Tutorials in Quantitative Methods for Psychology
2006, Vol. 2(2), p. 66-76.

DOI: 10.20982/tqmp.02.2 p066

Human learning;:

Power laws or multiple characteristic time scales?

Karl M. Newell,

Gottfried Mayer-Kress
The Pennsylvania State University

Yeou-Teh Liu
Taiwan Normal University

The central proposal of A. Newell and Rosenbloom (1981) was that the power law is the

ubiquitous law of learning. This proposition is discussed in the context of the key factors that led

to the acceptance of the power law as the function of learning. We then outline the principles of

an epigenetic landscape framework for considering the role of the characteristic time scales of

learning and an approach to system identification of the processes of performance dynamics. In

this view, the change of performance over time is the product of a superposition of characteristic

exponential time scales that reflect the influence of different processes. This theoretical approach

can reproduce the traditional power law of practice — within the experimental resolution of

performance data sets - but we hypothesize that this function may prove to be a special and

perhaps idealized case of learning.

The paper of A. Newell and Rosenbloom (1981) was a
landmark publication on human learning. The central and
fundamental proposal of this paper was that the power law
is the ubiquitous law of learning. This idea was inspired by
universal properties of phase transitions in physical systems
and was the basis for the development of a chunking theory
of information processing in human learning.

It is only recently, however, that direct theoretical and
empirical challenges and developments have been given to
the idea of the power law as a universal law of learning
(Gallistel, Fairhurst, & Balsam, 2004; Heathcote, Brown, &
Mewhort, 2000; K. Newell, Liu, & Mayer-Kress, 2001). There
was a follow-up paper on the chunking theory of learning
by Rosenbloom and Newell (1987) but it is as if the broad
and thorough analysis by synthesis of A. Newell and
Rosenbloom (1981) of extant papers evaluating the functions
of learning left little room for doubt about the veridicality of
the proposition of the power law as the law of learning.
Many authors subsequently endorsed the centrality of the
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power law in learning (e.g., Anderson, Fincham, &
Douglass, 1999; Ivry, 1996; Logan, 1988; Salmoni, 1989), but
scientific activity on this problem was very limited until
some 20 years later and the turn into the 21% century. On
reflection, it appears, as in other scholarly domains (Krieger,
2006), that the proposal of a universal power law has
actually stifled investigation, rather than being a goal and
guide to vigorous theoretical and experimental activity.
Here we briefly outline the legacy of the A. Newell and
Rosenbloom (1981) paper in regard to the function(s) of
learning. Some important challenges to the empirical basis
of the power law are then subsequently developed. These
themes provide the background to the proposal, based on a
landscape model of the dynamics of learning (K. Newell et
al., 2001; K. Newell, Liu, & Mayer-Kress, 2003, 2005), of
the
deterministic change of performance dynamics. In this view,

multiple  characteristic time scales reflecting
the power law is an idealized law or limiting case of

learning that in practice is rarely if ever achieved.

Legacy of the A. Newell and Rosenbloom (1981) Paper

The A. Newell and Rosenbloom (1981) paper is a
quantitative account of practice and learning effects that
provided the basis for the development of their information
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processing based chunking theory of learning. At that time,
the power law was primarily discussed in regards to
learning for the change of performance in perceptual-motor
skills but A. Newell and Rosenbloom wanted to generalize
this relation to all contexts of human learning — hence, the
notion of a ubiquitous law of learning. In the 20% century,
learning theory had considered several functions of change
including the exponential, hyperbolic and logistic (Lane,
1987; Mazur & Hastie, 1978), but had tended to de-
emphasize or even fail to recognize the potential of the
power law.

Snoddy (1926) is generally regarded as the first to
propose a power law for human learning based upon his
non computerized log-log plots of mirror tracing
performance over practice trials and days. This data set,
together with the now famous log-log plot of factory worker
cigar roller performance over 10 million trials and 7 years of
practice (Crossman, 1959), are usually two of the key
examples promoted by advocates of the power law of
learning. Indeed, A. Newell and Rosenbloom gave these two
their

experimental data sets that support a power law even

studies a prominent place in evaluation of
though both of these data sets reveal significant limitations
for such an inference to be made (K. Newell et al., 2001).
Furthermore, it is noteworthy that subsequently Snoddy
(1935) had already begun to question the generalizability of
the power law as the function of learning in deference to the
relevance of the single log plot — the exponential.

A small set of power laws that vary in the number of
parameters fitted to the data have been used in the
assessment of human learning (Lane, 1987; A. Newell &
Rosenbloom, 1981). A. Newell and Rosenbloom (1981)
compared fits of a 4 parameter power law and 3 parameter
exponential and hyperbolic equations to some 18 different
learning data sets. The power law was:

T=A+B(N+E)—« (1)
where T is task or performance time, A is the asymptote of
learning, B is the performance on the first trial, N is the
number of trials, performed after a reference number E
reflecting the experience from E previous trials, and « is the
exponent of the power law describing the performance. An
analysis of the parameters for the best fits as well as the
estimate of the fit (r?) was provided. The primary outcome of
the analysis was evidence in terms of percent of variance
estimates for the claim of the ubiquity of the power law of
learning in all types of human behavior.

The theoretical significance of the determination of a
power law of learning is that by definition it leads to the
position that in learning the rate of change in performance
does not remain constant (that is proportional as in the
exponential) over trials. In other words, there is not a
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constant time scale of change in a power law model of
learning. Indeed, by definition a power law has an infinite
number of time scales over the range of the phenomena
studied (Schroeder, 1991). The A. Newell and Rosenbloom
(1981) chunking theory of learning was built in part from
Miller’s (1956) original notion of a chunk - a structured
stored expression of knowledge. This construct was
combined with the assumption of an exhaustion model of
learning in which there is a diminution of aspects of the
learning process so that, in other words, learning slows
down from proportional change in the later stages of
learning. Thus, the building of the chunks into larger and
larger segments of patterned information takes increasingly
more time in a relative sense.

In our view, the legacy of the A. Newell and Rosenbloom
(1981) paper 25 years later is to be found primarily in the
description of the learning process as a power law — in short,
the idea that the power law is the universal law of learning.
In contrast, the chunking theory of learning that was created
around the power law description is much less prominent
and influential today in theorizing about learning. However,
as hinted earlier, it is only in the recent past that the claim of
the power law as the universal law of learning has been
subjected to a theoretical and experimental challenge that
begins to match the enormity of the original claim of A.
Newell and Rosenbloom (1981).

The Generality of the A. Newell and Rosenbloom (1981)
Power Law of Learning

A. Newell and Rosenbloom (1981) reported the modeling
of exponential, hyperbolic, and power law functions to a
large number of learning data sets. Their analysis by
synthesis concluded for the ubiquity of the power law in
learning though it should be noted that only a few years
earlier Mazur and Hastie (1978) conducted a similar analysis
and concluded for the exponential. This contrast in
viewpoint points up that there are several factors that
mediate the interpretation of existing data sets and
importantly, that act as a goal and a guide for the creation of
a general theory of learning. In addition, it should be noted
that the difference from a percent of variance standpoint of
the fits of the candidate functions of learning is often very
small. And, even when it is not, it is typically less than the
often held working norm in studies of fractals and power
laws (Bak, 1996; Bassingthwaighte, Liebovitch, & West,
1994) of observing change over at least three orders of
magnitude, due to the limited amount of practice in learning
experiments that is often conducted and measured. Here we
briefly mention three general factors that have influenced
and perhaps led to the broad-based acceptance of the
generality of the power law for learning.



Averaged data: A major factor in mediating the
interpretation of the laws of learning is that of averaged data
(Heathcote et al., 2000; K. Newell et al., 2001). Averaging
data over subjects and trials tends to lead to a different
function for the change in performance over time than is
present in a single individual. In our view, this is because
the averaging of data, whether over participants or trials
(and most studies have done both) changes the time scale of
performance over time or trials. In K. Newell et al. (2001) it
was shown that averaging exponentials that have different
exponents leads to a function that approximates a power
law because it brings in the many different time scales of
change (exponents) to the averaged function. It should be
noted that most of the data sets analyzed in A. Newell and
Rosenbloom (1981) were of group averaged data and they
gave no recognition to the problem of averaging data
mediating interpretations of the laws of learning.

Model fits: There has been considerable progress since
the publication of the A. Newell and Rosenbloom (1981)
paper in regard to mediating issues in model testing
(Burnham & Anderson, 2002; Pitt & Myung, 2002; Pitt,
Myung, & Zhang, 2002; Roberts & Pashler, 2000). The value
of a goodness of fit criterion has been challenged as
insufficient in decision making regarading the usefulness of
a model and this holds particular relevance when the
difference in the percent of variance accounted for in
exponential, hyperbolic and power law fits is often very
small (less than 1%). This leads to a parallel emphasis on the
qualitative properties of the fit (Liu, Mayer-Kress, & Newell,
2003) and other criteria that reflect the number of
parameters, complexity of the model (Pitt et al., 2002), and
what states a model cannot predict. In this regard, it is
relevant that A. Newell and Rosenbloom (1981) used a 4
parameter power law but only 3 parameter exponential
equation, a factor that probably biased their examination of
the best fitting function toward a power law. It is also the
case that in this percent of variance fit approach the values
of parameters were not used by A. Newell and Rosenbloom
(1981) for characterization and they sometimes changed in
unrealistic ways, such as in the sign switching from positive
to negative or vice-versa, which implies mutually exclusive
theoretical explanations.

Theory driven fitting: Thurstone

curve (1919)

emphasized the importance of rational versus empirical

curve fitting in the study of learning curves. This viewpoint
provides a most general statement of the value of theory as a
goal and guide in the testing of model equations. A. Newell
and Rosenbloom (1981) in their analysis of learning data sets
were certainly driven a priori by the hypothesis of the
power law. It is difficult to determine if the chunking theory
of learning was sitting behind so to speak their expectation
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of the priority of the power law or whether the
establishment of the power law preceded the development
of the learning theory. Irrespective of their position on this
important issue of rational curve fitting, it is safe to say that
the general implementation of Thurstone’s call for theory as
a goal and a guide to the analysis of learning curves has
played a secondary role to the percent of variance curve
fitting criterion.

In summary, the above represent some of the major
factors that mediate the determination of the laws of
learning, although there are other contributing issues (Lane,
1987). The net consequence in our view is that there are very
few strong examples (if any) of the power law capturing the
qualitative and quantitative properties of performance
dynamics in learning. Virtually all the studies reporting data
consistent with a power law are on averaged data (see A.
Newell & Rosenbloom, 1981). Indeed, we are not aware of
any published studies showing a power law of motor
learning on individual data (see our observation later
regarding the Snoddy, 1926 data).

The highlighting of the impact of these issues in
assessing the function of learning has led in recent years to
challenges to the position of A. Newell and Rosenbloom
(1981) that the power law is the ubiquitous law of learning
(Gallistel et al., 2004; Heathcote et al., 2000; K. Newell et al.,
2001). It is ironic that the challenges to the position of the
power law as the ubiquitous law of human learning come at
a time when there is increasing evidence for the presence of
multiple time scales in both nonliving systems (Bak, 1996;
Mandelbrot, 1977) and biological and cognitive processes
(Bassingthwaighte et al., 1994; Gilden, Thornton, & Mallon,
1995; Van Orden, Holden & Turvey, 2003; Ward, 2002). It is
our position that an understanding of the dynamical basis of
a power law and the role of multiple time scales to system
output can reveal both the theoretical potential and
experimental reality of power-law like human behavior,
including that of learning.

Power Laws, Time Scales and System Identification

There has been an increased understanding of the
importance of characteristic time scales in the study of
human behavior over the last 25 years. The construct of
multiple characteristic time scales has become central in
dynamical systems and connectionist approaches to
behavior and physiology, and more generally neuroscience
approaches to human behavior. Indeed, the infinitely many
time scales of events and processes are present by definition
in 1/f fractal-like processes of living and nonliving systems
(Bak, 1996; Bassingthwaite, Libovitch, & West, 1994;
Mandelbrot, 1977, Schroeder, 1991).

Time Scales. The phrase or term characteristic time scales



is, however, rarely defined in most instances of its use in the
study of human behavior. This oversight is unfortunate
because it contributes to the use of different meanings to the
phrase characteristic time scales and allows its
embellishment to the notion of multiple time scales also to
be invoked in less than rigorous ways. The notion of
characteristic time scales has an obvious link to the concept
of time and for many interpretations of time scale it is
simply that — the time or duration of an event, process to
unfold or an action.

It is relevant to the focus of this paper that the notion of
time scales has rarely been mentioned never mind discussed
in the use of the power law to analyze or reflect human
learning. Neither have the exponents, that are critical in the
context of phase transitions, been used to characterize
classes of systems or conditions for learning. Thus, the use of
the power law in human learning has been largely that of a
curve fitting percent of variance accounted for procedure
rather than a theoretically motivated exercise. In the sense
then of Thurstone (1919), the curve fitting of the power law
since Snoddy (1926) to learning data has been an empirical
implementation uninfluenced by the theoretical construct of
characteristic time scales and their dynamical, epigenetic, or
physiological origin. The theoretical implication of the
power law reflecting a scale invariance in the performance
dynamics over time has not been approached directly,
though A. Newell and Rosenbloom (1981) came as close to
these considerations as anyone in the last 75 years of power
law analysis of learning through their postulation of the
changing chunks of information processed.

In our view, the phrase characteristic time scales holds
clues to its use here in a dynamical systems framework to
human performance and learning. It directly implies the
notion of the different scales of time where the phrase
different scales refers to different units that are most
appropriate to characterize the passage of time, e.g. micro
seconds of chemical processes to the scale of years in the
process of development or expert skill learning. Indeed, the
concept of time has been refined throughout history in part
due to the analysis of new time scales.

The time scale of a day is the most fundamental element
of all calendars and is based on the dynamical process of the
circadian rhythm of earth rotation. However, not all
frameworks of time are based upon the rotation of the earth.
The forms of time known as dynamical, atomic and
coordinate time are not based on the standard idea of the
day (Haliday, Resnick, & Walker, 2005), but they do relate to
properties of dynamical systems.

In dynamical systems there are two types of idealized
motions that naturally introduce the fundamental concept of
time scales. These motions have either periodic oscillations
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(Haken, 1983) or growth/decay at a constant rate (Kaplan &
Glass, 1995). In the case of oscillatory systems, the intrinsic
time scale of the system is the period (inverse of frequency).
In growth/decay systems the intrinsic time scale is the
inverse of the growth/decay rate that can also be expressed
as “doubling” or “half life” time by including a factor of
logo.

These two classes of behavior and combinations thereof
are in linear dynamical systems the only forms of movement
observed apart from the trivial dynamics of a non-moving
fixed point. They are the basis of almost all known clocks:
earth rotation, a swinging pendulum, the vibrations of a
quartz crystal, and cesium atoms represent clocks based on
periodic movements. Clocks based on radioactive decay,
such as carbon dating or the shortest possible measurable
time scales, the lifetimes of elementary particle, are
examples of methods using constant rates of change and
exponential functions. Other methods of time keeping, such
as water clocks, hourglasses, burning incense and so forth
are described not by linear but by differential equations that
change with a constant speed, not a constant rate, i.e. the
speed of change does not depend on the size of the variable.
Clocks at cosmic scales use the redshift of distant galaxies
and are also not described by simple exponentials.

For both the oscillatory and growth/decay types of
exponential trajectory the performance x(t) at time f is
expressed as the real part of a complex exponential function:

x(t) = A Re( ettiol ) = A ert Cos(wt) (2)

where A is the observed performance at time t = 0, the real
part y of the exponent is the relaxation (decay or approach)
rate and the imaginary part w is the frequency of the
oscillation. The reciprocal of the growth or decay rate is the
intrinsic or characteristic time scale. Thus, a time scale is not
simply the duration or time of an event as it often used in a
colloquial fashion but significantly for our purposes here the
characteristic time duration of an event that arises from a
periodic or growth/decay dynamical process.

Equation 2 describes two types of motions in nonlinear
dynamical systems (Kaplan & Glass, 1995; Strogatz, 1994).
These
fundamental to describing behavior close to a fixed point. A

oscillatory and growth/decay processes are
fixed point is the mathematical concept that is associated
with the equilibrium regions of the dynamics. Fixed points
correspond to the absence of motion as in a pendulum at
rest. Furthermore, and importantly for the implementation
of this approach to the change associated with learning and
development, the motion close to a fixed point can be
approximated to be described by linear dynamical systems.
This means that the motion of the trajectory can be
characterized by the exponential function of Equation 2.



Expressed another way, the motion close to a fixed point can
be completely characterized by the exponents y and w. The
time scale within a growth or decay process to a fixed point
is characterized by the time for the dynamics to double/half
the distance to the fixed point:

Here we are especially interested in systems that
approach a fixed point according to a distance function
given by an exponential:

x(t)y=Aert (2a)
where we assume that the approach rate is positive, i.e. y > 0.
Now we can ask how long it will take until our distance to
the goal has decreased by on half. Let us call this time Ti2
the half-distance time associated with this characteristic time
scale y. That means we have:

x(t+ Tiz)=Aer BT =15 A et ®)
Solving this equation for T yields:
Tiz=log2/y 4)

This time T2 is given in standard time units such as “trial
number” or “hour”. Thus, it provides us with a convenient
estimate after how many trials of practice we can expect to
be 50% closer to our learning goals or after how many hours
of rest we can expect that our performance has dropped by
50% due to warm-up decrement.

These basic assumptions about attractor dynamics and
fixed points provide the theoretical basis for the assessment
of the characteristic time scales of change in motor learning
and development (K. Newell et al., 2001, 2003, 2005). In our
approach, the multiple time scales of change in task outcome
over time are interpreted to originate from the system’s
trajectory on an evolving attractor landscape. Different
bifurcations between attractor organizations and transient
phenomena can lead to exponential, power law or S-shaped
learning curves, among other pathways of change. Thus, in
our theoretical framework to learning there is not a single
law (function) of learning as has been sought in the
exponential, logistic, hyperbolic and power law but rather a
coherent single set of dynamical principles that can lead to
different functions of change in task outcome and limb
trajectories. K. Newell et al. (2001, 2003, 2005) outlined more
complicated cases of fixed point dynamics, landscape
evolution and their relation to the dynamics of motor
learning.

System Identification. The notion of characteristic time

scales arising from the dynamics provides a principled basis
to consider the change in performance over time and the
constructs of learning, development and adaptation. A
this that the
characteristic time scales of oscillations and growth/decay

central consequence of approach is

processes of a dynamical system allow the system
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identification of component processes. This engineering
based strategy has been used in psychology and biology for
the analysis of oscillatory processes at different levels of
analysis of the system as a reflection of a range of constructs,
but the dynamics of growth/decay processes have been
invoked less in behavioral studies. Kaplan and Glass (1995)
have proposed that the equation for exponential growth and
decay is probably the most important dynamical model in
biology.

In the study of processes
electroencephalography (EEG) it has long been recognized
that the frequency bandwidths (alpha, beta 1, beta 2,
gamma, theta, delta) of the EEG signal(s) are indicative of

brain through

different processes (Neidermeyer & da Silva, 1999; Nunez,
2000). This assessment is based on the higher probability of
these frequencies occurring in the composite output of the
EEG signal. Thus, frequency decomposition through spectral
analysis procedures has become an important strategy for
understanding the processes of the brain activity. Similarly,
at the behavioral level the analysis of tremor is largely based
on the frequency decomposition of the tremor signal (Elble
& Koller, 1990). In finger postural tremor, for example, there
are two frequency ranges that dominate the signal, the 8-12
Hz bandwidth of physiological tremor and the 20-25 Hz
bandwidth of mechanical resonance of the finger system.

The frequency bandwidths of both EEG and EMG
signals tend to respectively, speed up and slow down a little
in development through the years of childhood and later in
the period of old age. This change reflects the imposition of
another (slower) time scale of development on the dynamics
of moment to moment control processes of brain and
behavior. These approaches in the analysis of EEG, EMG
and limb kinematics are examples of the characteristic time
scales (period) of the signal oscillation being used to identify
processes of system regulation.

As we remarked earlier, the time scale that arises from
the growth away from or decay rate to a fixed point (where
the rate of change is zero) can also be used to identify the
dynamic processes of change in learning and development.
This alternative strategy of decomposing the processes of
performance change uses the real parts of the characteristic
exponents provided in Equation 2. This approach to the
study of change over time has been used extensively in
different branches of biology with population dynamics
being an example. Perhaps the best known model of growth
dynamics is that of Verhulst (1938) who argued that growth
cannot continue indefinitely and that the basic exponential
equation required an adjustment. Verhulst proposed the
logistic population growth function that has two fixed
points but importantly from the theoretical perspective
proposed here is still driven by the growth/decay properties
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Figure 1. The power law fit of A. Newell and Rosenbloom (1981) to
the Snoddy (1926) mirror tracing learning data (reproduced with
permission from A. Newell and Rosenbloom, 1981, Figure 1.1).
The performance score (p) here is Time + Error whereas Snoddy
(1926) and Figures 2-4 here use 1000/T+E which is why the
direction of change in performance score as a function of practice is
opposite here in Figure 1 to that of Figures 3-4.

of exponentials.

In summary, we are suggesting that the exponential
dynamics of growth/decay to a fixed point can be used as
the theoretical basis for considering change in human
learning. It is not that all functions of performance change
over time will be an exponential but rather that exponential
change and the associated influences of bifurcations and
transient dynamics can be constructed from this principled
basis (K. Newell et al., 2001). Thus, in our approach the
analysis of the learning curve is driven by the principles of
dynamics and not the percent of variance criterion, although
both qualitative and quantitative aspects of the model fit to
experimental data are important.

Landscape Model of Characteristic Time Scales

The traditional definitions of learning have included a
number of constructs and properties but a general and
central notion has always been that learning is about the
relatively permanent change in behavior (e.g., Hilgard &
Bower, 1975). This definition separates the relatively
permanent from the relatively transient changes in
performance, a statement that is, by definition, a relative
one. Furthermore, learning is an inference drawn from the
change in performance over time and, therefore, is viewed
as an unobservable or latent construct. Thus, curve fitting
the performance changes over time is implicitly or explicitly
an attempt to capture the relatively permanent change in
performance.

The transient changes in performance have often been
interpreted in terms of noise-like processes and it is this
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assumption that sits behind the experimental analysis
strategy of averaging data. That is, averaging data over
blocks of trials reduces the trial to trial random-like
that the the
deterministic processes of learning. Similarly, averaging

fluctuations may mask revelation of
data over participants reduces the between participant
variance and affords a less contaminated assessment of the
relatively permanent change over time. Of course, in most
learning studies, the data are averaged over both trials and
participants thus, as noted above, this leads to the masking
or even the mediating of the persistent change.

The general problem is that the performance outcome
over time reflects the contribution of many processes to the
behavior that themselves may change as a function of
learning. The idea that the performance change observed
reflects a single deterministic function superimposed by
random like processes has been a useful guide to learning
theory. But, this is, in effect, a signal plus noise model that
appears, as in many other domains too simplistic to capture
the potential multiple time scales of processes that influence
learning. Indeed, there are several potential factors that can
change the relatively permanent and transitory changes of
performance dynamics and that can mediate inferences
about learning.

The transitory changes could come from a variety of
sources such as: short-term shifts in attention or motivation,
noise-like properties of the numerous levels of the biological
system, warm-up properties at the beginning of a practice
session, and fatigue-like properties that produce decrements
in performance toward the end of a practice session. These
sources of relatively transient change are all mediators of
performance and potential maskers of the function of
relatively permanent change of learning. Nevertheless, there
has been little attempt to distinguish these processes
analytically from the relatively permanent change in
performance dynamics, the result being that at best these
factors are all viewed as contributors to the error term in
percent of variance fits of mathematical functions to
performance data over time. Another way of saying this is
that constructs such as motivation, attention and fatigue are,
in effect, seen experimentally as neutral influences in the
change in performance over time even though there is
agreement that these processes are influencing performance
dynamics and its change over time.

It is noteworthy too in the context of our framework that
these mediating processes of learning are all seen as not only
relatively short term but also reversible. In other words,
these effects, except perhaps for the idea of noise like
processes, can be reversed usually by the influence of
sufficient rest between trials or practice sessions. These
changes then are seen as distinct from the processes of



learning but mediators of performance dynamics. Processes
that influence performance and not learning have also been
called processes of adaptation, in the sense that the
relatively permanent changes of learning are generally

assumed to engender a structural change in the
representational system (Hallett & Grafman, 1997;
Shadmehr & Wise, 2005).

Learning, retention and transfer are related constructs
that are different aspects of the same principles. Indeed,
these constructs have all been related to the core issue of the
representation for the action. A central notion here in the
context of this paper is the idea of the strength of the
memory trace expressed as it is in different theories of
learning and memory (Adams, 1971; Anderson, Fincham, &
Douglass, 1999; Kandel, 2006; Tulving, 2000).

The candidate short term transient influences on
performance dynamics may not necessarily be related to
representation and memory processes. For example, the
short term shifts in attention and motivation through
practice trials are not typically interpreted as due to memory
loss or loss of memory trace strength. Similarly, the negative
effects of fatigue on performance are not generally
understood as a reflection of losses of memory strength.
Furthermore, the influences of warm-up decrement at the
beginning of a practice period following rest interval also
may not be related to memory losses (Irion, 1949; Nacson &
Schmidt, 1971), although this performance decrement has
also been interpreted on the basis of changes in memory
trace strength (Anderson et al., 1999).

It is our position that the influence of these transient
adaptive processes to the performance dynamics can be
isolated from the relatively permanent changes of learning
through the principles of system identification that were
outlined earlier. This is based on the theoretical assumption
that these processes will each have their own characteristic
time scales. We now provide an example of this theoretical
approach through a consideration of the characteristic time
scales of adaptation and learning associated with the short
fast time scale of warm-up decrement and the slow time
scale of the relatively permanent change over time.

Characteristic Time Scale Modeling of Learning

It is generally recognized that the original demonstration
of power law learning was that of Snoddy (1926). He
showed through visual inspection that a straight line on log-
log paper could well approximate the change in the group
performance data from the trials and days of practice of a
mirror tracing task. This data set was one of the primary
examples in the A. Newell and Rosenbloom (1981) group of
studies used to examine the relative fits of exponential,
hyperbolic and power law functions. Figure 1 is a
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reproduction from A. Newell and A. Rosenbloom (1981, Fig
1.1) of their power law fit to the Snoddy (1926) data. In their
quantitative assessment A. Newell and Rosenbloom (1981)
showed that a 4 parameter power law was the best fitting
function to the data accounting for 98% of the variance. The
formula used was the 4 parameter power law of Equation
(1). The function fitting analysis was done on group
averaged data’.

Perusal of Figure 1 shows that the biggest departure of
the Snoddy (1926) data from the power law function is on
the first few trials of day 1. This significant departure of the
fit on the early trials is not uncommon in assessments of the
power law function of learning. A. Newell and Rosenbloom
(1981) indicated that they omitted some data early and late
in analysis of some data sets but we do not know if this was
done in their analysis of Snoddy (1926).

The power law function can cover up important details
in the performance dynamics that are lost in the log scales of
power laws. Figure 2, reproduced from Mayer-Kress, Liu,
and Newell (1998) shows another more typical distribution
of practice data set analyzed from Snoddy (1926) where 100
subjects practiced 20 trials a day with a 1 min rest between
trials for 4 days. The data were fit with a 3 parameter
exponential over all trials and by day (top figure 2a) and a 3
parameter power law over all trials and by day (bottom
figure 2b). The figures clearly show that there is more detail
in the Snoddy data set than is being revealed by a power
law. In particular, there are strong trends of warm-up
decrement (Adams, 1961) at the beginning of each day that
is passed through by the straight line of the power law.

Our theoretical perspective is to model the learning data
with a view to testing the contributions of characteristic time
scales to the performance dynamics. The main ingredient of
a landscape based theory of learning is the identification of
behavioral patterns as locations in a landscape and the
performance score values as elevation levels within this
landscape (Newell et al., 2001, 2003). Following a tradition in
the physical sciences we assign a goal state a lowest
elevation in the landscape. Figure 3 shows a landscape with
two distinct time scales reconstructed from the learning data

1 It should be noted that A. Newell and Rosenbloom (1981)
stated that the data in this figure were from a single subject
but they did not state explicitly which data set of Snoddy
(1926) they were presenting. There are no single subject
in Snoddy (1926) and our
interpretation is that they were presenting a power law
function for the data from Table 2 of Snoddy (1926) with 80
subjects having the unusual practice schedule of only 1 trial

learning data presented

per day of practice for each of 60 days.
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Figure 2. The Snoddy (1926, Figure 4 adapted) data set plotted
with exponentials (over sessions and all days) and power laws
(over sessions and all days) (both reproduced with permission
from Mayer-Kress et al., 1998).

of Snoddy (1926). The relatively fast time scale captures the
performance dynamics at the beginning of each trial while
the relatively slow time scale captures the persistent change
in the performance dynamics over the days of practice.
Figure 4 shows the same data plotted in a more typical
learning curve frame of reference with the power law
superimposed for comparison. Clearly, the two time scale
model fits the Snoddy (1926) data better than the power law.

We have conducted more formal investigations of the
two time scale model in the Snoddy (1926) data set and in
other motor learning data sets (Liu, Mayer-Kress, Hong &
Newell, 2006). Equations 5 and 6 capture the performance
dynamics for the two time scale model. The envelope
function in the model is represented as an exponential decay
that occurs across all trials, while the fast time-scale changes
as the function of the trials within each practice session, ;.
The two time scale model was compared to other standard
models of learning data though Akaike information criterion
evaluations (Burnham & Anderson, 2002) and a rigorous
theoretical assessment of the exponents and asymptotic
values of the equations. The two time scale model was
shown to consistently fit the performance dynamics better in
both individual and group averaged learning data sets.

Slow time scale:

Yen N

Ven(n) = ‘/inf+ Ay € (5)
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Figure 3. Landscape associated with Snoddy’s (1926, Figure 4)

score data (black dots) as elevation levels. The four clusters
correspond to the four training sessions. The x-behavioral
variable corresponds to the slow time-scale (shallow dimension)
whereas the y-variable corresponds to the fast time-scale (steep
dimension). For sessions 3 and 4 we plot the contour lines of the
first and most successful trials. Note, that each contour line
illustrates the degree of behavioral degeneracy (redundancy) for
the given performance score (reproduced with permission from
Newell, Liu & Mayer-Kress, 2005).

Fast time scale:

Vi) = Vit ae g e 71001 (6)

The model describes how a performance related variable
y(n) converges to an asymptotic target value Vinf as time n —
measured in units of trial numbers — increases. a,, is the
initial distance to the performance goal Vint and -7en the
exponent for the envelope slow time scale function whereas
a; determines the amount of warm-up decrement at the
beginning of session j, starting with trial number nj. The
exponent for the respective practice session j = 1, ..., 4 is
given by -7’. The model holds that the exponents for the fast
time scale are the same on each day, an assumption of
invariance that reduces the number of parameters in the
model.

The epigenetic landscape framework supplemented with
the system identification approach to decomposing the
performance dynamics clearly shows in the group averaged
data of Snoddy (1926) that the two time scale model fits the
data qualitatively and quantitatively better than the power
law and other models of learning. As we have stated
this that all
performance dynamics will be fit by this two characteristic
time scale model. It is our postulate that this model will be
most relevant when there are no bifurcations in the

previously, however, does not mean



performance dynamics.

A question to be pursued in the analysis of learning
curves is what further processes could be decomposed from
the performance dynamics beyond the characteristic time
scale of the warm-up decrement adaptation phase and that
of the relatively permanent change over all trials and days.
We have mentioned the short term fast time scale and
reversible influences of motivation, attention and fatigue.
These processes will be difficult to tease out of the
performance dynamics and this modeling effort may need to
use other ways to analyze the performance data. For
example, a consideration of the best score achieved in a
learning session to define the dynamics may prove useful,
but this just reflects a broader need to go beyond the
standard analysis strategy of single function curve fitting to
all the performance data.

Finally, we would propose that this approach to the
system identification of performance dynamics holds
promise for a new approach to the analysis of the effects of
practice distributions on learning. This is a topic that has lost
impetus since Hull’s (1943, 1951) theoretical formations
The
distinguishing of the adaptive and learning effects on

regarding reactive inhibition and learning.
practice schedules should provide new ways to consider
such old problems as oblivescence and reminiscence
(Ballard, 1915), and massed/distributed practice schedules
(Schmidt & Lee, 2005), and practice condition effects more

generally.

Closing Comments

In our view the determination by A. Newell and
Rosenbloom (1981) of the power law as the ubiquitous law
of learning is an entry to the problem not the solution.
However, it is only in recent years that theoretical and
empirical challenges to the power law of learning are being
constructed. In our theoretical framework, there is not a
single function of performance change over time as has
generally been sought in fits of exponential, hyperbolic,
logistic, and power law to learning data sets but rather that a
coherent set of dynamical principles can lead to different
functions of change in task outcome and limb trajectories.
Indeed, basic assumptions about attractor dynamics and
fixed points provide the theoretical basis for the assessment
of the multiple characteristic time scales of change and their
supporting processes in motor learning, development and
adaptation. Our approach can in principle produce a power
law of learning but we hypothesize that this function may
prove to be a special and perhaps idealized case of learning,
particularly when considered on individual learning data.
The condition for power laws to occur would imply the
presence of infinitely many time-scales whose distribution is
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Figure 4.Performance data Vu vs trial number n from Figure 4 of
Snoddy (1926). Main figure shows distance to asymptotic score
Va = 46 in linear scale. Magenta curve: exponential regression
through first ten scores and best score of each session. Yellow,
Cyan, Orange: Exponential fit to each of the practice sessions.
Green: Power law fit through all data points. Note that the ten
first points are not included in the main regression whereas in
our model all data points can be accounted for by the model
(reproduced with permission from Newell, Liu & Mayer-Kress,
2005).

described by a single parameter (“critical exponent”). This
condition is related to phase transitions or bifurcations that
occur at critical parameter values and, therefore, does not
represent generic behavior of the system.
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