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Understanding Power and Rules of Thumb

for Determining Sample Sizes
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This article addresses the definition of power and its relationship to Type I and Type II
errors. We discuss the relationship of sample size and power. Finally, we offer
statistical rules of thumb guiding the selection of sample sizes large enough for
sufficient power to detecting differences, associations, chi-square, and factor analyses.

As researchers, it is disheartening to pour time and
intellectual energy into a research project, analyze the data,
and find that the elusive .05 significance level was not met.
If the null hypothesis is genuinely true, then the findings are
robust. But, what if the null hypothesis is false and the
results failed to detect the difference at a high enough level?
It is a missed opportunity. Power refers to the probability of
rejecting a false null hypothesis.  Attending to power
during the design phase protect both researchers and
respondents. In recent years, some Institutional Review
Boards for the protection of human respondents have
rejected or altered protocols due to design concerns
(Resnick, 2006). They argue that an “underpowered” study
may not yield useful results and consequently unnecessarily
put respondents at risk. Overall, researchers can and should
attend to power. This article defines power in accessible
ways, provides guidelines for increasing power, and finally
offers “rules-of-thumb” for numbers of respondents needed

for common statistical procedures.

What is power?

Beginning social science researchers learn about Type I
and Type Il errors. Type I errors (represented by o are made
when the data result in a rejection of the null hypothesis, but
in reality the null hypothesis is true (Neyman & Pearson
(1928/1967).
when the data do not support a rejection of the null

Type 1II errors (represented by B) are made

Portions of this article were published in Psi Chi Journal of
Undergraduate Research.
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hypothesis, but in reality the null hypothesis is false
(Neyman & Pearson). However, as shown in Figure 1, in
every study, there are four possible outcomes. In addition
to Type I and Type II errors, two other outcomes are
possible. First, the data may not support a rejection of the
null hypothesis when, in reality, the null hypothesis is true.
Second, the data may result in a rejection of the null
hypothesis when, in reality, the null hypothesis is false (see
Figure 1). This final outcome represents statistical power.
Researchers tend to over-attend to Type I errors (e.g.,
Wolins, 1982), in part, due to the statistical packages that
rarely include estimates of the other probabilities. Post-hoc
analyses of published articles often yield the finding that
Type II errors are common events in published articles (e.g.,
Strasaik, Zamanm, Pfeiffer, Goebel, & Ulmer, 2007;
Williams, Hathaway, Kloster, & Layne, 1997).

When a .05 or lower significance is obtained, researchers
are fairly confident that the results are “real,” in other words
not due to chance factors alone. In fact, with a significance
level of .05, researchers can be 95% confident the results
represent a non-chance finding (Aron & Aron, 1999).
Researchers should continue to strive to reduce the
probability of Type I errors; however, they also need to
increase their attention to power.
has
distribution. A sampling distribution is created, in theory,

Every statistic a corresponding sampling

via the following steps (Kerlinger & Lee, 2000):

1. Select a sample of a given n under the null

hypothesis.
2. Calculate the specific statistic.
3. Repeat steps 1 and 2 an “infinite” number of times.
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Figure 1. Possible outcomes of decisions based on statistical results.

“TRUTH” OR “REALITY”

Null correct Null wrong

Fail to reject

Decision based on

Correct decision Type II (B)

statistical result Reject

TypeI (o) Correct decision

Power

4. Plot the given statistic by frequency of value.
For instance, the following steps could be used to create
a sampling distribution for the independent samples t-test
(based on Fisher 1925/1990; Pearson, 1990).
1. Select two samples of a given size from a single
population. The two samples are selected from a
single because  the

population sampling

distribution is constructed given the null
hypothesis is true (i.e., the sample means are not
statistically different).

2. Calculate the independent samples t-test statistic
based on the two samples.

3. Complete steps 1 and 2 an “infinite” number of
times. In other words, select two samples from the
same population and calculate the independent
samples f-test statistic repeatedly.

4. Plot the obtained independent samples f-test values
by frequency. Given the independent samples t-

test is based on the difference between the means of

the two samples, most of the values will hover

around zero as the samples both were drawn from

Zei
z-test value

Figure 2. Sampling distributions of means for the z-test
assuming the null hypothesis is false.
sampling distribution of means of the original population;
P2 represents the sampling distribution of means from

P1 represents the

which the sample was drawn. The shaded area under P2
represents power, i.e., the probability of correctly rejecting a
false null hypothesis.

the same population (i.e. both sample means are
estimating the same population mean). Sometimes,
however, one or both of the sample means will be
poor estimates of the population mean and differ
widely from each other, yielding the bell-shaped
curve characteristic of the independent samples ¢-
test sampling distribution.

When a researcher analyzes data and calculates a
statistic, the obtained value is compared against this
sampling distribution. Depending on the location of the
obtained value along the sampling distribution, one can
determine the probability of achieving that particular value
If the probability is
sufficiently small, the researcher rejects the null hypothesis.

given the null hypothesis is true.

Of course, the possibility remains, albeit unlikely, that the
null hypothesis is true and the researcher has made a Type I
error.

Estimating power depends upon a different distribution
(Cohen, 1992). The simplest example is the z-test, in which
the mean of a sample is compared to the mean of the
population to determine if the sample comes from the
population (P1). Power assumes that the sample, in fact,
Therefore, the
sampling distribution of P2 will be different than the

comes from a different population (P2).

sampling distribution of P1 (see Figure 2). Power assumes
that the null hypothesis is incorrect.

The goal is to obtain a z-test value sufficiently extreme to
reject the null hypothesis. Usually, however, the two
distributions overlap. The greater the overlap, the more
values P1 and P2 share, and the less likely it is that the
obtained test value will result in the rejection of the null
hypothesis. Reducing this overlap increases the power. As
the overlap decreases, the proportion of values under P2
which fall within the rejection range (indicated by the
shaded area under P2) increases.



Table 1 : Sample Data Set

Person X Person X
1 5.50 11 7.50
2 6.00 12 7.50
3 6.00 13 8.00
4 6.50 14 8.00
5 6.50 15 8.00
6 7.00 16 8.50
7 7.00 17 8.50
8 7.00 18 9.00
9 7.50 19 9.00

10 7.50 20 9.50

Manipulating Power

Sample Sizes and Effect Sizes

As argued earlier a reduction of the overlap of the
distributions of two samples increases power. Two
strategies exist for minimizing the overlap between
distributions. The first, and the one a researcher can most
easily control, is to increase the sample size (e.g.,, Cohen,
1990; Cohen, 1992).

power. The second, discussed later, is to increase the effect

Larger samples result in increased

size.

Larger samples more accurately represent the
characteristics of the populations from which they are
derived (Cronbach, Gleser, Nanda, & Rajaratnam, 1972;
Marcoulides, 1993). In an oversimplified example, imagine
a population of 20 people with the scores on some measure
(X) as listed in Table 1.

The mean of this “population” is 7.5 (o = 1.08). Imagine
researchers are unable to know the exact mean of the
population and wanted to estimate it via a sample mean. If
they drew a random sample, n = 3, it could be possible to
select three low or three high scores which would be rather
poor estimates of the “population” mean. Alternatively, if
they drew samples, 1 = 10, even the ten lowest or ten highest
scores would better estimate the population mean than the

sample of three. For example, using this “population” we
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drew ten samples of three and ten samples of ten (see Table
2 for the sample means).

The overall mean of the sample means based on three
people is 7.57 and the standard deviation is .45. The overall
mean of the sample means based on ten people is 7.49 and
the standard deviation is .20. The sample means based on
ten people were, on average, closer to the population mean
(¢ =7.50) than the sample means based on three people.

The standard error of measurement estimates the
average difference between a sample statistic and the
population statistic. In general, the standard error of
measurement is the standard deviation of the sampling
distribution. In the above example, we created two
miniature sampling distributions of means. The sampling
distribution of the z-test (used to compare a sample mean to
a population mean) is a sampling distribution of means
(although it includes an “infinite” number of sample
means). As indicated by the standard deviations of the
means (i.e., the standard error of measurements) the average
difference between the sample means and the population
mean is smaller when we drew samples of 10 than when we

drew samples of 3. In other words, the sampling

il a2

=-test value
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=-test value

Figure 3. The relationship between standard error of

measurement and power. As the standard error of

measurement decreases, the proportion of the P2
distribution above the z-critical value (see shaded area
under P2) increases, therefore increasing the power. The
distributions at the top of the figure have smaller standard
errors of measurement and therefore less overlap, while the
distributions at the bottom have larger standard errors of
measurement and therefore more overlap, decreasing the

power.



distribution based on samples of size 10 is “narrower” than
the sampling distribution based on samples of size 3.
Applied to power, given the population means remain
static, “narrower” distributions will overlap less than
“wider” distributions (see Figure 3).

Consequently, larger sample sizes increase power and
decrease estimation error. However, the practical realities of
conducting research such as time, access to samples, and
financial costs restrict the size of samples for most
researchers. The balance is generating a sample large
enough to provide sufficient power while allowing for the
ability to actually garner the sample. Later in this article, we
provide some “rules of thumb” for some common statistical
tests aimed at obtaining this balance between resources and
ideal sample sizes.

The second way to minimize the overlap between
distributions is to increase the effect size (Cohen, 1988).
Effect size represents the actual difference between the two
populations; often effect sizes are reported in some standard
unit (Howell, 1997). Again, the simplest example is the z-
test. Assuming the null hypothesis is false (as power does),
the effect size (d) is the difference between the x1 and 2 in
standard deviation units. Specifically,
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Figure 4. The relationship between effect size and power. As
the effect size increases, the proportion of the P2 distribution
above the z-critical value (see shaded area under P2) increases,
therefore increasing the power. The distributions at the top of
the figure represent populations with means that differ to a
larger degree (i.e. a larger effect size) than the distributions at
the bottom. The larger difference between the population
means results in less overlap between the distributions,
increasing power.
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where M is the sample mean derived from g2 (remember,
power assumes the null hypothesis is false, therefore, the
sample is drawn from a different population than x1.) If the
effect size is .50, then x4l and 2 differ by one-half of a
standard deviation. The more disparate the population
means, the less overlap between the distributions (see Figure
4). Researchers can increase power by increasing the effect
size.

Manipulating effect size is not nearly as straightforward
as increasing the sample size. At times, researchers can
attempt to maximize effect size by maximizing the
difference between or among independent variable levels.
For example, suppose a particular study involved examining
the effect of caffeine on performance. Likely differences in
performance, if they exist, will be more apparent if the
researcher compares individuals who ingest widely
different amounts of caffeine (e.g., 450 mg vs. 0 mg) than if
she compares individuals who ingest more similar amounts
of caffeine (e.g., 25 mg. vs. 0 mg). If the independent
variable is a measured subject variable, for example, ability
level, effect size can be increased by including groups who
are “extreme” in ability level. For example, rather than
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Figure 5. The relationship between o and power. As a
increases, as in a single-tailed test, the proportion of the P2
distribution above the z critical value (see shaded area
under P2). The distributions at the top of the figure
represent a two-tailed test in which the alevel is split
between the two tails; the distributions at the bottom of the
figure represent a one-tailed test in which the alevel is
included in only one tail.



Table 2. Sample Means Presented by Magnitude

Sample M (n=3) M (n=10)
1 6.83 7.25
2 7.17 7.30
3 7.33 7.30
4 7.33 7.35
5 7.50 7.40
6 7.67 7.50
7 7.67 7.60
8 7.83 7.70
9 7.83 7.75
10 8.50 7.75

comparing people who are above the mean in ability level
with those who are below the mean, the researcher might
compare people who score at least one standard deviation
above the mean with those who score at least one standard
deviation below the mean. Other times, the effect size is
simply out of the researcher’s control. In those instances, the
best a researcher can do is to be sure the dependent variable
measure is as reliable as possible to minimize any error due
to the measurement (which would serve to “widen” the
distribution).

Error Variance and Power

Error variance, or variance due to factors other than the
independent variable, decreases the likelihood of detecting
differences or relationships that actually exist, i.e. decreases
power (Cohen, 1988). Differences in dependent variable
scores can be due to many factors other than the effects of
the independent variable. For example, scores on measures
with low reliability can vary dependent upon the items
included in the measure, the conditions of testing, or the
time of testing. A participant might be talented in the task
or, alternatively, be tired and unmotivated. Dependent
samples control for error variance due to such participant
characteristics.

Each participant’s dependent variable score (X) can be
characterized as

X=pu+tx+p+e

where u is the population mean, t« is the effects of
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treatment, p is the participant characteristics, and e is
random error.

In the true dependent samples design, each participant
experiences each level of the independent variable. Any
participant characteristics which impact the dependent
variable score at one level will similarly affect the dependent
variable score at other levels of the independent variable.
Different statistics use different methods to separate
variance due to participant characteristics from error
variance. The simplest example is a dependent samples ¢-
test design, in which there are two levels of an independent
variable. The formula for the dependent samples ¢-test is

,_ _MD
~ SEun

where MD is the mean of the difference scores and SEmp is
the standard error of the mean difference.

Difference scores are created for each participant by
subtracting the score under one level of the independent
variable from the score under the other level of the
independent variable. The actual magnitude of the scores,
then is eliminated, leaving a difference that is due, to a
larger degree, to the treatment and to a lesser degree to
participant characteristics. The differences due to treatment
then are easier to detect. In other words, such a design
increases power (Cohen, 2001; Cohen, 1988).

Type I Errors and Power

Finally, power is related to o,or the probability of
making a Type I error. As o increases, power increases (see
Figure 5). The reality is that few researchers or reviewers
are willing to trust in results where the probability of
rejecting a true null hypothesis is greater than .05.
Nonetheless, this relationship does explain why one-tailed
tests are more powerful than two-tailed tests. Assuming an
a level of .05, in a two-tailed test, the total a level must be
split between the tails, i.e., .025 is assigned to each tail. In a
one-tailed test, the entire o level is assigned to one of the
tails. It is as if the o level has increased from .025 to .05.

Rules of Thumb

The remaining articles in this edition discuss specific
power estimates for various statistics. While we certainly
advocate for full understanding of and attention to power
estimates, at times, such concepts are beyond the scope of a
particular  researchers

training  (for example, in

undergraduate research). In those instances, power need
not be ignored totally, but rather can be attended to via
certain rules of thumb based on the principles of regarding
power. Table 3 provides an overview of the sample size

rules of thumb discussed below.



Table 3: Sample size rules of thumb
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Relationship

Reasonable sample size

Measuring group differences
(e.g., t-test, ANOVA)

Relationships
(e.g., correlations, regression)

Chi - Square

Factor Analysis

Cell size of 30 for 80% power, if decreased, no lower than

7 per cell.

~50

At least 20 overall, no cell smaller than 5.

~300 is “good”

Number of Participants: Cell size for statistics used to
detect differences.

The independent samples t-test, matched sample t-test,
ANOVA (one-way or factorial)) MANOVA are all statistics
designed to detect differences between or among groups.
How many participants are needed to maintain adequate
power when using statistics designed to detect differences?
Given a medium to large effect size, 30 participants per cell
should lead to about 80% power (the minimum suggested
power for an ordinary study) (Cohen, 1988). Cohen
conventions suggest an effect size of .20 is small, .50 is
medium, and .80 is large. If, for some reason, minimizing the
number of participants is critical, 7 participants per cell,
given at least three cells, will yield power of approximately
50% when the effect size is .50. Fourteen participants per
cell, given at least three cells and an effect size of .50, will
yield power of approximately 80% (Kraemer & Thiemann,
1987).

Caveats. First, comparisons of fewer groups (i.e., cells)
require more participants to maintain adequate power.
effect
participants to maintain adequate power (Aron & Aron,
1999). Third, when using MANOVA, it is important to have
more cases than dependent variables (DVs) in every cell
(Tabachnick & Fidell, 1996).

Second, lower expected sizes require more

Number of participants: Statistics used to examine
relationships.

Although there are more complex formulae, the general
rule of thumb is no less than 50 participants for a correlation
or regression with the number increasing with larger
numbers of independent variables (IVs). Green (1991)
provides a comprehensive overview of the procedures used
to determine regression sample sizes. He suggests N >50 + 8
m (where m is the number of IVs) for testing the multiple
correlation and N > 104 + m for testing individual predictors

(assuming a medium-sized relationship). If testing both, use
the larger sample size.

Although Green's (1991) formula is more comprehensive,
there are two other rules of thumb that could be used. With
five or fewer predictors (this number would include
correlations), a researcher can use Harris's (1985) formula for
yielding the absolute minimum number of participants.
Harris suggests that the number of participants should
exceed the number of predictors by at least 50 (i.e., total
number of participants equals the number of predictor
variables plus 50)--a formula much the same as Green's
mentioned above. For regression equations using six or
more predictors, an absolute minimum of 10 participants
per predictor variable is appropriate. However, if the
circumstances allow, a researcher would have better power
to detect a small effect size with approximately 30
participants per variable. For instance, Cohen and Cohen
(1975) demonstrate that with a single predictor that in the
population correlates with the DV at .30, 124 participants are
needed to maintain 80% power. With five predictors and a
population correlation of .30, 187 participants would be
needed to achieve 80% power.

Caveats. Larger samples are needed when the DV is
skewed, the effect size expected is small, there is substantial
measurement error, or stepwise regression is being used
(Tabachnick & Fidell, 1996).

Number of participants: Chi-square.

The chi-square statistic is used to test the independence
of categorical variables. While this is obvious, sometimes
the implications are not. The primary implication is that all
observations must be independent. In other words, no one
individual can contribute more than one observation. The
degrees of freedom are based on the number of variables
and their possible levels, not on the number of observations.
Increasing the number of observations, then has no impact
on the critical value needed to reject the null hypothesis.



The number of observations still impacts the power,
however. Specifically, small expected frequencies in one or
more cells limit power considerably. Small expected
frequencies can also slightly inflate the Type I error rate,
however, for totally sample sizes of at least 20, the alpha
rarely rises above .06 (Howell, 1997). A conservative rule is
that no expected frequency should drop below 5.

Caveat. If the expected effect size is large, lower power
can be tolerated and total sample sizes can include as few as

8 observations without inflating the alpha rate.

Number of Participants: Factor analysis.

A good general rule of thumb for factor analysis is 300
cases (Tabachnick & Fidell, 1996) or the more lenient 50
participants per factor (Pedhazur & Schmelkin, 1991).
Comrey and Lee (1992) (see Tabachnick & Fidell, 1996) give
the following guide samples sizes: 50 as very poor; 100 as
poor, 200 as fair, 300 as good, 500 as very good and 1000 as
excellent.

Caveat. Guadagnoli & Velicer (1988) have shown that
solutions with several high loading marker variables (>.80)
do not require as many cases.

Conclusion

This article addresses the definition of power and its
relationship to Type I and Type II errors. Researchers can
manipulate power with sample size. Not only does proper
sample selection improve the probability of detecting
difference or association, researchers are increasingly called
upon to provide information on sample size in their human
respondent protocols and manuscripts (including effect sizes
and power calculations). The provision of this level of
analysis regarding sample size is a strong recommendation
of the Task Force on Statistical Inference (Wilkinson, 1999),
and is now more fully elaborated in the discussion of "what
to include in the Results section” of the new fifth edition of
the American Psychological Association's (APA) publication
manual (APA, 2001). Finally, researchers who do not have
the access to large samples should be alert to the resources
available for minimizing this problem (e.g., Hoyle, 1999).
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