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When investigating the deficits of a single patient, psychologists usually compare his/her 

performance in one or more tests to the performance of a control group. This can be done for any 

kind of variables, provided (i) that the design does not require the investigation of interactions 

between two or more factors, (ii) that the comparison between two or more individuals is not 

desired, and (iii) that the collection of the control data is possible. Yet, researchers are constantly 

interested in assessing interactions in the performance of an individual, and in the comparison 

of two or more individuals for investigating double dissociations or the efficiency of different 

methods of therapy, etc. They also may desire to investigate cases where only extremely simple 

and easy tasks can be performed, where ceiling effects are observed in the performance of the 

controls, and thus the case-controls comparison is impossible. The available statistical tools for 

the analysis of intra-individual or inter-individual performance (mainly with proportions) do 

not offer the possibility to assess interaction, they are not appropriate when some cells may 

contain 0 or 1 proportions, and when the sample size is small. Here, we present the Q’ test which 

may be used to test the hypothesis of equal proportions and proportion differences in 2 × K 

designs, offering therefore the possibility for researchers to investigate the main effects and 

interaction. This test can be used for any sample size and even when the data contains extreme 

proportions. Finally, a procedure of multiple comparisons described in this paper may be used 

to locate statistically significant sources of variance and differences.  

 

 
 Damaged brains and disordered minds have been 

studied by psychologists mostly through single-case studies, 

where the performance of a patient is compared to the 

performance of a normative sample. In recent years, some 

statistical tests have been adapted to the single-case design 

with one, two, and K tests (Crawford & Garthwaite, 2002). 

However, the use of these otherwise remarkable tests is 

limited when investigating interactions between factors, 

when comparing two or more individuals for purposes of 

assessing double dissociations (a patient exhibits a deficit in 

task X but not in task Y, and a second patient exhibits 

exactly the opposite pattern of performance) or the 
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efficiency of different methods of therapy or reeducation, 

and, most interestingly, when investigating the performance 

of patients presenting with massive cognitive impairments. 

These patients can perform tasks the simplicity and ease of 

which do not allow to collect data from control groups, just 

because controls perform 100% correctly. The comparison to 

the normative data is thus impossible because of the absence 

of variance in the control group. 

Cases where data is made of proportions and where 

intra-individual, inter-individual, or pooled group analyses 

are possible, may offer scientist’s some exceptional 

opportunities to study human cognition and its breakdown, 

but also to study some phenomena in other domains of 

fundamental and applied research. At this aim, researchers 

frequently use the classical chi-square tests. Yet, these tests 

can be used with confidence only if the number of trials per 

condition is large (N > 40), and no low scores are observed 
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(r < 5). Tests that assess the main effects and the interaction 

between at least two factors with proportions are rarely 

accessible to social, cognitive and other behavioral scientists. 

Marascuilo (1970) presented a test for the comparison of K 

independent sensitivity indexes, d-primes, of the signal 

detection theory (Green & Swets, 1966), and suggested its 

use either for the analysis of individual or pooled group 

data. This test is of most interest to our purpose, because, 

since a d-prime is the difference between two normalized 

proportions, the difference between K d-primes corresponds 

to the interaction in a 2 × K design. 

The direct transposition of this method to the analysis of 

non-normalized proportions is, however, not recommended. 

As a point of fact, Marascuilo (1970) uses a variance 

(Gourevitch & Galanter, 1967) based on the Wald variance of 

a proportion. This variance is well known and can be 

computed as follows, 

 
N
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where p̂  is the proportion, and N the sample size. The use 

of this variance seemingly leads to several kinds of 

anomalies (Newcombe, 1998), and its use is not 

recommended (Newcombe & Altman, 2000). The Q’ test of 2 

× K interaction presented in this paper is a modified version 

of the Marascuilo test (1970) in which a different variance is 

introduced. This variance, can be computed as follows, 
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where z is the 2/1 α−z  from the standard Normal 

distribution. This equation is extracted from the equation of 

the Wilson confidence interval of proportions (Newcombe & 

Altman, 2000; Brown et al., 2001): 
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The Wald and the Wilson methods are both approximate 

but differ importantly in some points: 

The Wald variance performs quite well when the sample 

size is large (N > 40), whilst the variance is inflated when the 

sample size is small. On the contrary, the Wilson variance is 

applicable for all samples and, interestingly, it performs just 

as well as the Wald variance for large samples. 

The Wald variance should not be used for very low or 

very large observed proportions, and its value is 0 when the 

proportion is 0 or 1. No such restrictions exist for the Wilson 

variance, which can be applied in all cases and the value of 

which is not 0 for extreme proportions. 

Finally, there are serious recommendations that the use 

of the Wald method requires that neither r nor N-r is less 

 

than 5 (Newcombe & Altman, 2000). The Wilson method can 

be applied in all cases.   

These differences are visible in Figure 1, where the Wald 

and the Wilson variances are compared for proportions from 

0 to 1, for a small (N = 10) and a large (N = 60) sample. The 

two methods perform equally well for the large sample, and 

this clearly establishes their direct link and equivalence. 

However, the Wilson variances are less inflated for the small 

sample than the Wald variances, and this allows a better 

interpretation of the results. As pointed out by Newcombe 

and Altman (2000), the Wald method leads to “too extreme 

an interpretation of the data, and sometimes do not make 

sense” (p. 46). Thus, unless the sample size is large and no 

extreme proportions are present (theses conditions are rarely 

met is some research domains), the Wilson variance seems 

more appropriate and more adequate for the analysis of 

proportions and differences in proportions. For reasons of 

applicability to all samples and whichever the proportion, 

the Q’ test presented here uses the Wilson variance, 

recommended for its applicability to any data (Newcombe, 

1998; Agresti & Coull, 1998). 

The Q’ test: A 2 ×××× K test with proportions 

In the 2 × K design, the magnitude of difference between 

2 proportions (signalled as 1 and 2) is compared in K (1, 

2, …, K) different conditions, where a condition may 

represent a group of observers (pooled group data), a single 

observer, or even a single test from individual data. The 

resulting test statistic has a χ2 distribution with ν = (K-1) 

degrees of freedom. For each of the K conditions, let the 

estimates of a difference in two proportions be denoted by 

kd̂ :  

 21 ˆˆˆ
kkk ppd −=  (4) 

where 1p̂  and 2p̂  denote the proportions to compare, and 

where k = 1, 2,…, K. Let the variance of the proportions be 

denoted by Vark1 and Vark2, respectively: 
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(see equation 2) where Nk1 and Nk2 represent the sample size 

in the k1th and k2th condition, and where z is the 2/1 α−z  from 

the standard Normal distribution (i. e., 1,96). The variance of 

the proportion difference is: 

 21
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and the Q’ is: 
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where 
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As mentioned above, the Q’ test statistic has a χ2 distribution 

with ν = (K-1) degrees of freedom and the corresponding 

critical value above which a difference among the tested 

conditions is significant can be read in a χ2 table. 

A worked example with practical steps 

The data must be first arranged in a 2 × K table. Let’s 

consider the following data, taken from a study where 

patient RR, suffering from progressive agnosia due to 

posterior cortical atrophy, was required to name pictures of 

usual objects. The null hypothesis is that patient RR’s 

naming performance does not vary as a function of the 

picture color and semantic category of the objects. The 

pictures could be colored or grey-scaled (i.e., factor 1: color), 

and could represent (a) vegetables, (b) animals, or (c) tools 

(i.e., factor 2: semantic category). Thirty-six pictures per 

condition (N = 36) were presented. It is not obligatory for the 

N to be the same for all conditions. The results are presented 

in Table 1 and depicted graphically in Figure 2. 

The 2 ×××× K interaction 

There are seven steps of computations in order to assess 

the color X semantic category interaction, and they are 

represented in Table 1. 

Step 1: compute the proportions for each condition, by 

dividing the observed score by the corresponding number of 

trials 

 917,0
36

33
ˆ
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1
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a
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N
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p  

where ra1 is the score in the a1th cell, Na1 is the sample size for 

the a1th condition, and ˆ p a1 is the proportion of the a1th 

condition and so forth. 

Step 2: compute the variance for each proportion, for 

Figure 1: A direct comparison between the Wald and the Wilson 

variances for different proportions and for sample sizes of N=10 

and N=60. The two variances are very similar for the large sample 

size. However, for the small sample size, there are important 

differences between the two variances. The greatest differences are 

observed for the extreme (0 and 1) and the intermediate 

proportions. The Wilson variance is thus applicable under the 

same conditions as the Wald variance, and it performs better when 

the sample size is not large, and when extreme proportions are 

observed. For these reasons, the Wilson method should be preferred 

to the Wald method. 

Figure 2: Graphic representation of the performance (proportion of 

correct responses) of patient RR in a picture naming task. The pictures 

were either colored or grey-scaled, and were representing usual objects 

of three semantic categories, vegetables, animals and tools. Error bars 

represent 95% Wilson confidence intervals for proportions (eq.3). The 

visual analysis of this graphic suggests that picture color and object 

semantic category interact, and this is confirmed by the Q’ test (Q’(2) 

= 15.82, P = 0.0004). 
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example: 
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Step 3: For each condition of factor 2 (a, b, …, k), compute the 

proportion differences between the two conditions of factor 

1 (1, 2): 

 639,0278,0917,0ˆˆˆ
21 =−=−= aaa ppd  

 389,0306,0694,0ˆˆˆ
21 =−=−= bbb ppd  

 111,0222,0333,0ˆˆˆ
21 =−=−= ccc ppd  

Step 4: Compute the variance of each difference: 
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Step 5: divide each proportion difference computed in Step 3 

by the corresponding variance of the difference computed in 

Step 4: 
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Step 6: divide 1 by the variance of the proportion difference: 
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The d0 can be obtained by dividing the sum of the values 

obtained in Step 5 by the sum of the values obtained in Step 

6: 
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Step 7: for each proportion difference, compute the 

contribution to the interaction: 
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The sum of the values obtained in Step 7 is the Q’ value: 

 82,1564,803,014,7' =++=Q  

If the Q’ is equal or bigger than the value of χ2 read in a 

statistical table, then the null hypothesis is rejected and the 

tested interaction is significant at the corresponding P level. 

For df = 3-1 = 2, the corresponding χ2 value for P = 0,05 is 

5,99. We can thus reject the null hypothesis. The interaction 

is significant, suggesting that patient RR’s performance 

varies as a function of the color of the pictures and the object 

semantic category. 

The main effects 

One may use the Marascuilo procedure (Marascuilo, 

Table 1. Scores (correct responses) obtained by patient RR in a naming task with colored (1) and grey-scaled (2) pictures of vegetables 

(a), animals (b) and tools (c), and the seven steps necessary for the analysis of the color X semantic category interaction with 

proportions. Thirty-six pictures were presented in each tested condition.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   group  a  b  c 

 Score (r)   1  33  25  12 

   2  10  11  8 

          

Step 1 Proportion ( ˆ p )  1  0,917  0,694  0,333 

   2  0,278  0,306  0,222 

          

Step 2 Variance (Var)  1  0,0023  0,0054  0,0056 

   2  0,0052  0,0054  0,0045 

          

Step 3 Proportion Difference ( ˆ d )    0,639  0,389  0,111 

Step 4 Variance of Difference ( ˆ D )    0,0075  0,0108  0,0102 

Step 5 ˆ d / ˆ D     85,27  35,89  10,93 

Step 6 1/ ˆ D     133,47  92,30  98,33 

Step 7 Contribution ( ( ˆ d − ˆ d 0)
2
/ ˆ D )    7,12  0,03  8,67 
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1966) in order to derive a χ2 for the main effect of each 

factor. However, the use of this method requires large 

samples, and scores that are bigger than 5. The method we 

describe below is very similar to the one used for the 

assessment of the interaction, and it can be used with any 

data. Let’s consider the steps of the main effect of factor 2, in 

which 3 conditions were tested. The data is collapsed across 

the non-tested factor.  

Step 1: The collapsed scores for a, b, and c are ra = 43, rb = 36 

and rc = 20, respectively, and the sample size for each 

condition is 72. The respective proportions are 597,0ˆ =ap , 

500,0ˆ =bp  and 278,0ˆ =cp . The overall pooled proportion is  

 458,0)/()(ˆ =++++= cbacbaabc NNNrrrp . 

Step 2: The variance of each proportion, computed with the 

equation presented earlier (eq.2), is Vara = 0,0032, Varb = 

0,0033, Varc = 0,0027, and the variance of the pooled 

proportion is Varabc = 0,0011.  

Step 3: For each condition, the difference with the pooled 

proportion is derived: 

 139,0458,0597,0ˆ =−=ad  

 042,0458,0500,0ˆ =−=bd  

 180,0458,0278,0ˆ −=−=cd  

Step 4: Compute the variance of the difference between each 

proportion and the pooled proportion: 

 0043,00011,00032,0ˆ =+=aD  

 0044,00011,00033,0ˆ =+=bD  

 0038,00011,00027,0ˆ =+=aD  

Step 5: divide each proportion difference by the 

corresponding variance of difference: 
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Step 6: divide 1 by the variance of each proportion 

difference: 
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Compute the 0d̂  by dividing the sum of the values obtained 

in Step 5 by the sum of the values obtained in Step 6: 
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74,720
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Step 7: for each proportion, compute the contribution of 

each difference to the main effect: 
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The sum of the values obtained in Step 7 is the Q’ value of 

the main effect: 

 39,1379,7565,003,5' =++=Q  

As before, the Q’ follows the χ2 distribution with df = k-1 

(here, df = 3-1 = 2). The critical χ2 value for P = 0,05 when df = 

2 is 5,99: the null hypothesis can be rejected. The main effect 

of semantic category is significant, suggesting that patient 

RR’s naming performance differs as a function of the object 

semantic category.  

The same procedure also applies to the other main effect, 

even if other tests exist, such as the z-score for the difference 

of two proportions. The use of the Q’ test for the main effect 

of the 2-condition factor gains its interest in the fact that the 

two collapsed proportions are compared to a baseline 

represented by the overall pooled proportion, rendering the 

test more conservative. 

Multiple comparisons 

The presence of a significant interaction or a significant 

main effect does not really inform us on the reasons of 

rejection of the null hypothesis. Marascuilo and McSweeney 

(1967) developed a method of multiple comparisons, 

consisting in the comparison of two proportions through the 

confidence interval of their difference. Once again, the 

problem is that these formulas use the Wald confidence 

interval of proportions, rendering the results difficult to 

interpret when N < 40, as well as when 0ˆ =p  or 1ˆ =p . Here 

we propose an alternative procedure which can be used for 

any data.  

As in the Marascuilo and McSweeney (1967) procedure, 

a critical value should be calculated: 

 )1(1
2 αχ −= −kcritical  (8) 

For df = 3-1 = 2, the corresponding χ2 value is 5,99, and the 

critical value is 45,299,5 = . Then comes the computing of 

a value, ψ, for each desired comparison: 
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where ijd̂  is the difference between the proportions to 

compare, i and j, and ijD̂  is the variance of their differences, 

the equation of which was given in (eq.2) and (eq.5). Let’s 

consider that, following a significant interaction we desire to 
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compare the conditions a1 and a2: 

 38,7
0052,00023,0

278,0917,0
21 =

+

−
=aaψ  

If ψij ≥ critical, then the difference is significant at P = 0,05. In 

our example the condition a1 differs from the condition a2 at 

P = 0,05. This procedure can be used for any other 

comparison, including the comparisons between the 

conditions of a single factor when its main effect is 

significant. 

Other tests: two conditions, k conditions, and 2 ×××× 2 design 

The Q’ test just described above has the advantage to be 

flexible and useful with three other designs. Even though 

other tests exist for the comparison of 2 proportions, K 

proportions and 2 × 2 designs, it is of most interest to use the 

same procedure and derive the same values for these tests. 

As a point of fact, this would render the scientific studies 

directly comparable. One has certainly noted that the 

computation of the main effects in the 2 × K design 

corresponds to two distinct tests: 

The main effect of the 2-condition factor is actually the 

comparison of two proportions derived from collapsed data. 

One can just compare two single proportions in the same 

way. As is the case for the main effect of factor 1, df = 1.  

The main effect of the K-condition factor is in fact the 

comparison of K proportions. The computations of this main 

effect can be used in any study when the difference of K 

conditions is investigated. 

Finally, even though the Q’ test was primarily developed 

to test 2 × K designs, it can also be used at its present form 

with 2 × 2 designs. In this case, df = 1 for both main effects, as 

well as for the interaction. 

Use and abuse of the Q’ tests 

The original test by Marascuilo (1970) was designed for 

the assessment of differences among K d-primes. He 

recommended the use of the test for pooled group data, and 

in single-case studies. The Q’ test, as a test deriving directly 

from the test of Marascuilo (1970), can thus be used in both 

cases, but it has not the disadvantages of more familiar tests. 

This makes the family of Q’ tests most useful in single-case 

and small-N studies. Here are some recommendations for 

the use of the family of Q’ tests, aiming at avoiding any 

possible abuse: 

The analysis should be carried on original scores, never 

on percentage-transformed data. Even though the 

computations are carried on proportions, the variance is 

completely different when using scores than when using 

percentages because it is dependent on the N. Thus, if you 

have presented the patient with N = 40 trials in your original 

study, the percentage transformation would increase this 

number to N = 100. This would allow Type I errors to be 

more frequent and the plausibility of the results would be 

strongly questioned. 

The Q’ tests can be used in a variety of situations and 

research domains, such as education and marketing, but 

they are also of great importance in neuropsychological 

studies involving single cases, especially when it is difficult 

to obtain any normative data from a control group because 

of ceiling effects. In this last case, the use of the Q’ tests 

should be justified mostly by the impossibility to collect data 

from a control group. Whenever the collection of control 

group data is possible, the use of case-controls tests (Mycroft 

et al., 2002; Crawford & Garthwaite, 2002) should be 

preferred to the Q’ tests, unless the comparison of at least 

two cases is desired (see below), or the design involves a 

2 × 2 or 2 × K interaction. 

The key notion in cognitive neuropsychology is double 

dissociation. The existence of two independent cognitive 

systems or processes can be assumed when a patient 

exhibits a deficit in task X but not in task Y, and when a 

second patient exhibits exactly the opposite pattern of 

performance. Thus, the direct comparison of two cases is 

necessary for a double dissociation to be assessed. Yet, the 

single-case adapted tests do not allow the direct comparison 

of two patients. The Q’ tests allow this kind of comparison. 

Precisely, the 2 × K test allows the comparison of the 

performance of 2 individuals in K tests or conditions, or the 

comparison of the performance of K individuals in 2 tests or 

conditions. These possibilities render necessary the use of 

the Q’ tests at least in neuropsychology. 

Implementing the Q’ tests 

The equations presented in this article can be copied in a 

spreadsheet of any commonly used software (e.g., Excel) 

and be kept for further use. A free Excel file allowing the 

computation of main effects, interaction and multiple 

comparisons is available on the journal’s web site. 

Conclusions 

The Q’ tests family constitute an interesting and useful 

tool for the analysis of 2 × K designs with proportions, and 

their use can improve the statistical inference in a variety of 

research domains and clinical contexts, such as education, 

marketing, neuropsychology and cognitive psycho-

pathology. The analysis of more complex designs (e.g., 2 × 2 

× K) should be possible in the future by extending the Q’ 

tests, and this exciting possibility should allow a more 

sophisticated, plausible and adequate analysis of data from 

intra-individual, inter-individual, and group studies. 
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