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Statistical power: An historical introduction

Jean Descoteaux

Université de Sherbrooke

Despite the funding agencies’ growing demands towards power analyses, we believe
researchers are still not fully aware of the statistical power concept, of the possible
benefits of power analysis in the planning phase and of the ways to increase the
chances of significantly detecting a given effect in their study. The following review
falls within this area of interest. We discuss the history of the concept of statistical
power, the reasons for its ongoing neglect, its potential benefits to researchers, as well
as actual ways to improve statistical power. We also touch upon the subject of the
impact of power analysis on the scientific literature.

The concept of statistical power is not new. It was
formulated in the 1930’s by Jerzy Neyman, a Moldavian
who later immigrated to the United States, and Egon S.
Pearson, the son of Karl Pearson, the British statistician who
introduced the famous r (Neyman & Pearson, 1928, 1933).
While considered promising, the concept, however, never
gained much popularity. Its application in scientific research
planning was strongly opposed by Sir Ronald Fisher (also
from Great Britain), an influential figure in the field of
statistics at the time, which might explain why statistical
power remained relatively unknown until Jacob Cohen
(USA) brought it back to light in the early 1960’s. Interest in
statistical power was revived partially thanks to Cohen'’s
(1962) described the
statistical power of studies published in the 1960 volume of

article in which he insufficient
the Journal of Abnormal and Social Psychology. In his review,
Cohen concluded that the reported studies had, on average,
a less than 1 in 2 probability (a 48% chance) to obtain
statistical confirmation of an actual medium effect.

Since the publication of Cohen’s analysis, the concept of
statistical power has gained ground, evidenced by the sharp
increase in the number of references to the popular book by
Cohen (1969, 1977) in the scientific literature from 4
instances in 1971 to 214 instances in 1987 (Sedlmeier &
Gigerenzer, 1989). However, despite this apparent growing
awareness of the concept, the inadequacy in terms of
insufficient statistical power described by Cohen in 1962 still
exists to date. Rossi (1990) applied the method used by
Cohen in 1962 to several reports published in 1982 in the
Journal of Abnormal Psychology, the Journal of Consulting and
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Clinical Psychology and the Journal of Personality and Social
Psychology and found that these studies had, on average, at
most a 57% probability to obtain statistical confirmation of a
medium effect, which is comparable to the 48% reported by
Cohen in 1962. For their part, Sedlmeier and Gigerenzer
(1989) used the same method to analyze reports published
in 1984 in the Journal of Abnormal Psychology and showed
that these studies had, on average, no more than a 37%
chance of finding an actual medium effect. More recently,
Bezeau and Graves (2001), Clark-Carter (1997), Kosciulek
and Szymanski (1993), and Mone, Mueller, and Mauland
(1996) reported a similar lack of power in work published in
such diverse areas as clinical neuropsychology, articles
reported in British Journal of Psychology, rehabilitation
counseling research, and management. The only exception
to the rule was provided by Maddock and Rossi (2001), who
showed that research in three health-related journals (Health
Psychology, Addictive Behaviors, and Journal of Studies on
Alcohol) published in 1997 had adequate power to detect
large and medium effects.

In general, the latest results speak of a profound
paradox. In fact, it is hard to explain why, despite the great
importance that reviewers attribute to the significance of test
results and despite the ever growing difficulty to obtain
research funding, research workers seem content with
experimental protocols that yield inconclusive results in 1
out of 2 cases. Would they rather spend time and money to
little avail than actually plan their research to ensure
sufficient statistical power (a power of .80, for example)?
Admittedly, the concept has gained ground. The American
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Psychological Association does its part in popularizing the
idea, urging researchers, for instance, to include at least
some index of effect size in their results section (APA, 2001).
Journals such as the Journal of Clinical and Consulting
Psychology also contribute by specifically instructing authors
to report effect sizes for primary study findings as well as
confidence intervals for them (Instructions to Authors,
Journal of Consulting and Clinical Psychology, 2007). So, if
today’s researchers are more alert to statistical power, it
seems they are still unconvinced about its possible benefits
in the planning phase and are not fully aware of the ways to
increase the chances of significantly detecting a given effect
in their study. The following review falls within this area of
interest. We discuss the concept of statistical power, the
reasons for its ongoing neglect, its potential benefits to
researchers, as well as actual ways to improve statistical
power. We also touch upon the subject of the impact of
power analysis on the scientific literature.

Statistical power, definition and application

Simply put, the power of a statistical test is the
probability that the test will yield statistically significant
results, given the existence of an actual effect. While
this
complexity

definition
that
uninitiated. Statistical power is determined by various

seemingly  simple, encompasses  a

mathematical often discourages the
criteria, such as the sample size (N), the effect size of the
observed phenomenon (e.g. d) and the applied level of
statistical significance (a). The mathematical relationship
between the four elements allows having any of these
parameters quantified as a function of the three others
(Cohen, 1988).

While adding a bit of complexity, such interrelations
allow for flexibility in the application of the statistical power
concept. For example, the calculation of power as a function
of the other parameters is particularly useful in the research-
planning phase (a priori) or to quantify the power of a
completed test (a posteriori). One of the most commonly used
applications of the statistical power concept is to compute
an appropriate sample size to detect an actual effect with
high probability. Another
determine the alpha level () based on the other established

application would be to

parameters. This application is less frequent due to various
reasons, some of which will be explained later. Finally, it can
be used to calculate the effect size as a function of the other
elements in the formula, that is, a, N, and power. This
application is also relatively rare (Cascio & Zedeck, 1983).
Instead of giving a didactic example for each of these
applications, the section entitled “Empirical example”
describes a typical research-planning sequence. It covers
various applications of statistical power and, therefore, is an
exhaustive illustrative means to explain the various aspects.
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Before detailing the research-planning protocol, let us
consider the general sequence and define the concepts used.

Concepts related to statistical power

Statistical power in the research-planning phase

In order to maximize the power of a test, Cascio and
Zedeck (1983) recommend following this sequence in the
research-planning phase (a priori application):

1.  Determine the minimum effect size that would be
considered useful or significant.

2. Determine the appropriate sample size based on
the desired power, the selected effect size and the given
alpha level.

3.  For a fixed sample size that proves insufficient to
achieve the desired power given the other parameters,
adjust the alpha level while considering the relative impact
of type I and type II errors.

But first, let us review some of the concepts involved.

Significance levels « (alpha) and f (beta)

In the part entitled “Statistical Power, definition and
application”, we said that, for a certain effect size (e.g. d)
and a given sample size (N), the significance level a allows
to quantify the power of a test, and vice versa. For the
purpose of such a statement, in order to ensure that “vice
versa” fully applies, it is imperative to consider the a level
as being variable. Most researchers believe that this
significance level must be set at & = .05; but why not at .08,
.10 or .025?

The conventional o = .05 is widely believed to have been
established, more or less arbitrarily, by Sir Ronald Fisher
(Sedlmeier & Gigerenzer, 1989; Ryan, 1985; Cohen, 1990).
Indeed, Fisher considered that variations relative to normal
that are greater than two standard deviations (which
roughly corresponds to a = .05 for two-tailed tests) must be
judged significant (Fisher, 1925). Later, Fisher stated that he
personally preferred to set a low significance level and reject
the results that did not meet this criterion (Fisher, 1926). In
this context, the word prefer is of great importance. In fact,
this preference has been questioned and challenged by
who described the
.05 as an “almost religious

many accomplished statisticians
unconditional use of a =
extreme” (Cascio and Zedeck, 1983), as “sacred” (Skipper,
Guenther, & Nass, 1967), as an “arbitrary unreasonable
tyranny” (Cohen, 1990), or as “decreed by tradition and
reviewers” (Tabachnick & Fidell, 2001).

This debate is even more pertinent nowadays since
today’s statistics theory differs from Fisher’s teaching. As
stated by Sedlmeier and Gigerenzer (1989), the current
theory is a hybrid of approaches developed by Fisher, on the
one hand, and by Neyman and Pearson, on the other hand



(see below). Therefore, Fisher’s preference for a = .05 has
been transposed to a different context and, while well
intentioned at the beginning, it no longer corresponds to the
current reality. The following paragraphs explain the
controversy surrounding the Fisher and the Neyman -
Pearson approaches.

At the Fisher,
recommendation, solely the null hypothesis (Hp: the

time of and largely on his
hypothesis that we formulate with the hope of rejecting) was
specified and verified (Fisher, 1935, 1966). Such verification
consists of computing the value of a statistic (for example, ¢
or F) based on the results, while considering the null
hypothesis as being true. The value of this statistic is then
compared to the critical value, which is also computed using
a certain probability level a. If the statistic value is higher
than the critical value, it is presumed that the results
concerned have not arisen through chance and Hp is
therefore rejected. If Hy is rejected when in fact it is true,
then a type I error has been committed (rejecting Hy when
Hy is true).

However, working in the shadows of Fisher, the
Neyman - Pearson team had already developed the
concepts of alternative hypothesis (H;) and of type II error
(i.e. rejecting H; when H; is in fact true, or not rejecting Hy
when H; is true). In other words, the alternative hypothesis
H, is a statement in the favor of which the null hypothesis
could be rejected. These concepts allow to compute the
probability of committing a type II error, denoted by f. In
other words, it is the probability that the alternative
hypothesis would be rejected in favor of the null hypothesis
when H, is in fact true; that is, the probability that a true
effect (H;) would be considered the result of chance alone
and hence judged false. The next step would be to compute
(1 - B), or the probability of an effect being found true when
it is in fact true. Therefore, (1 — ) represents the power of a
test to detect a significant result when the effect actually
exists.

While being of great value, the Neyman — Pearson
theory did not achieve the desired impact, perhaps due to
the strong opposition on the part of Fisher who described
those interested in the concepts of type II error and
statistical power as “Russians trained for technological
efficiency rather than statistical inference” (Fisher, 1955).
This battle of opinions, which passed relatively unnoticed in
North America, had far-reaching consequences. The main
outcome was a new hybrid theory (as described by
Sedlmeier & Gigerenzer, 1989) taught in Human Sciences
programs nowadays. This hybrid theory has been approved
neither by Fisher followers nor by Neyman - Pearson
supporters. The hybrid theory states that only the null
hypothesis must be verified, as recommended by Fisher, but
also recognizes the importance of the type II error, as
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suggested by Neyman and Pearson, therefore allowing to set
different values for o before gathering test data (some
reports use a = .10). However, this hybrid theory refers to
the type II error and statistical power solely for general
academic purposes since their calculation calls for an
alternative hypothesis (H1) that is not part of the theory.

The hybrid theory could be improved by considering the
B level — and thus statistical power — in order to determine
the a level (which, of course, implies that its value could
vary). In fact, many statisticians (e.g. Cascio & Zedeck, 1983)
recommend making a beforehand evaluation of the relative
impact of the type I and type II errors on the desired power
(note that this approach is not unanimously accepted, see
Ryan, 1985). For example, a researcher wants to maintain a
typical statistical power of .80, then by definition g = .20. If
this researcher chooses the traditional a = .05, then  / a = .20
/ .05 = 4, which means that a type I error would be
considered four times as significant and harmful as a type II
error (reasonable). Let us consider another example. A
researcher believes that a lower a would yield a better test,
and chooses a = .001. According to Cohen (1988), such a
weak a level is typically associated with a very low
statistical power, for example, power = .10. Then, f =1 -
power=1-.10=.90 and $/ a =.90/.001 = 900. It means that,
according to this researcher, a type I error would be 900
times as critical and harmful as a type II error. With certain
exceptions, such relative importance of errors indicated by
this researcher seems rather unreasonable...

Therefore, the values of @ and B levels may have a
significant impact on the results of the statistical tests used
(type I and type II errors). Thus, their respective importance
is determined by a “quantity” that, by definition, is closely
related to the concerned data: effect size. We shall discuss it
later.

Effect size of the observed phenomenon

In 1988, Cohen stated that effect size is the least known
concept related to statistical inference. He attributed such
relative obscurity to the historical difference between
Fisher’s testing philosophy and Neyman and Pearson’s
(1928, 1933). In fact, Fisher’s test procedures do not include a
defined alternative hypothesis, which makes it impossible to
calculate the p probability and, consequently, the statistical
power of a test. To do so, we need to formulate H;, which
implies a certain degree of the effect presence in the
population and/or a certain degree of falsity of the null
hypothesis. Then, such degree is indeed the effect size.

More specifically, when comparing two populations (i.e.
inter-group tests), the null hypothesis usually takes the
following form: “the difference between the measured
parameters for each population is zero”, or p, — p; = 0.
Therefore, if the null hypothesis is true, the effect size has to



be zero. Consequently, if the null hypothesis is false, then p,
— p # 0. That would be similar to recognizing the existence
of a difference between the means of the two populations,
ie. up — 1 = x, where x is the effect size or, in other words,
the “degree of falsity” of the null hypothesis (Hp). The
higher the value of x, the farther the null hypothesis is from
the truth. Note that the specification of x, as per Neyman
and Pearson, is equivalent to specifying Hq: p, — pg = 0 and
Hi: pp — pg =x.

We see that the equation i, — i1 = x defines x in terms of
the unit scale used (e.g. seconds, IQ points, etc.). So, if we
want to use power charts or compare the results of several
tests, the effect size must be specified as a dimensionless
number. Depending on the actual test, the effect size may be
expressed as d (difference between two means), r
(correlation between two variables), f (ANOVA test) or any
other index related to the specific test (see Cohen, 1992). For
the purpose of an example, the d formula is:

i=t1"
c
If we divide the difference between the means measured on
a given scale by the standard deviation expressed in the
same units of measurement, we see that the effect size d is
indeed independent of the scale used. The same is true of
the other effect size indices (e.g. r, f, etc.).

Since d is defined as the difference between two means
divided by a standard deviation, it can be easily computed
once the sample data has been collected. However, as
mentioned earlier, the most common application of the
statistical power concept is in the research-planning phase, a
phase when sample means are not yet available. In this case,
we have to find other ways to make a realistic estimate of
the effect size (including useful or significant effect, as
specified in the sequence by Cascio & Zedeck, 1983). Cohen
(1988) suggests two approaches: 1) one can calculate the
effect size from previous work in a similar area (e.g. meta-
analysis studies) or 2) if such data are not available, one can
use personal judgment, theoretical principles or any
combination thereof to estimate the possible effect size in
the study. As an alternative to the first approach, many
funding agencies now encourage researchers to realise pilot
studies in order to test the feasibility of the research protocol
and to obtain preliminary effect sizes using the specific
measures intended for the main study. However, it remains
a good idea to base preliminary effect size estimations on
prior work. Papers by Levine (1997) and Thalheimer and
Cook (2002) provide interesting introductions on the subject.
If using the second approach, the researcher will identify the
anticipated effect size as conventional values of “small”,
“medium” or “large”. In Human Sciences, an effect size is
defined as “medium” if it is perceptible to the naked eye of
an attentive observer, as “small” if it is significantly smaller
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than the medium effect size, but not trivial, and as “large” if
it is larger than the medium effect size, and the difference
between the two is similar to that between the small effect
and the medium effect (see Cohen, 1992). Mathematically
speaking, effect sizes are defined as “small” if d = .20,
“medium” if d = .50, and “large” if d = .80.

Before we go back to the research design sequence
described by Cascio and Zedeck (1983), there is still one
more point to address. We need to specify the relationship
between power and sample size.

Sample size

The most frequent application of power analysis is to
compute the minimum sample size (N) required to test an
effect of the estimated size with a desired power and a
known a level. Generally, a larger sample size tends to
reduce the variability of sample statistics (mean, correlation,
etc.), or in other words, reduces error variance and therefore
increases the likelihood of detecting an effect size of the
specified (or larger) magnitude. From the statistics point of
view, it reduces the p probability and therefore increases
statistical power (1 - ).

Unless impossible due to major constraints, sample size
must be the first criteria to be adjusted in order to augment
power. However, Tabachnick and Fidell (2001; p. 35) caution
researchers against excessive use of a large sample size (N),
which may cause the statistical power of a test to be too
strong. In fact, in such cases, the null hypothesis would be
almost certainly rejected and the test might be able to detect
effects that are too small to be of any substantive
significance. In a way, the fact that journals now insist on
reporting effect size estimates along statistically significant
results would tend to minimize the impact of such findings.

Empirical example

To illustrate the research design sequence by Cascio and
Zedeck (1983) as well as its related concepts, here is an
example that demonstrates recurring concerns in clinical
research. The example is purely fictional.

Suppose a researcher wants to investigate the
effectiveness of a short-term (14 weeks) psychodynamic
therapy treatment of minor depressive disorder (introduced
for further study in the DSM-IV and DSM-IV-TR; American
Psychiatric Association, 1994, 2000). In her study, she
chooses to use the Beck Depression Inventory — II (BDI-II,
1996) to compare the patients’ scores at the end of the
psychotherapy treatment (posttest) with their scores at the
beginning of the psychotherapy treatment (pretest).

For this project, the researcher opts for the planning
sequence suggested by Cascio and Zedeck (1983). The
priority is thus to define the minimum effect size that would

be judged useful or important. She reads on the subject and



concludes that, based on the little data available, individuals
classified as suffering from minor depression have an
average initial BDI-II score of about 19 with a standard
deviation of 8. She also learns that in a nonclinical
population, this BDI-II score is usually around 8 with a
standard deviation of 6 (these last figures, however, will not
be part of the calculation). Finally, she concludes that the
initial BDI-II score is not a strong predictor for the posttest
score in the treatment of severe depression and that the
correlation between the two scores is merely .20.

Suppose now that the researcher considers that a final
mean BDI-II score of 15, compared to the initial score of 19,
would indicate that the treatment is somewhat effective and
that it is worth pursuing. On the other hand, an
improvement of less than 4 points by the end of the
treatment could lead her to abandon this treatment method
and to reconsider its pertinence.

Since the pretest and posttest data are part of a repeated
measures design and thus are not independent (for further
details, see Howell, 1998, part 8.5), the researcher computes
the effect size as follows:

d=t"H __HM_ 1
ox,-x, o2(1-p)
Since the posttest standard deviation is not available, she

estimates that such deviation should roughly correspond to
the pretest value. Hence:
19-15

s
Further, being familiar with power analysis, the researcher
believes that it would be wise to maintain a minimum test
power of .80. Moreover, she knows that using a standard a
level of .05 in her tests would mean better chances to have
her work published. In Howell’s table (1998; p. 762) she
finds so-called noncentrality
parameter) which in this case is 2.80. She substitutes these

a corresponding o (the

values in the following formula:
s=dJN
hence

2 2
5°_280° _ ¢

d?  .40?
The calculation shows that she needs to recruit 49

participants to have an 8 in 10 chance to obtain a significant
result with a = .05 if the treatment yields an effect size of at
least .40.

Suppose now that she wishes to investigate the effect of
her treatment on patients who show comorbid personality
disorders (e.g., borderline, histrionic, and narcissistic) and
that she has access to a maximum of 30 participants for her
study. Due to its preliminary nature, there is no indication
whether the considered treatment could be effective in the
case of such patients. In addition, the presence of comorbid
personality disorders is likely to make the group more
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heterogeneous than one may conclude based on initial BDI-
II scores. Consequently, instead of a /  of 1 in 4, the
researcher opts for an a / 3 ratio of 1 in 2. If she is
determined to maintain a power of .80, then 3 =.20 and a =
.10, which corresponds to d = 2.50. If we redo the earlier
calculation using these new criteria, we see that the number
of participants in this case should be 39. The researcher is
now 10 patients short.

Under the circumstances, the researcher has several
options. First, she may decide to postpone her research.
Second, she may try to team up with colleagues working in
the same field in order to increase the number of
participants available for inclusion in the study. Third, she
may proceed with the study if she accepts statistical power
below .80 (in the last test design described above with N =30
and a = .10, power will be around .70). In this case, the
researcher could try to limit her sample to a particular
subgroup in order to reduce within-group variance. Finally,
she may opt for a one-tailed t-test. However, it should be
noted that one-tailed tests are not unanimously accepted
and should be used sparingly and with great caution.

Consequences of power analysis

Statistical significance vs. design quality in reviewers’
decision

In 1982, Atkinson, Furlong and Wampold (1982)
concluded that a study report submitted for publication was
most likely to be rejected unless at least some of its major
results were significant at traditionally accepted levels p <
.05 or p < .01 (see also Sedlmeier & Gigerenzer, 1989).
Perhaps due to the impact of this study, the subject of the
statistical significance of findings has become somewhat of a
censorship gage (personal censorship on the part of authors
themselves or censorship on the part of publishers, who
knows? For an interesting perspective on this question, see
Reysen, 2006). It remains difficult to conclude if the situation
has ever improved since 1982. If we review the bits and
pieces of information from various published sources (e.g.,
DeVaney, 2001), it seems that reviewers’ position has
somewhat improved since the 1982 article by Atkinson et al.,
but unfortunately not that much.

Without focusing too much on this subject, we would
like however to point out that the concept promoted by
reviewers and editors, as described by Atkinson et al., is in
contradiction with the third step of the research design
sequence by Cascio and Zedeck (1983; see Part 2). In fact,
reviewers’ position, just like the old Fisherian approach of a
= .05, does not allow for a to be considered as a variable. We
share the views expressed by Sedlmeier and Gigerenzer
(1989) and believe that promoting the concept of statistical
power could shake the foundations of such status quo. One
of the benefits of the statistical power concept is that it offers



a rigorous rational approach that justifies the use of a
variable a. Another advantage is that the statistical power
concept encourages researchers to define beforehand a
minimum effect size that would be judged useful or
significant. According to Cohen (1994), careful attention to
the effect size will result in reconsidering error variance (a
smaller error variance is desirable), which should in its turn
improve experimental designs.

Overestimation of effect size in the literature

Reviewers’ bias towards studies reporting significant
results has yet another consequence: studies with larger
effect sizes are much more likely to be accepted for
publication since they report significant results more often.
Therefore, Lane and Dunlap (1978) point out that in such
studies completed in a low statistical power context,
reported effect sizes may be much higher than they are in
reality. They explain that low a levels (e.g. a = .01) used in
reports may result in distorted and artificially inflated effect
sizes. The authors conclude that the general trend to publish
significant results only cannot coexist with the adequate
estimate of effect sizes based on the literature (in particular,
with
recommend accepting for publication all experiments if they

regard to meta-analyses). Consequently, they
relate to important concepts and have a well-structured
design.

While this

publications, the work by Lane and Dunlap (1978) stands

issue has been addressed in many
out since it spotlights the paradox that exists to date, i.e. the
gap between the use of meta-analysis results to compute
power, on the one hand, and publication requirements, on
the other hand. To resolve the issue, the literature must
mirror the real world more accurately. And to achieve that,
we must question the conventionally established « level and
promote studies of higher statistical power that are designed

around the concept of minimum effect size.

Conclusion

To sum up, it seems that statistical power and its derived
concepts have gained ground compared to the situation that
existed several decades ago. However, the new awareness
exists mostly in theory since the power of recent studies
does not seem to differ much from the statistical power of
studies reported by Cohen in his 1962 article. Given the
positive impact that the use of statistical power could have
on the scientific literature in general and on research
planning in particular, we hope that its popularity would go
from theory to practice. More specifically, we should go
back to the sources and reconceptualize the type II error
based on the concept of minimum effect size (i.e. minimum
effect judged useful or significant). Moreover, we should
stop regarding the a level as a constant (i.e. a = .05), as some
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magic limit that defines the truth. In fact, the a level should
be considered as a variable, the value of which is
determined by a realistic a / f ratio. Therefore, the statistical
power of tests should be maintained above minimum to
ensure that nonsignificant results could be considered as
meaningful. In the context of powerful tests, nonsignificant
results are in fact very pertinent since they suggest that the
obtained effect sizes are relatively trivial (very small) or
negligible (below the minimum effect judged useful or
significant). Finally, reviewers should readily accept to
publish significant and nonsignificant results alike to make
sure that the reality depicted in the literature actually
corresponds to the reality we know.
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