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Response time data in learning experiments show a typical trend. They start out slow, quickly

improve, before finally tending toward optimal performance. This trend provides critical

information that can be used to test various theories of learning. One convenient way to

characterize the data is the use of a learning curve; an idealized curve that passes through the

observed data points as a function of training. This idealized curve has free parameters that

must be estimated using optimization techniques. In this tutorial, we show how to estimate

learning curve parameters using three softwares (Excel, SPSS, and Mathematica) assuming that

the idealized curve is a power function. The techniques can easily be adapted to other functions.

Finally, details are provided on related topics (maximizing block sizes, testing curvatures, etc.).

With practice comes improvement. When people are
learning to accomplish any kind of task, whether it is
swimming, riding a bike, using a keyboard, or solving
Sudoku problems, it is well-known that they start out
slowly, but that they quickly become better. Ultimately, it is
only when people become very good at doing a task that
they need a lot of practice to see noticeable improvements.
Intuitively, this process is easy to understand. To revisit the
swimming example, it only takes a few lessons to learn to
swim, but it takes years of practice to meet the swimming
times necessary to compete at the Olympics.

Many theories seek to explain how performances evolve
with training (for instance, Anderson, 1992; Logan; 1988;
Palmeri & Nosofsky, 1997). This is a challenging endeavor
because it is difficult to quantify performances times across
training (which I will now call the longitudinal results)
accurately. The most convenient method to quantify
longitudinal results is to create an idealized curve, called the
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learning curve. This learning curve may be described by a
mathematical function and it relates training to unknown
learning variables called parameters.

Once estimated, learning curve parameters can be used
to test learning theories. For example, it can be shown that
the Exemplar-Based Random Walk (EBRW) model (Palmeri
& Nosofsky, 1997) predicts only one rate of learning
(Cousineau, Lacroix, Giguere & Hélie, in preparation). So, if
a parameter that captures the rate of learning is shown to
vary systematically according to some experimental
manipulation, then EBRW would have to be modified.
Another example is Logan’s (1988) Instance-Based Theory of
Automaticity. It predicts that the learning rate should be the
same whether it is measured by mean RTs or by standard
deviations of RTs. Thus, if one were to show that this
prediction is incorrect, then one would conclude that
Logan’s theory is problematic. Finally, transfer theories
(such as Fisk & Schneider, 1983) suggest that learning rates
before and after transfer are unrelated. All these predictions
provide strong tests of the models, and these tests would be
impossible if only one part of the learning data, such as the
asymptotic results, were considered.

In this tutorial, we present the learning curve being
celebrated in this special issue, Newell and Rosenbloom’s
(1981) power curve, which they called "The power law of
practice”. We then explain how to estimate the parameters of
the power curve using Excel, SPSS and Mathematica. Finally
we end the tutorial with various details pertaining to
statistical tests.
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The power curve

The power curve has three parameters that quantify the
learning data: the asymptote (the stabilized performance at
the end of training), the amplitude of the initial block (the
difference between initial performance and the asymptote),
and the curvature (learning rate). Whereas the asymptote
and the amplitude are very intuitive and can be estimated
from a visual inspection of the data, the curvature parameter
is abstract and requires an underlying mathematical curve to
be quantified.

Newell and Rosenbloom’s (1981) power law of learning
is a power curve given by

P(N |a,b,c)=a+bN"¢ (1)
in which the predicted performance P (often RT but also
percent correct) at block N is a function of three unknown
parameters a, b and c. The parameter a is the asymptote
parameter, b is the amplitude parameter, and c is the
curvature parameter.

Assuming this curve, initial performance (at block N = 1)
is given by a + b, that is, the asymptote augmented by the
amplitude. Final performance (when N — o) is given by a.
Heathcote et al. (2000) noted that the decrease in RTs with
training follows a square law, so that if N blocks are
required to reduce performance by 50%, N? blocks are
required to reduce performance by another 50% (hence, to
reduce performance to 50% x 50% = 25%). Figure 1 shows a
power curve with its parameters.

Before closing this section, we would like to make a
theoretical note. Although it was dubbed the "power law of
learning", its status as a law is contentious. The power curve
is a convenient tool to quantify learning results and it seems
to explain learning data well. Nevertheless, we believe that
its status as THE law of learning is not firmly established for
at least two reasons: i) the logical necessity of this
mathematical curve has not yet been demonstrated outside
of specific models of learning (although it is within some
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Figure 1. An example of a power curve with parameters {a =300, b =
600, ¢ = 0.43]}. Performance is reduced by 50% at block 5 and by
another 50% at block 25 (which is 5?). This relation holds for any
percentage.
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specific models, such as ACT*, Anderson, 1992 and IBTA,
Logan, 1988); ii) the data available from highly practiced
participants are limited because the attrition in long-lasting
learning studies is quite high. Typically, participants drop
out of these experiment at a rate of 50% every 10 sessions
(Czerwinski, Lightfoot, & Shiffrin, 1992, Cousineau &
Shiffrin, 2004). If more of these data were available, it would
allow for more powerful tests of the Power Law as well as
other curves such as the exponential (see Heathcote, Brown
& Mewhort, 2000) and other alternatives (Rickard, 1997;
Stevens & Savin, 1962; Cousineau, Goodman, & Shiffrin,
2002).

Learning curve fitting

In order to estimate learning curve parameters, three
ingredients are necessary. First, one needs a mathematical
curve that can capture the desired characteristics of the
learning data. This curve has a certain number of unknown
learning variables called free parameters. Second, one
requires an objective function describing the adequacy of the
fit between the mathematical curve and the actual data.
Finally, one must use an optimization procedure that
explores the possible parameter values until the best fit is
found.

In the previous section, we presented the power curve,
which is the first ingredient needed. The second ingredient
is the function that determines the fit between the learning
data and the mathematical curve. The fit is generally
computed using the sum of squared error (SSE), but it may
also be computed using other measures such as the root
mean square error (RMSE). Note that the choice of measure
does not change the value of the parameters obtained.

The SSE computes the sum of the squared error between
the learning curve and the data for each block and is
formally computed using:

SSE(a,b,c) = f(p,- - P(i| a,b,c))?

il 2)
in which 7 is the number of blocks, pi is the observed data
at block 7, and P(il a, b, ¢) is the predicted performance
given by the mathematical curve (e.g. Eq. 1). The fit
depends on the choice of the free parameters {a, b, cJ,
which, in turn, alter the shape of the predicted curve P.
This objective function is a sum over the blocks 1 through
N. If there are blocks for which the performance is
unavailable, the summation is over blocks where data are
available.

Finally, the optimization procedure can either be a
gradient descent, a quasi-newton search, or the simplex.
The simplex method is easily available and yields very
good results (see Cousineau, Brown & Heathcote, 2004, for
a quick review). Although these procedures are very
complex, there is no need to program them as they are
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spreadsheet is available on the

Figure 2. A portion of an Excel spreadsheet that computes the power curve predicted
performance and the SSE given some data (first two columns) and first-guess parameter
values (top right of the spreadsheet). These first-guess values will be replaced by the best-
fitting values after the optimization procedure (called Solver in Excel) is called.

included in many software products, including Excel,
Mathematica, Matlab, SPSS, and S.

Note that constraints can be given to the parameters. For
example, one can constraint the asymptote to be at least 250
ms so that it has psychological plausibility (more on that
topic later). Furthermore, the parameter ¢ can only take a
positive value and a constraint must be given to achieve this
end (otherwise the curve has no asymptote). Regarding the
parameter b, it must be positive in the case of RT learning
data so that the initial performance is above the asymptotic
performance. However, for accuracy data, the parameter b
must be constrained to be negative, such that initial
performance is below the asymptotic level of accuracy.

An example of fitting the learning curve to data using Excel

The following briefly shows how to obtain best-fitting
parameters using the power curve of Eq. 1. and data from a
single participant in a visual search experiment (Cousineau,
in preparation). There are 60 blocks of 60 trials, collected
over 10 successive sessions. The dependant variable is the
mean response time for the correct responses.

Figure 2 shows part of an Excel spreadsheet in which the
available data are in column C, and the predicted
performance given by Eq. 1 are in column E. The complete
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A | B| C | D| E | F | G | H | journal's web site. The predicted
1 F|tt|ng Iearr"ng curves performance is a function of the
2 block number (available in the first
3 column) and of the parameter values
4 |Put first-guess parameters on the right, Parameters to be estimated. First-guess values of
5 |then call the solver to minimize the SSE. asymptote 471 the parameters are indicated in the
6 amplitude 3360 top of the spreadsheet: {a = 400, b =
7 curvature 1.09 3000, ¢ = 1.0}. The first guess for a
8 and b are obtained through a visual
9 inspection of the data. The
10 Data Model parameter ¢ was set to 1.0 because
11| Block Mean RT  Predicted Squared error SSE the value of ¢ obtained in this type of
12 1 3765 3830 4213 1071021 experiment is usually between 0.2
13 2 2076 2044 1006 and 1.5. The predicted performance
14 3 1800 1480 102157 (e.g. cell E12) is obtained using the
15 4 1353 1208 21158 Excel formula:
16 5 931 1048 13738 = $I$5 + $I$6 * A12 ~ -$I$7
17 6 862 944 6693 in the case of the first predicted
18 7 902 870 1013 performance (A12 contains the block
19 8 890 816 5538 1). The squared error column (i. e.
20 9 643 774 17053 column G) is computed using the
21 10 556 741 34264 formula:

=(E12-C12) " 2.
Finally, the SSE (Eq. 2) is the sum of
all the squared error over the 60
blocks, in this case:
=SUM (G12: G71)

To find the best-fitting parameters (that will replace the
initial guesses), call the Solver in the Tools menu (if not
installed, go to Add-ins in the Tools menu) (see the screen
capture of Figure 3). The target cell is the objective function
to be minimized, that is, the cell containing the SSE. Check
the radio button Min to indicate that the objective function
must be as small as possible (not the reverse). The variable
cells are the ones containing the parameter values that can
be explored in order to find the best fit. Finally, the
constraints are used to specify the allowable range of values
for the parameters.

Once the Solve button is pressed, the search begins and
the resulting best-fitting parameters replace the first-guess
parameters. Excel finds {a = 471, b = 3360, ¢ = 1.09}. The
resulting fit is 1,070,690 ms?, or equivalently, a RMSE of 133
ms (V(SSE / n) ). This number indicates the typical
(unsigned) error between one point and the curve
(measured vertically). Figure 4 shows the data along with
the best-fitting power curve.

The same example of fitting the learning curve to data using SPSS

Although Excel works well, it may be cumbersome to use
when many participants must be evaluated, because the
data must be manually split into individual data, and the
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Figure 3. The dialog that appears when the Solver is called.

Solver called for each. One solution is to use programmable
software that can split data files or extract only portions of
the data.

SPSS (versions 11 and up) has a command (CNLR) that
performs minimization using the SSE objective function
(called the in SPSS).
specification in the command CNLR is the name of the

loss  function The minimum
column containing the observed data and the name of the
column containing the predicted performance. The SSE
function is not indicated, as it is implicitly assumed.
Constraints can be given with the option /bounds.

A short SPSS syntax program that analyses the data of
the previous example is provided in Listing 1. It assumes
that the data are in a tab-separated text file called "data.txt",
containing two columns, blocks and rt. The predicted
performance will be computed in a column called pred.

Once executed, the results are displayed in the Output
window. Note that the best-fitting parameters and the fit are
absolutely identical to those found using Excel. SPSS also
the

parameters and the possible correlations between the

provides approximate confidence intervals for
parameters in the model. Such information cannot be

obtained using Excel.

An example of fitting the learning curve to data using
Mathematica

In the following, we show the same example using
Mathematica, assuming that the data are in a text file called
“data.txt” (see Listing 2).

The minimization the

NMinimize, which specifies (on the second line) the objective

is done using command
function and the constraints, and (on the third line) the
parameters with an approximate range in which to start
searching.

The line labeled "Out[5]=" by Mathematica shows the
results. The best fit value is first, followed by the parameter
values to obtain such the fit. Once again, the solution found

is identical to those generated by Excel and SPSS.
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Various considerations

I finish this brief tutorial with various considerations that
pertain to questions that are frequently asked about learning
curve fitting. First and foremost, learning curve data should
be fit for each individual participant. Indeed, the average
curve for a group of participants is not necessarily a power
curve even if all the individual curves are power curves
(Estes, 1956, Cousineau, Hélie & Lefebvre, 2003). This is also
true when one assumes an exponential curve (Heathcote,
Brown & Mewhort, 2000) or any other type of curve.

Reasonable estimates for parameters a and b can be
obtained using Min(pi) and Max(pi) — Min(pi) respectively.
That way, "non-parametric’ estimates can be obtained for
the asymptote and the amplitude. By "non-parametric”, we
mean estimates that are not based on a specific mathematical
curve, but that would be roughly correct independently of
the type of curve assumed. Note that such a "non-
parametric” estimate for the curvature presently exists.
Because these non parametric estimates are not based on a
mathematical model, they may be seen as less controversial
(by reviewers, for example).

Whenever possible, you should maximize the number of
blocks, as well as the number of observations within a block.
Indeed, if one splits the data in 2 blocks, then there would
not be enough data points to accurately fit a power curve.
Inversely, if one generated blocks containing only two
observations, then the data would be very noisy and again,
the fit would be unreliable. The best compromise is to split
the ¢ trials into Vt blocks of V't trials (Cousineau et al., 2003).
For example, if you have a total of 400 observations, split
them into 20 blocks of 20 observations. Those blocks may be
created post hoc and do not have to correspond to actual
blocks of training as experienced by the participants.
However, one must keep in mind that the learning rate
estimate changes whenever the number of trials per block is
changed. Hence, to compare cs across experiments, one must
make sure the blocks are of equal size (or see Cousineau,
Hélie & Lefebvre, 2003, to obtain ¢ estimates that do not
depend on block sizes).

Statistical tests

The parameters can be used to test some predictions. For
example, two training techniques could be compared, in
which case the null hypothesis would be that the asymptotes
do not differ. Another example could be to see whether high
performers learn faster than a control group, in which case
the null hypothesis would be that the learning rates
(curvatures) are equal between the two groups. When one
considers using statistical tests, the rule is that whenever a
test on the original data is possible, this test should be
preferred over a test on the parameters. Indeed, the
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Figure 4. The mean response times from the data analyzed in the
previous figure. The dashed line shows the moment where the data
are no longer showing any significant improvement (p > .10).

optimization procedure is never guaranteed to find the true
parameters (the best-fitting parameters may be different
from the true parameters, Hélie, 2006). As such, this extra
step introduces further variance, which may reduce
statistical power. A statistical test to decide if a group of
participants has equal curvatures is described in Cousineau
et al. (2003). This test requires an estimated curvature for the
group data. However, it requires many participants (in the
hundreds), which is considerable considering that each
participant must be trained for many consecutive days. A
test to decide if two groups have the same learning rate can
be done on the estimated curvature parameter ¢ (e.g. a
simple t test if there are only two groups). To test if two
groups (or more) have reached the same asymptote, prefer a
test on the performance on the last block rather than a test
on the estimated asymptote parameters, provided that a
plateau is visible in the data. Finally, a test of the amplitude
can be replaced by a test on the first block of data to which
the smallest data are removed. Note, once again, that these
operations must be conducted on individual data.

Has the asymptote been reached?

To decide if a participant has reached asymptotic
performance, one can use the following procedure. Note that
formally speaking, no one ever reaches asymptotic
performance. This is because it is postulated by most
learning theories that an infinite amount of practice is
necessary to reach it. Hence, this question is replaced by the
following one: is there still significant improvement in the
performance after a given number of blocks? To answer this
question, one can run a regression on performance as a
function of block number over all blocks of data. If the
regression slope is significantly different from zero (and
negative), the first block may be removed and the procedure
may be repeated. When one reaches a point where the

regression slope is no longer significantly different from
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zero, one can conclude that asymptotic performance has
been reached. Considering the large number of regression
slopes tested, one should use a less severe decision criterion
(such as p >.10).1

Regarding the data analyzed in the previous section, the
asymptote seems to be reached very early, as the regression
slope does not differ from zero past the 8t block (r= -.18, t =
1.21, p = .12). The vertical dashed line in Figure 4 indicates
the point at which asymptote was reached. Such a fast
stabilization of performance is rather uncommon because, in
other experiments (e.g. a same-different paradigm), it often
takes 10 sessions before a significant plateau is reached.

Low-asymptote pathology

Heathcote et al. (2000) raised another concern regarding
power curve fitting. They noticed that when a power curve
was fit to empirical data, the best-fitting asymptote was
often close to zero (especially in Logan, 1988). Although
such a solution provides the best fit, it is unrealistic from a
psychological point of view and should be rejected. This
problem is inherent to the nature of the power curve.
Indeed, as noted above, the rate of descent becomes smaller
as N increases. Hence, there comes a point where
performance is almost flat even though it may still be far
from the asymptote. Because of this, the fitting procedure
has no clear cue as to where to put a: Based on fitting only,
the asymptote can be anywhere below the lowest
performance. To avoid what Heathcote et al. have called the
"low-asymptote pathology"”, a few remedies have been
proposed. The least controversial is to start the search with a
first-guess asymptote close to the observed minimum. The
minimization procedure tends to stay close to first-guess
values and so is less likely to return zero for the best-fitting
asymptote. In Excel, it would mean using as a first guess for
a the value Min(pi). Although this simple heuristic can
eliminate a large number of pathological fits, there are data
sets for which the solution found will still be unrealistic. A
second possibility (which can be used in conjunction with
the first) is to have a more realistic constraint on a. Instead of
having a > 0, we might arbitrarily use a>250. Now this
solution is not very satisfactory because the quantity 250 ms
is not theoretically justified, and again, a certain proportion
of fit will indicate that the best-fitting asymptote is 250 ms.
A final possibility is to assume that the best-fitting
asymptote should be close to the best performance observed
for each participant. This implicitly assumes that the
participant ended the experiment with quasi-optimal
performance. Hence, if there is no indication of an apparent
asymptote in the data, do not use the following. To impose a
solution in which the asymptote is reasonably close to the
best performance, a penalty term can be added to the
objective function. For example,



SSE(@.b.c)= 3 (p; - Pl | a.b.o)f +Min(p)-af ()
adds a quadratic pé'ilalty to the SSE. The greater the distance
between the proposed asymptote parameter a and the best
performance, the greater the penalty will be.

When used with the data of the above participant, the
results do not change much because the original solution
was not affected by the low-asymptote pathology. We get
the following best-fitting parameters {a = 466, b = 3360, ¢ =
1.09}.

Taking into consideration both mean RT and percent correct

When studying response times in tasks for which a
correct response must be given, there may be blocks where
the participant, for various reasons including fatigue, may
decide to trade accuracy for speed. Thus, there would be
points on the learning curve where mean RTs are low, but
where accuracy (percent correct) is also low. When this
occurs more than once, it gives the learning curve a ragged
look. In such conditions, finding the best-fitting parameters
can be more difficult.

Townsend and Ashby (1983) proposed this elegant
solution, which consists in considering mean RTs after they
have been weighted by accuracy. Hence, when accuracy is
close to 100%, the mean RT is unchanged, but when
accuracy is low, mean RT is increased to compensate for the
trade-off between speed and accuracy. This is achieved
using the following transformation:

RT;

- ACC; 4
where RT; is the mean RT at block i and ACC; is the

accuracy at the same block. The resulting learning curve no

Pi

longer represents response times as a function of blocks, but
rather response time per percentage of accuracy as a
function of blocks, and consequently, the Dbest-fitting
parameters on the transformed data may be very different
from those found on the RT data only.

Discussion

In this tutorial, we showed how to get best-fitting
parameters from learning data. This kind of technique is
very easy to execute because optimization procedures are
now widely available (this was not the case when I
published Cousineau & Larochelle, 1997). Moreover, the
whole process can be automatized using software such as
Mathematica or Matlab. Objective functions such as the SSE
(and the
distribution of the raw data is unknown (as is the case with

related measures) should be used when
response times but not for accuracy; see Cousineau,
Charbonneau & Jolicoeur, 2006). When the distribution of
the raw data is known, it is always preferable to use an
objective function based on the likelihood function. Indeed,
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this function is generally the most efficient method to find
best-fitting parameters (Cousineau, Brown & Heathcote,
2004).

Information that can be estimated from an examination
of learning curves is currently undervalued. It is our
impression that stronger and more varied tests of learning
theories could be obtained if such information were
considered more rigorously. We hope that this quick tutorial
will encourage researchers to give more attention to learning
curves. The reader will find on the journal's web site an
Excel spreadsheet that computes the SSE along with a
second spreadsheet that finds where the asymptote is
reached. One can also find a short Mathematica program that
finds the best-fitting parameters using SSE (Listing 2) but
also using the RMSE and using the penalty against the low-
asymptote pathology along with a tab-separated text file
containing the data.
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COMMENT **x##swminncas STEP 1: READING THE DATA
COMMENT change the following path according to the location of you data file.
cd "C:\Documents and Settings\cousined\Bureau\Terminées \32-CurveFitting\demoFiles".

COMMENT open the data, in a tab-separated text file named "data.txt".
GET DATA /TYPE = TXT

/FILE = 'data.txt'

/DELIMITERS = "\t

/VARIABLES = block F2.1 rt F4.2.

COMMENT *#x#sxmianmansixsis STEP 2: DEFINING THE MODEL
COMMENT create temporary variable with starting values.
MODEL PROGRAM a=300 b=500 c=2 .

COMMENT define the predicted performance.

COMPUTE pred = a+b * block ** -c.

COMMENT Fdek kKR kR Kk k ok kkk STEP 3: CALLING THE MINIMIZATION ALGO oo oo oo bbbkt
CNLR rt

/PRED pred

/BOUNDS a >=0;b >=0;c>=0.

Listing 1. A SPSS syntax file that read a tab-separated text file containing two columns called block and rt. It
then creates temporary variables a, b and c with first-guess values. Finally, CNLR (Constrained Non-Linear
Regression) run a search for the optimal parameter values.

Step 1- Reading the data
Assumes the following format: one column for block number,the second for mean response time.

mypath = "C:\\Documents and Settings\\cousined\\Bureau\\CurveFitting\\";
mydata = Import [mypath<> "data.txt", "TSV"];

Step 2- Defining the model

PC[N ,{a ,b ,c }] :=a+bN*®
Length[data]
SSE[data , {a_, b_, ¢ }] := 2 (data[i, 2] - PC[data[i, 1], {a, b, c}])?

i=1

Step 3- Callilng the minimization procedure with constraints

sol = NMinimize[
{SSE[mydata, {a, b, c}], a>0&b>0&&c> 0},
{{a, 100, 500}, {b, 500, 1000}, {c, 0.1, 0.5}}
]

(1.07069x10° {a—470.694, b 3359.28, c— 1.09423}}

Listing 2. A short Mathematica program that reads a tab-separated (format TSV) text file containing two
columns: the block number and the corresponding mean response time. It then defines ( := Jwhat are a power
curve (PC) and SSE. Finally, it calls the optimization procedure with the command NMinimize. The sign
datali,j Irepresents the data in the i line, j** column.
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! This will inflate the type-I error rate
(obtaining a slope significantly different
from zero). Because we are looking for
exactly the opposite, it results in a very
conservative test of the null effect (slope
not significantly different from zero).



