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Implementing and evaluating  

the nested maximum likelihood estimation technique 

   Denis Cousineau 

   Université de Montréal  

 

Estimating parameters describing response time distributions is difficult. The most commonly 

used method for parameter estimation is the maximum likelihood method (ML). However, this 

method applied on the three-parameter Weibull distribution returns biased estimates and the 

amount of bias is unknown. A recent method, that we call nested maximum likelihood, was 

proposed by Gourdin, Hansen and Jaumard (1994). Due to its complexity, it has never been used 

and tested systematically. Here I compare it to the maximum likelihood method. The results 

shows that nested maximum likelihood is slightly better than ML. Although the gains are 

marginal, the method has important implications for future research in parameter estimation. 

  

 
 Statistical methods in psychology are dominated by the 

normal distribution. However, very few measures in 

experimental psychology follow this distribution. For 

example, the time to complete a task (maybe the most direct 

access to cognitive processes) is always asymmetrical with a 

long tail to the right (e. g. Cousineau and Shiffrin, 2004, 

Hockley, 1984, with an exception, Hopkins and 

Kristofferson, 1980). Hence, it is of prime importance that we 

move towards a description of the response times (RTs) that 

acknowledge this asymmetry. 

The most natural such description assumes that there is a 

true minimum RT below which it is not possible to respond 

(fast-guessing notwithstanding). Then, three convenient 

descriptors could be: the lowest possible RT, the width of 

the distribution and the degree of asymmetry. See Rouder, 

Lu, Speckman, Sun and Jiang (2005) for reasons supporting 

this choice. Whereas the width is akin to standard deviation, 
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there is nothing resembling a mean parameter in the above 

descriptors, highlighting the conceptual gap with the normal 

distribution. Figure 1 illustrates two distributions from 

Cousineau and Larochelle (2004) with the corresponding 

descriptors. 

A parametric approach for quantifying parameters 

consists in first assuming an underlying theoretical 

distribution and then adjusting its parameters to the data set 

through best-fitting techniques. 

Theoretical distributions 

There exist many families of distributions that could be 

fit to a data set in order to get parameters (Luce, 1986, 

Townsend and Ashby, 1983). One of the most often-used 

distribution in psychology is the ExGaussian distribution 

(e.g. Ratcliff, 1978, Hohle, 1965). However, it has the 

implausible assumption that valid RTs could occurs before 

the stimulus (the Gumbel distribution has the same 

assumption). An alternative distribution is the Lognormal 

distribution (also called the Galton distribution; Limpton, 

Stahel and Appt, 2001, West and Schlesinger, 1990, Galton, 

1879). However, more and more, the Weibull distribution is 

used (Weibull, 1952, Logan, 1992, Palmer, 1998, Tuerlinckx, 

2004, and many others). Rouder, Lu, Speckman, Sun and 

Jiang (2005) review practical reasons to use this family of 

distributions. Also, Cousineau, Goodman and Shiffrin (2003) 

suggest that it could be a consequence of the way the human 
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brain works. Figure 2 illustrates some possible Weibull 

distributions along with their parameters. The parameters 

are the shift (the left-right position of the minimum), the 

scale (the width) and the shape (the asymmetry). They are 

often denoted with the greek letters α, β and γ respectively. 

Fitting techniques  

There exist a few families of techniques to find the best-

fitting values of the parameters. One is the method of 

moment (e. g. Harter and Moore, 1965), another is through 

Bayesian estimation techniques (e. g. Rouder, Sun, 

Speckman, Lu and Zhou, 2003), but the most commonly 

used method is the maximum likelihood (ML) parameter 

estimation method. Refer to Myung (2003) for a tutorial or 

Cousineau and Larochelle (1997), Cousineau, Brown and 

Heathcote (2004). It requires a function computing the 

likelihood of one possible set of parameters given empirical 

RTs (noted X). This function is noted L(α, β, γ | X). This 

function is subjected to a maximization procedure which 

varies freely the parameter values until the likelihood is 

maximized. Often, minus the likelihood function is 

minimized, as minimization procedures used to be more 

easily available. Also, to avoid underflow on most 

computers, the log of the likelihood function is used. Hence, 

the process is to find α, β and γ such that minus the log of 

the likelihood is minimized, noted in short: 

 ( )XLLogMin γβα

γ
β
α

,,( −

Γ∈
Β∈
Α∈

 

Α, Β and Γ are the domains of the parameters. For the 

Weibull distribution, Α = {-∞ < α < Min(X) }, Β = {β > 0}, Γ = {γ 

> 0}. In practical application, it is preferable to use Γ = {0 < γ < 

5} as RT distributions are never asymmetrical to the right. 

Why another method? 

ML is the most efficient method to estimate parameters 

(see next for a formal definition of efficiency). However, it is 

also known to be biased (Hirose, 1999): On average, the 

parameter estimated is not going to be equal to the true 

parameter of a given population. The bias can be quite large 

for small sample sizes. For example, for a sample of 8 RTs 

(taken from a simulated population), the scale parameter is 

underestimated on average by near 40%! For larger samples, 

the bias tends to disappear (asymptotically unbiased). The 

trouble is that the exact amount of bias is unknown. One 

consequence is that it is not possible to compare parameters 

taken from samples differing in size. Also, we don't know 

whether bias depends on the asymmetry or not. 

This is why new techniques may potentially be 

important: They may find estimates with smaller bias. 

Previous variations on the ML methods are MPS (Cheng and 

Amin, 1983), QMP (Heathcote, Brown and Cousineau, 2004) 

and prior-informed ML (Cousineau, submitted). 

The nested maximum likelihood technique 

This technique was proposed by Gourdin, Hansen and 

Jaumard a decade ago (1994). However, due to the 

complexity of implementing this method within traditional 

computer languages, it has never been used. Further, the 

authors never tested their method on samples taken from 

simulated populations with known parameters so that the 

amount of bias be estimated. 

The method differs from regular ML in that it does not 

Figure 1. Two distributions of RTs with an illustration of the parameters describing them. The distribution to the right is 

shifted towards large RTs, has smaller width and is more asymmetrical than the one on the left. 
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Figure 2. Examples of Weibull distributions. The thin line 

distributions differ from the thick line distribution by only one 

parameter. 
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fit all three parameters simultaneously. Instead, it explores 

one parameter, adjusting the other two so that this 

parameter yields the best fit possible. To adjust the two 

"inner" parameters, it just acts likewise: exploring one 

parameter, the last one being best-fitted accordingly. Hence, 

this technique replaces one difficult minimization problem 

with three simpler (one-dimensional) nested problems. 

Replacing –Log(L(θ | X) ) with LL(θ) for short, the 

method is formally given by: 

  

),,( ),(LL  whichin

),( )(LL  whichin

)(  fitting Best

12

23
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Every time a new α value is tried at the top level (3), it starts 

a cascade of computations going down to the bottom level 

(1). 

Gourdin et al. (1994) were able to demonstrate that this 

nested ML method has all the properties of the regular ML 

method (efficiency, asymptotically unbiased when n is 

large). However, for a small n, we don't know if bias is 

smaller with this technique compared to other techniques. 

The pseudo-code of the implementation proposed by 

Gourdin et al. spans two whole pages; the finished program 

certainly required over 40 pages in C. Here, we propose the 

same procedure implemented using Mathematica which 

takes only one page (Wolfram, 1996). See Listing 1 for the 

full program. 

Testing nested ML estimates against regular ML estimates 

To assess the capabilities of nested ML to estimate 

correctly the parameters, we ran a series of Monte Carlo 

simulations. The samples are taken from a simulated 

population with known parameters and then the parameters 

were estimated using both methods. Because α and β are 

scale parameters, they were fixed at α = 300 and β = 100. the 

shape, being one possible cause of bias, was varied (γ = 1.0, 

1.5 or 2.0) as well as the sample size (n = 8, 16, 32, 64, 128). 

Simulations for each combination of γ and n were replicated 

a thousand times. We measured: 

1- Bias: the difference between the true parameters and 

the mean of the estimates. Formally, Bias = E (θi – θT ) = θ  - 

θT where θ is one of the parameter, θT is the true parameter 

value, θi is the estimated parameter on simulation i, and E is 

the mean. 

2- Efficiency: the amount of variability in the estimates 

around their average. Bad methods have very large 

efficiency so that fitting one data set can result in wildly 

differing estimates. Formally, Eff = SD( θi – θ  ) = SD( θi ) 

where SD is the standard deviation. 
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Figure 3. Bias and efficiency for all the combinations of ϒ (from left to right) of the estimated parameters (from top to bottom). In each 

graph, the left part is the nested ML estimation technique and the right part is the regular ML estimation technique. The symbols 

denotes the various samples sizes (from left to right: 8, 16, 32, 64 and 128). 
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Both methods used the gradient descent minimization 

algorithm (Chandler, 1965) and both had the same 

parameter domains: A = {0 < α < Min(X) }, B = {β > 0}, Γ= {0 < 

γ < 5}. 

The results are seen in Figure 3. As seen, both methods 

are biased in the same directions (shift is underestimated, 

scale and shape are overestimated) and by the same 

magnitude. Whereas bias is little dependant on the shape 

parameter, it seems that efficiency is, being worst for γ = 2. 

The same results are presented in Figure 4 collapsed 

across the γ values. In this figure, we used the root mean 

square error of estimation (RMSE) where 

 RMSE = E{ (θi – θT)2 } 

It can be shown that RMSE2 = Bias2 + Eff2. It is a good 

measure when both bias and efficiency are equally 

important. As seen, the parameter α is the best estimated 

parameter (in percent, RMSE are 4.7% and 5.0% across 

sample sizes for nested ML and ML respectively). The other 

two parameters are poorly estimated (in percent, near 27% 

and 39% for both methods). There is systematically a small 

advantage of nested MLE over ML, but the gain is very 

small. 

Discussion 

Nested ML is definitely not the solution to adopt for 

practical applications. So why bother? The demonstrations 

that accompany the method have profound implications for 

future research. It shows that the problem of parameter 

estimation can be broken down in encapsulated problems 

that can be attacked independently. Among other things, it 

opens the door to mixed solutions. For example, one 

parameter might be estimated using another technique than 

ML. So doing will not yield an efficient method (as ML are 

generally the most efficient) but if bias can be reduced so 

that global RMSE will not deteriorate, it is going to be an 

important progress. 
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