intrinsic learning rate of the system, which is -0.80. The
maximum boundary represents the maximum attenuation
effect. This corresponds to the situation where the old steps
outnumber the new steps to the extent that the new steps
have no effect on the overall learning rate.

The point of maximum attenuation is equivalent to
measuring the learning rate of a task as if it were a new task
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and ignoring the fact that it has been practiced for 6 sessions.
The
performance times that improved at what appeared to be a

subsequent sessions of practice would elicit

slower rate than the earlier sessions. However this
attenuation is simply a result of using an inappropriate
point to represent ‘session one’. Figure 2 illustrates that in
this situation a practice function with a ‘slow’ learning rate
is in fact the tail end of a practice function with a faster
learning rate. This phenomenon can result in inaccurate
measures of learning rate when prior experience with a task
is not taken into account. Newell and Rosenbloom (1981)
suggest that using a more general form of the power
function that incorporates the amount of prior practice can
improve the accuracy of power function descriptions of
practice data. Such a function would have the following
form:

T=N(P+E) )
This equation is the same as Equation 7 except that the term
which represents the amount of practice on a task is now
divided between practice that is observed (P) and practice
prior to observation (E). This form of the power function has
been shown to provide a better fit to some practice data but
is also no better than simpler functions (Equation 7) with
other data (Singley & Anderson, 1985). The reason why
Equation 9 is no better than Equation 7 for some practice
data is that the assumption of prior experience with a task is
too general an assumption. As demonstrated above, prior
experience may only apply to some components of a task.
Other components will not have had any practice. Hence the
linear component model (i.e.,, Equation 8) may be a more
accurate depiction of some situations.

The second moderating factor on the attenuation of
learning rate is the relative amount of practice that the old
and new skills underlying a task had prior to their
combination. Figure 3 illustrates the effect on learning rate
of increasing the amount of prior practice of old skills in the
example introduced above. All of the data points in this
figure were derived from the example situation with the
number of old steps constant at 100 and the number of new
steps constant at 20. The learning rates were calculated for
the learning functions that resulted from varying the
amount of practice of old skills in Equation 8. Figure 3
shows the result of varying Poa from 0 to 100 sessions. When
the old skills have had no practice prior to combination the
learning rate is simply the intrinsic learning rate of the
system (-0.80). This corresponds to the situation where all
components of the task are new. As the amount of practice
of old skills increases the attenuating effect on learning rate
increases until the combination of old and new skills has its
maximum effect. In this situation, when old skills have been
practised for 8 sessions prior to the combination of old and
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Figure 2: Demonstration that a practice function with a ‘slow’
learning rate may be the tail-end of a function with a faster rate.
The last six data points of the fast curve (learning rate =-0.80)
have been displaced 6 practice units. The new curve now has the
slower learning rate of -0.239.

new skills, the resulting learning rate is at its slowest at -
0.439. Beyond this point, increasing the amount of practice
old skills have prior to combination has a diminishing effect
on learning rate. This diminishing effect continues until the
old skills have had so much practice that any further
practice results in only negligible improvement. At this
point the combination of old and new skills has no effect on
the overall learning rate. The learning rate for the overall
task will now be completely determined by the rate at which
performance on the new skills improves, and this will be at
the intrinsic learning rate of the system (-0.80 in this
situation).

In summary, the linear component model leads to the
prediction that when a task involves old and new
components, this task will be learned at a slower rate than
that at which each of the two sets of components improves
(i.e., the constant intrinsic rate of each person). The amount
by which this learning rate will be attenuated will be
moderated by the relative number of steps between old and
new components of the task, and by the amount of practice
that the old skills had prior to learning the new task. Some
evidence exists in the research literature to support these
predictions. This evidence is presented below.

Evidence in Support of the Linear Component Model

In order to evaluate the linear component model, data is
required from a very specific type of situation. Firstly, there
needs to be performance data from both a training phase
and a transfer phase in order to compare learning rates in
both phases. Secondly, sufficient information about the tasks
performed in the two phases is required in order to make
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judgements about the relative number of old and new skill
components utilised in the training and transfer tasks. We
found three studies in the research literature that provided
sufficient information to enable a comparison between the
data from these studies and predictions derived from the
linear component model.

Singley and Anderson (1985)

Singley and Anderson (1985) examined the extent of
transfer between different computer text-editing programs.
Two basic types of editors were used: (1) line editors, where
only one line of text in a file can be viewed at a time and
editing is on a line-by-line basis; and (2) screen editors,
where the screen is filled with the contents of a file and users
are able to designate the location to be edited by moving
around the screen with a cursor. Subjects in this study were
trained to operate two line editors (ED and EDT) and one
screen editor (EMACS). Singley and Anderson were
interested in the extent to which training on one versus two
line editors would transfer to performance on a screen
editor. They found that there was positive transfer both
between the line editors and from the line editors to the
screen editor. These results were interpreted as suggesting
that all of the editors shared a certain number of productions
necessary for their performance. Thus training with one
editor provided the subjects with a set of productions, of
which some were useful for operating another editor. In
more detail, there was almost complete transfer between the
line editors, which suggests that these editors share a large
number of productions. In contrast there was only partial
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Figure 3: Learning rate as a function of the amount of extra practice
of old skills in comparison to new skills. The maximum attenuation of
learning rate occurs when Poa = 8 and results in a learning rate = -
0.439. The data points were generated from a learning example
described in the text. The line represents an interpolation of the data
points.



Table 1: Power functions describing performance with three text-editors during Training and Transfer
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phases of an experiment reported in Singley and Anderson (1985).

Editor Performance
Training Transfer Training Transfer
EDT ED T=43pos IT=37p020
ED EDT T=48pome T=390p03
ED/EDT EMACS T=30p0s T=34p"+

transfer between the line editors and the screen editor,
suggesting that the productions developed with the line
editors were not totally sufficient for operating the screen
editor. The development of more productions would have
been necessary for efficient performance with this editor.

The most interesting result of this experiment for the
current discussion concerns the differences in the shape of
the learning curves during training and transfer. Singley and
Anderson fitted simple power functions to the data and the
equations of these functions are presented in Table 1. The
design of the experiment was such that the subjects who
performed in the Transfer phase with ED were trained with
EDT and vice-versa. The subjects who performed in the
Transfer phase with EMACS were subjects who had either
been trained with one of the line editors or both, the total
amount of training being equal for both groups of subjects.
The equations in the Training column of Table 1 were
derived from data from control subjects who practiced with
only one editor.

It is clear from the equations in Table 1 that in all cases
the learning rate during Transfer was slower than the rate
during Training. Furthermore, the amount of attenuation
was greater when transfer was between line editors (-0.53 to
-0.20 and -0.79 to -0.34) than when transfer was from line
editors to the screen editor (-0.55 to -0.41). These results are
as would be predicted on the basis of the linear component
model. First consider the line editors. The fact that there was
almost total transfer between these editors suggests that
they share a large number of productions. Therefore when
subjects switch to one line editor after operating with the
other line editor, very few new productions need to be
developed. In other words, when these subjects operate the
new line editor, underlying their performance will be a large
number of old skills and a small number of new skills. As
was shown in Figure 1, this is the type of situation where
attenuation of learning rate is very large. In contrast, transfer
from line editors to screen editors involves fewer shared
productions. Thus subjects who trained with line editors
and then switched to the screen editor would be able to use
some of their previously developed productions but would
also need to develop a relatively large set of new
productions. As a result the ratio of old to new skills in this
situation would be smaller than in the situation where
transfer was between line editors. As shown in Figure 1, this
predicts a smaller attenuation of learning rate in the former

than in the latter situation.

A similar interpretation of the Transfer results was
suggested by Singley and Anderson. Initially they attempted
to account for the different practice functions that were
observed in Training and Transfer with Newell and
Rosenbloom's (1981) general power function (i.e., Equation 9
above). However they concluded that the simple notion of
including prior experience into the power function was not
sufficient to account for the Transfer data. Singley and
Anderson then suggested that in such transfer situations it
was necessary to identify components of tasks that were
general and specific. General components are those that are
shared between tasks. Specific components are those that are
peculiar to the particular task. Singley and Anderson then
proposed that a more appropriate account of their transfer
data would involve a power function that included two
separate power functions, one for the general components
and one for the specific components:

T'= X+ Ng Pg + Ns Ps¢ (10)
This equation is equivalent in form to Equation 8 with an
asymptote. Furthermore equating general components with
old components and specific components with new
components results in the two equations being equivalent in
function as well. Unfortunately Singley and Anderson did
not evaluate whether Equation 10 provided a better account
of their transfer data than Equation 9. Furthermore, there
was no explicit discussion of the implications of this
conceptualisation of transfer on learning rates.

MacKay (1982)

MacKay (1982) reported data combined from two earlier
studies (MacKay & Bowman, 1969; MacKay, 1981) in which
the speed of reading sentences aloud was measured. Three
types of sentences were examined: normal, scrambled and
nonsense. The scrambled sentences were derived from the
normal sentences by re-arranging the order of the words.
The nonsense sentences were derived in turn from the
scrambled sentences by substituting or rearranging letters in
words to form pronounceable non-words.

MacKay reported two main results. The first was that
normal sentences were read faster than scrambled sentences,
which were read faster than nonsense strings. The second
result was that the rate at which subjects improved their
reading speed with practice was a function of the type of
sentence being read. Subjects improved at the fastest rate



with nonsense strings, at a slower rate with scrambled
sentences, and at the slowest rate with normal sentences.

The difference in learning rates can be accounted for by
considering, at a fairly superficial level, the skills that
underlie reading aloud the three types of sentences. First
consider the normal sentences. Competent readers rely on
skills that (1) convert familiar words into sounds, and (2) use
syntactically based meaning to increase fluency (e.g., noun
phrases such as “the dog” are read faster than “the” and
“dog” read separately, Just & Carpenter, 1980). With adult
readers these skills are unlikely to improve much with
practice. Hence any improvement observed with this type of
sentence will be at a very slow rate.

Now consider the scrambled sentences. Subjects who
read such sentences aloud now perform without the benefit
of the second type of skill involved in normal reading. That
is, because the scrambled sentences did not contain familiar
noun or verb phrases, words can only be processed as
individual meaning units rather than as part of higher level
concepts. Therefore with this type of sentence, subjects
would be required to develop some other strategy to
increase fluency beyond the level at which they can read a
list of unrelated words. This suggests that reading these
sentences results in the combination of old and new skills.
The ratio of old to new skills with these sentences will be
smaller than with the normal sentences and so the
attenuation of learning rate will be less than with the normal
sentences. Thus learning will be faster with the scrambled
sentences than with the normal sentences.

With the nonsense sentences subjects are at even less of
an advantage in terms of being able to use already
established skills. Because these sentences were derived
from the scrambled sentences there is no syntactically based
meaning to increase fluency. In addition the sentences
contain no familiar words and so pronunciations are not as
easily accessible as with real words. Instead subjects must
rely on pronunciations derived from the pronunciations of
real words that look similar. This derivation process is
unlikely to be a well-practiced skill. Without many other old
skills to influence performance with these sentences, it
seems plausible that the ratio of old to new skills in this
condition is lower than in both of the previous conditions.
Therefore the combination of old and new skills in reading
nonsense sentences will have little attenuating effect on
learning rate and so subjects will improve with these
sentences faster than with the other types.

The MacKay that a
consideration of the relative number of old and new skills

results support our claim
used to perform a task according to the relationship
depicted in the linear component model will enable

predictions about the relative learning rates in tasks with

60

different ratios of old to new skills.

Snyder and Pronko (1952)

It appears that the linear component model can also
provide a good account of the acquisition of perceptual-
motor skills. Snyder and Pronko (1952) investigated the
effect of wearing inverting lenses (i.e., these make the world
look upside down) on performance in a motor task. For 15
days subjects were trained with normal vision on the
Purdue pegboard task - a task that requires precise visual
control of motor responses. Following this training phase,
the subjects were then given 27 days practice on the same
task whilst wearing inverting lenses. This latter condition
had the obvious effect of slowing performance compared to
the normal vision condition.

A more interesting result concerns the rate at which
performance improved in the two conditions. The practice
data from this experiment has been re-plotted in Figure 4.
The lines represent the best-fit power functions of the form
described by Equation 7. It is clear from this figure that,
although performance with inverted vision never attains the
speed of that with normal vision, the performance in the
former condition improves at a faster rate (-0.20) than in the
latter condition (-0.10).

The differences in learning rate can be accounted for by
assuming that performance in the inverted vision condition
involves the same skills as in the normal vision condition
plus a new set of skills that cope with the inverted visual
information. Performance in the normal vision condition can
be considered to involve both old and new skills. The old
skills are concerned with co-ordinating visual information
and motor responses. The new skills are more task related
and concern rules specifying peg placement. In the same
vein, the inverted vision condition involves the same old
and new skills plus another set of skills concerned with
translating the inverted visual information into normal
orientation information. This means that subjects can adapt
existing skills to operate in the new environment rather than
having to develop a whole set of new skills. It also implies
though that more new skills underlie performance in the
inverted vision condition than in the normal vision
condition. The fact that the performance on the first day of
inverted vision was almost 60% slower than on the first day
of normal vision suggests that the skills to be learned in
order to cope with the inverted vision substantially
outnumber the skills needed to place the pegs. Thus the
ratio of old to new skills in the inverted vision condition is
smaller than in the normal vision condition. The prediction
can now be made on the basis of the linear component
model that the combination of old and new skills in this task
will result in a greater attenuation of learning rate in the
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Figure 4: Data reported in Snyder and Pronko (1952). Data points
have been plotted on linear axes. The lines represent the best-fit
power functions with the following equations:

Normal Vision: T=72.418 P10 y2=0913;

Inverted Vision: T =111.98 P-020, y2=0.935.

normal vision condition (see Figure 1). This then accounts
for Snyder and Pronko's finding that performance with
inverted vision improved at a faster rate than with normal
vision.

Summary

The studies discussed in this section, when considered as
a whole, provide consistent support for the notion that the
combination of old and new skills can affect the rate at
which a task is learned. The way in which learning rate is
affected depends on the extent to which old components
have been practiced prior to combination with the new
components, and the relative number of steps involved in
the old and new components. One of the studies discussed
above (Singley & Anderson, 1985) showed a slowing of
learning rate from Training to Transfer. Another study
(Snyder & Pronko, 1952) showed an increase in the learning
rate from Training to Transfer. The MacKay (1982) data did
not come from a transfer design but did show differences in
learning rates between conditions which were accounted for
by considering the relative amounts of practice and number
of steps involved in the underlying components.

Task Learning Curves as Summary Functions

One of the major implications of the linear component
model is that learning rate, as exhibited on a particular task,
is by no means a constant of the cognitive systems of
research participants. It is clear that overt learning rate can
be affected by the combination of old and new skills. In
addition, some research suggests that learning rate is also
affected by factors such as motivation and anxiety
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(Speelman & Kirsner, 2005). Thus, as suggested above, there
is evidence that is counter to what is implied by Anderson's
(1982) account of the power law of learning, that the rate at
which performance on a task improves is a constant of the
learning system. It may well be the case, though, and was an
assumption of the argument developed above, that new
component skills that contribute to overall performance on a
task are acquired at a rate that is a constant for any
individual.

The fact that the rate at which performance on a task
improves can be a function of previous experience with
components of the task is not surprising. Certainly it would
be expected that learning a task would be facilitated if a
trainee is familiar with parts of the task. However, what is
important to realise is the apparent distinction between the
learning of a task and the learning of components
underlying performance of the task. The linear component
model predicts that a combination of old and new skills will
affect learning rate. This effect involves an attenuation of
learning rate compared to the rate at which the old task
components were originally learned. Thus the learning rate
of a ‘new’ task will be different to that of a previously
observed new task, that is, the task in which the old task
components were learned. The significance of this finding is
that the rate of improvement on a task is determined by the
history of the components that underlie performance of the
task, rather than experience with the task itself. Thus
variability in task learning rates appears to result from the
combination of underlying component skills with varying
application histories that all improve at the same rate.
Therefore, contrary to what is implied by Anderson's
account of the power law of learning, the rate of
improvement on a new task is not directly determined by
parameters of the cognitive system. Instead it is the rate of
improvement of component skills that underlie performance
of the task that is determined by the parameters of the
cognitive system. Only when performance on a task relies
on the execution of completely new skills will the task
learning rate be the same as the cognitive system's learning
rate. However, given that for adults most tasks involve the
execution of component skills that vary in the extent to
which they have been practiced, improvement on a new task
is unlikely to ever be at the same rate at which the
underlying components improve.

It should be noted that the argument about the
attenuation of learning rates that results from the
combination of old and new skills should not be construed
as a claim that transfer leads to someone becoming a slower
learner. Certainly part of the claim is that the rate of
improvement on a task in which some of the requirements
have been mastered before will be slower than if the task



was entirely new. But this slower improvement rate is on the
overall task. New task components will be learned at the
rate that someone normally learns new things. That is,
someone’s capacity to learn new things is unaffected by the
transfer situation. It is only when measurement of
performance takes into account performance on both old
and new task components is a slower overall learning rate
observed. In other words, learning rate on the overall task is
attenuated, but learning rate on the new task components is
unaffected.

The picture of skill acquisition that emerges from this
skilled
performance involves the execution of a number of
skills. These skills
represented cognitively as production rules (although there

discussion of learning rates is one where

component component may be
is nothing in the above account that implies this constraint).
When a number of new productions are executed together to
perform a task, performance will improve according to a
power function that has a learning rate determined by the
parameters of the cognitive system. If the task conditions
applicable to the successful execution of these productions
continue to be present, then performance on the task will
continue to improve according to the same power function.
This will be the case even if task conditions change, as long
as the appropriate conditions for the execution of the
productions remain in the stimulus environment or are
produced by the execution of other productions. Thus
collections of productions can develop the appearance of
skill modules, where changes in task conditions do not affect
their execution, nor the pattern of their improvement. New
productions may develop alongside these already well-
practiced productions as task conditions dictate. These new
productions will improve according to a different power
function, although one with a learning rate again
determined by the parameters of the cognitive system. In
other words, new productions will improve at the same rate
as the one that describes the improvement of old
productions. Thus old and new productions will improve
together according to their own learning curves. Although
these learning curves will have the same basic learning rate,
the momentary learning rates of the two sets of productions
will be different because these productions are at different
points along their learning curves. Performance on the task
as a whole will improve at a rate that is not the same as the
learning rate of new productions. In fact, the learning rate
on the total task will be a function of the combination of the
separate learning curves that describe the improvement of
the different sets of productions that underlie performance
on this task. Thus the power function that describes
improvement on the total task can be seen as an aggregate of
the learning curves of the components that underlie
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performance of this task. In other words, just as performance
time on the total task is a function of the time to execute all
of the that
performance, so is the learning curve for performance on the

productions contribute to the overall
total task a function of the learning curves describing
improvement in all of these productions.

Although the simple addition of two power functions
that describe improvement in old and new skills provides a
reasonable account of changes in learning rate, more
complicated tasks than those examined so far will no doubt
involve more complicated combinations of functions. The
large variation in learning rates for different tasks that is
typically observed, both between and within subjects, may
be a result of examining performance on tasks that involve
various combinations of skills with varying practice
histories. This apparently simple explanation for variations
in learning rate belies the complexity that underlies the
learning of a task. For example, it would be an immensely
difficult exercise to determine the relative contributions to
the overall pattern of improvement in a task that are made
by, on one hand, the number of skills involved in various
task components and, on the other hand, the practice
histories of these skills.

The fact that new tasks rarely involve the execution of
only new skills calls into question the ability of simple
power functions to account for improvement with practice.
Although such functions may be able to describe the
improvement that is observed, the parameters of such
functions will not be accurate reflections of features of the
components underlying performance. For instance, in
Anderson's (1982) account of the power law of learning, the
intercept value of a power function (i.e,, N in T = N P¢) was
said to be proportional to the number of productions
executed in the performance of a task. However, this will
only be the case if all of the productions being executed are
new. If some of the productions are old, and therefore are
further their than
productions, then this coefficient will underestimate the

along learning curves the new
number of productions being executed. Similarly, Newell
and Rosenbloom's (1981) revised version of the simple
power function (i.e., T = N (P + E)°) may be able to account
for improvement on a task that relies on the execution of old
productions only, but all of these productions must have
been practiced to the same extent for the parameters of this
function to be informative (i.e., E must be the same for all of
the productions). Therefore when a task involves the
execution of productions with varying practice histories, as
most tasks will, the best way to describe improvement on
the task is to combine separate power functions that describe
the improvement of the various sets of productions. The

difficulty however is in estimating a trainee's experience



with particular task components and the number of
productions that are executed to perform these components.
The degree to which such an exercise is undertaken will
depend on the accuracy that is desired from a function
designed to describe improvement on the task.

The argument presented above, that learning curves
reflect summaries of learning curves of component skills,
was derived from a discussion of learning rates. Others have
made similar claims about learning curves, but have reached
these conclusions from different directions. As mentioned
earlier, Heathcote et al. (2000) argued that power function
learning curves were only found in averaged group data,
and that individual learning curves were best described by
functions that represented the combination of exponential
and power functions. Also mentioned earlier was Singley
and Anderson’s (1985) suggestion that the type of transfer
observed in some situations could only be understood by
considering the skills that were specific to particular tasks
and skills that were general to several tasks. As a result, they
proposed that performance improvements on a transfer task
should be described by a function that combined separate
learning functions for the specific and the general skills.
Some researchers (e.g., Delaney, Reder, Staszewski & Ritter,
1998; Rickard, 1997, 1999) have reported that, in some tasks,
people utilise different strategies at different times. These
researchers found that the resultant learning curves were
best described by functions that included separate functions
for each strategy. There is evidence, then, from various
sources to support the claim that when people perform new
tasks, they utilise old skills and develop new skills. The
combined improvement on all of these skills that occurs
with practice on the new task is the improvement that is
observed on the new task.

It is important to note that the implications of the linear
component model still apply regardless of the form of the
learning functions that describe improvement of component
skills. That is, if learning proceeds according to a power
function, an exponential function, or some combination of
these (Heathcote et al., 2000), combining learning functions
that differ in their intercept values (i.e., starting times)
and/or amounts of practice will result in an overall function
with a learning rate that differs from the learning rates of the
component functions. This result is due to the combination
of negatively accelerated functions. The momentary learning
rate at any point along such curves is different to any other
point along the curve. When a task learning curve is a
summary of the learning curves of several component skills,
and the components are at varying points along their
learning curves (i.e., different practice histories), then the
task learning curve will reflect the combination of several
momentary learning rates. Furthermore, the difference
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between task learning rate and the learning rate of
components will occur regardless of the form of the
underlying learning curves, as long as they are negatively
accelerated.

One important implication of the linear component
model is that all human performance is the product of the
operation of many component processes. The level of
performance exhibited at any one moment is the result of
the execution history of each component process, and the
ability of the person to develop new processes when
necessary. In this view every performance episode becomes
a transfer situation (cf, Singley & Anderson, 1989) - in
familiar situations old skills are utilised as is, whereas in
new situations some degree of adaptation is necessary. Thus
transfer determines the form of the linear component model
that applies in any particular situation. That is, the degree to
which transfer occurs in a particular situation and the nature
of this transfer determines the components that comprise the
specific version of the linear component model that applies
to this situation. Clearly then, any factor that affects the
nature and scope of transfer also imposes constraints on the
nature of the linear component model. There are many
prominent determiners of transfer and these have been
considered elsewhere (Speelman & Kirsner, 2005), including
context, which has important effects on the extent of transfer
observed and hence the shape of learning curves.

Conclusions

This paper has demonstrated that the level of skill
exhibited in any particular behaviour is fundamentally a
matter of transfer. Just about all behaviour is composed of
many component processes contributing to the overall
performance. Skills developed in different contexts are
recruited into service in the performance of new tasks. The
absolute level of performance exhibited on a new task is
determined by the extent to which old skills can be executed
in the new context, and the extent of prior practice with
these old skills. Furthermore, the rate at which performance
of the new task improves is determined by several factors:
(i) the performer's intrinsic learning rate; (ii) the relative
proportion of old and new skills used to perform the task;
and (iii) the extent of prior practice with old skills prior to
the combination with new skills. The degree to which any of
these transfer features can determine performance levels
will be further complicated by: (i) the nature of old and new
tasks; (ii) the nature of past and present training; and (iii)
performance context. At present no theory attempts to take
all of these factors into account in explaining performance,
but we have commenced development of such a theory — the
skill
(Speelman & Kirsner, 2005). It seems reasonable to say,

component theory of acquisition and transfer



however, that learning curve parameters, and in particular
learning rate, are not constants of the cognitive system, but
instead are variables that come under the influence of many
intra and extra-individual factors. In any one situation,
however, it may be safe to assume that a relatively constant
intrinsic learning rate applies. Certainly though, Snoddy's
(1926) belief of one learning rate that applied to every
person and task is a fantasy.
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