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Power is often overlooked in designing multivariate studies for the simple reason that it is

believed to be too complicated. In this paper, it is shown that power estimation in multivariate
analysis of variance (MANOVA) can be approximated using a F distribution for the three
popular statistics (Hotelling-Lawley trace, Pillai-Bartlett trace, Wilk's likelihood ratio).

Consequently, the same procedure, as in any statistical test, can be used: computation of the

critical F value, computation of the noncentral parameter (as a function of the effect size) and

finally estimation of power using a noncentral F distribution. Various numerical examples are

provided which help to understand and to apply the method. Problems related to post hoc

power estimation are discussed.

Because it is a central tool in the design of any study,
statistical power is introduced in all statistics textbooks.
Power reflects the probability of rejecting a false null
hypothesis (Figure 1). However, power is often overlooked
when designing a multivariate study for the simple reason
that it is believed to be too difficult to estimate. Because
power is related to sample size, the later must be adjusted
accordingly. If the sample size is too small, the study will
not be sensitive enough and if the sample size is too big, the
study will waste valuable resources. Consequently,
estimating power is essential and the choice of power
depends on the research question, measurement, design and
analysis plan (Cohen, 1988; Muller, LaVange, Landesman
Ramey, & Ramey, 1992). In this paper, it is shown that
power estimation in multivariate analysis of variance
(MANOVA) is a direct generalization of its estimation in
univariate analysis of variance (ANOVA) through the
general linear model (GLM).

Power can be estimated before the study or after the
study. The first situation will be referred to as prospective
second as

(or a priori) power estimation and the
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Figure 1. Power and errors illustrative concepts

retrospective (post hoc) power estimation. Power is
important for design, not analysis (Lenth, 2001). Since
studies can be statistically significant yet clinically
insignificant; time should be spent on what is clinically
significant in respect to the study hypothesis. Statistics are
used to help in reaching that goal, not the other way around
(Lenth, 2001). Post hoc power estimation may be useful for a
pilot study where procedures are established and the
obtained variance estimates are used for determining
sample size or effect size for future experiments. The general
procedure for power estimation is:

1-  Compute the critical F value.
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Table 1 Univariate and multivariate representations of the GLM

# DV Form v Form Type of analysis
. . Phi coefficient /
1 nominal 1 nominal .
Chi-square
1 continuous 1 nominal t-test
. . . Logistic regression
E 1 nominal >1 continuous and/or nominal . 81, . 8T . /
O Discriminant function
]
& 1 continuous 1 continuous Simple correlation / regression
<
>
= ANOVA
5 1 continuous >2 nominal .
(one-way, factorial, repeated measures)
1 continuous >2 continuous and nominal ANCOVA
1 continuous >2 continuous Multiple correlation / regression
>2 nominal >2 nominal Correspondance
. . . Multivariate logistic regression / Discriminant
>2 nominal >2 continuous and/or nominal 8! gr /
functions
> . .
d >2 continuous >2 nominal MANOVA
L
& >2 continuous =1 latent Principal component / Factor
[
>
= continuous and/or
= >2 . / 1 latent Multidimensional scaling
S nominal
continuous and/or . . .
>2 latent / >1 continuous and/or latent Structural equation modeling
atens
>2 continuous >2 continuous Canonical correlation

2-  Compute the noncentral parameter ncp (as a
function of the effect size)
3- Compute the power using the noncentral F
distribution
Whatever the design (regression, ANOVA, MANOVA,
etc.), the same procedure is always applied. Using this
procedure, the sample size required to reach a given power
can be computed using the Mathematica function provided
in Listing 2 (see the Numerical example III section).

Multivariate analysis of variance

When a research design contains two or more dependent
variables there is two possible type of analysis: multiple
univariate tests or one multivariate test. Performing
multivariate analysis of variance (MAOVA) has many
advantages (Baguley, 2004; Stevens, 1992). First, MANOVA
does not have the problem of inflated overall type I error
rate (@) that occurs when using multiple univariate tests. In
addition,

estimation of the type I error inflation is difficult since the

when multiple univariate tests are used,

multiple tests are not independents. Second, univariate tests
ignore the correlations among the variables. On the other

hand, in multivariate tests, the correlation matrix (via the
covariance) is directly incorporated into the analysis.
Finally, since the groups are combined in the overall effect,
multivariate tests are more powerful than multiple
univariate tests; the same argument applies when choosing
one ANOVA instead of multiple ¢ tests.

In this paper, attention will be focus on MANOVA.
MANOVA requires two or more categorical independent
variables (predictors), just like in ANOVA. However, unlike
ANOVA,
(criterions). MANOVA is thus employed to test the main
and interaction effects on multiple dependent variables. Like
any other linear statistics, Table 1 shows that MANOVA is

part of the general linear model (GLM) and is in fact a

it uses two or more dependent variables

special case of canonical correlation analysis (Thompson,
1984).

For concision, only a two-factor multivariate factorial
analysis will be considered in this paper. The concepts
presented here easily extended to situation involving more
than 2 factors. In a factorial MANOVA, each score is given
by a base mean for the it measurement (), some error (eijhr)
and hopefully some effect due to one (air), and/or the other
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Listing 1. Mathematica function for power estimation

power[dfi , df2 , f0bs , signdf : 0.07] :=Module[{tmp, fcrit, ncp, ohsPow},
fcrit = Quantile[FRatioDistribution[dfl, d€2], 1 - signif];

ncp = fibs v df1;

ob=Potw = 1 - CDF [HoncentralFRatioDistribution[df1, d£2, ncp], fcrit]:

Return[{ncy, ohsPowr}]:

IE
factor (fGn) and/or their interaction (efir). This is described
by the following

Yije = Hn + iy + By + By + &y, ey

h=12,..,4i=12..,kj=12..,Lr=12..n
With an appropriate coding matrix, it is possible to
represent this situation in general linear term.

Y=XB+E )
where the matrix B contains the coefficients used in
Equation 1, such that,

H‘ql‘%""’q—ll‘ﬁl‘l@l’""ﬁ—ﬂ‘(%’(%""‘(Cﬂk—]]—ll i
p| 4% %ol A1 (B BB 12

H G O Ocsp B P 10/ OB O (B

X represents the predictor matrix obtained from a coding
matrix (see below), g is the number of dependant variables, k
and [ are the number of groups for treatment ¢ and [
respectively.

The coding matrix X is not different from the one used in
univariate analysis. This full matrix is constructed by
building two coding matrices for each factor (« and f) and
then multiplying each column of the first factor with each
column of the second factor to give the interaction coding
matrix (af). An example of effect coding is shown in Table
2. Although an effect coding matrix is used for full factorial
analysis, any other type of coding (e.g. contrast, dummy)
can be used as well as any kind of mixed coding (e.g. o
contrast; f: dummy). From the coding matrix in figure 2 the
predictor matrix X is constructed as follows.

Xy Xy oo X1p
X, =| ' T2 e @)
X X X

nl n2 np

where i € {full (o, f and af)); o S or aff, n is the total
number of subject and p is the number of independent
predictors. In the full factorial model p will be set to (kxI)-1.
Finally, the criterion matrix Y contains the observed data
and is organized as follow:

Yo Yoo qu
Y= y:21 y:zz y:2q (4)
ynl yn2 o ynq

where g the number of criterions (dependant variables).

These two matrices can be concatenated into a single matrix

Xy Xy le Yu Yo o qu
N R S
X Xppo vt an Yo Yoo ynq

where, xi, represents the i subject of j» predictor, yin
represents the i subject of the h criterion, n the number of
subjects per groups, p the number of predictor and g the
number of criterion. In the case of the full model (Table 2)
the sum of square and cross product (SSCP) matrix will be
needed. The SSCP matrix is obtained by

SSCP = MIT:uu Mew — (1T Meg )T (1T Meg )/n (6)

where 1 is defined as the vector in which all the elements are
1, and T denotes the matrix transposition operation. As a
further optional processing, when the SSCP is divided by
the corresponding degrees of freedom (n - 1) then the
variance/covariance matrix is obtained. Therefore, the SSCP
is a convenient way to represent all information about
variability in one matrix.

By partitioning the SSCP matrix correctly, the canonical
correlation matrix, R, can be obtained. The SSCP must be
divided in four sections named Sp, Sp;, S, Scc which
represents the sum of squares of the predictors alone, the
sum of cross-product between the predictors and the
criterion, the sum of cross-product between the criterion and
the predictors (note that S¢ = SpcT) and the sum of squares of

Table 2 Effect coding matrix for two-level factorial ANOVA

a yij Pp

X Kna XnaXn2

Xo " Kz Xmnt Koo 7 X
0 1 o --- 0

0
0 --- 0 0 0 -0

= | X<
o X
-ooﬁf<
I Ee)

imiﬁimgig



the criterion alone respectively This is summarized using:

Spp | S
SSCP = {ppipc} %

Scp i Sec

The canonical correlation matrix can be obtained by the
following matrix multiplication

R= STpCS;iSpcS;cl (8)
From R, the error matrix (E) can be computed
E=(1-R)Sg ©9)
The degree of freedom associated with the error is given by
dferr =n—kxI (10)

The total variation is the sum of the various hypothesis
variation add to the error variation, i.e. T=E+tH +H4tH
Each matrix H is obtained by
Hi = YTM(M{ M) MY (11)

where i €{a, f off); the full model is omitted when
performing hypothesis testing. In univariate, the statistics
used is based on the F-ratio distribution.

RS,

"~ (1-RY)df
However, in MANOVA there is no unique statistic. Four

(12)

statistics are commonly used: Hotelling-Lawley trace (HL),
Pillai-Bartlett trace (PB), Wilk's likelihood ratio (W) and
Roy’s largest root (RLR). Those statistics can be obtained
from Equations 9 and 11, as seen here.

The HL statistic is defined as

S
HL=tr(HE™)=) 4 (13)
k=1
where s = min(dfi, q), i represents the tested effect (i €{a, £,
aff}), dfi is the degree of freedom associated with the
hypothesis under investigation (o, f or af) and A is k
eigenvalue, ie. the k nonzero root of the following
characteristic equation
|H-E|=0 (14)

where |H-ZE| is the determinant of H-/E.
The PB statistic is defined as

S
PB, =tr(H;(E+H;) ™) = Z} 15
i = tr(H .))ZMk (15)
k=1
The W statistic is defined as
E S
Wi = B _ I1 ! (16)
|E+Hj L1
Finally, the RLR statistic is defined as
Max
= (4) (17)
1+ Max(4)

All the statistics are equivalent when s = 1. In general there is
no exact formula for finding the associated p value except on
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Table 3 Summary table of the m and i symbolic variables.

(24
Type of
HL: analysis
() oy
(24
Type of Type of
statistics PBi analysis s
(m) ) op
(24
Type of
Wi analysis

() T,B

rare situations!. Nevertheless, a convenient and sufficient
approximation exists for all but RLR (Muller et al., 1992).
Since RLR is the least robust (Olson, 1974), attention will be
focused on the first three statistics: HL, PB and W. These
three statistics” distributions are approximated using an F
distribution which has the advantage of being simple to
understand. The multivariate F-ratio is function of their

multivariate association coefficient.
2
_ 7m dfp(m;)
= —
(-7 m; )dfy

where dfi represents the numerator degree of freedom (dfi =

F(m;) (18)

q*dfi), df2(m) the denominator degree of freedom for each
statistic m (m € {HLi, PBi and Wi}) and 7751 is the multivariate
measure of association for each statistic m (see Table 3 for
the detailed values of the symbolic indices used in Equation
18).

The multivariate measure of association for HL is given by

2 HL
=— 19
M, HL + 5 (19)
and its denominator df by
df, (HL) = s(dfg —q—1)+2 (20)
The multivariate measure of association for PB is given by
PB;
e = (1)

and its denominator df by
df,(PB;) = s(dfery —q+5) (22)
The multivariate measure of association for W is given by

2 1
i, =1-W? (23)

and its denominator df by

1 For example, Tatsuoka (1988) gives the exact formula for
the Wilk's likelihood ratio.
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Listing 2. Mathematica function for sample size estimation

samplesizePillBart[etal kK , 1 , ¢ , alpha , power ] :=
Module[{n, res, dlHyp, dlerr, 5, dfl, df?, f0bs, fcrit, ncpl,
n=2;
done = False;
While[ ! done,
If[2--1, dHyp = (k-1), d1Hyp = {k-1) {1-1)]:
dlerr =kw1x{n-1});
s =Min[g, dlHyp]:
dfl = A1Hyp « F;
df? = 5« {(dlerr - g +5);
fibs = {etal ~dLf2) / ({1 - ekal) dfl);
forit = Quantile [FRatioDistribution[dfl, df2], 1 - alpha]:
ncp = fibs «dfl;
res = 1 - CDF [HoncentralFRatioDistribution[dfl, df2, ncp], focrit];
If[res <« powrer, n=n+1, done = True]:]:
Return[{n, re=s}]:
1
df, (W;) = og +1—% (24)  Power(ny) ~1- CDF ( NoncentralFdistribution(df;, df, ncp(my)), Feit)

(27)
where
Where Fait is given by the inverse of a central F-distribution
0 =dfer —(q+1-dfj)/2 and Ferit = CDF ™ (1- ,dfy, df ) (28)
The Listing 1 shows a Mathematica function that
0= ((q2 2 _4) / (qz fdif - 5)) b2 . Zvaluates the. poT/ver given. th.e numera.lt(.)r and dzenominator
If, the multivariate association coefficient (77, ) and the
type-I error (); the default value is set to o= 0.05.
Equation 23 (like Equations 19 and 21) are related with

Cohen effect size f2 (Cohen, 1988) using the following Numerical example I: Post hoc power

equivalence In this section, power estimations are computed for the
77\%, weight losses data given by Table 5.5 of Morrison (1976)
fi2 =1 iz (25)  reproduced in Table 4. The two factors are the sex of the rats

-

Lo . . . . Table 4 Weight loss and time to complete a maze as a

The only missing information to obtain the power is the . .
. . function of the sex of the rat and the type of drug ingested

value of the noncentral parameter ncp. It is obtained by the

following Drug
nr%l- de(mi) 2 A B C
nep(my) = dfF(my) = ———— =f{"df, (m;) (26)
1-1mm,) 5,6 7,6 21,15
Thus power can be estimated if an F-value (a priori or Male 54 7,7 14,11
L . . 2 9,9 9,12 17,12
observed) or a multivariate association coefficient 77,, or a -6 ‘8 1210
Cohen’s fiz is given. Now that all the relevant information < d 2
. . 7,10 10,13 16,12
has been obtained following the general procedure 6.6 g7 149
previously described it is possible to find the estimated Female 9.7 76 148
power

8,10 6,9 10, 5




and the type of drug administered (among three) resulting
in 2x3 design (a= 2, f= 3). There were four rats of each sex
assigned to each drug. Finally, weight losses in grams and
the time to run the maze in second were observed;
Therefore, there is two dependent variables (g = 2). Using
Table 2 we construct the following coding matrix.

a | B apf
wf |11 011 0
afp 110 110 1
afy | 111 -11-1 -1
ap |-111 0i-1 0
afy |-110 110 -1
Wby |-11-1 111 1

From this matrix, it is then possible to obtain the matrix M
by assigning the corresponding row, and the corresponding
criterion value, to each subject. For example, the first row [1,
1,0, 1, 0] correspond to the “male” subjects that has received
the “drug A”. There are four subjects that belong to this
category. Therefore, this row will be repeated four times and
each one of them will be aggregated with the corresponding
subject scores on the two criterions (weight loss and time).

X Y
a B of
s1 1 1 0 1 05 6
s2 1 1 0 1 0! 5 4
s3 1 1 0 1 019 9
s4 1 1 0 1 07 6
s5 1 o 1 0 17 6
s6 1 0o 1 0 117 7
s7 1 o 1 o0 1:9 12
s8 1 0 1 0 11 6 8
s9 1 1 -1 -1 1121 15
s10 1 1 1 a1 114 1
s11 1 1 1 1 117 12
M= sl2 1 4 1 a1 1112 10
s13 -1 1 0 -1 0! 7 10
sl14 -1 1 0 -1 0 6 6
s15 -1 1 0 -1 0 !9 7
s16 1 1 0 -1 0!8 10
s7 | 1 0 1 0 -1.10 13
s18 -1 0 1 0 -11:38 7
s19 -1 0o 1 0 117 6
520 -1 0 1 0 -1: 6 9
s21 -1 1 -1 1 1 116 12
22 4 1 a1 1 114 9
23 1 1 -1 1 114 8
24 1 1 -1 1 1 :10 5

From M the SSCP matrix (Equations 6 and 7) can be
obtained

24 0 0 0 0 | 4 4
0 16 8 0 0 i -62 24
0 8 16 0 0 : -58 -14
SSCP=| 0 0 0 16 8 I -14 22
0 U (U 8 16 i -2 -6 |
4 62 58 -14 12 4105 196
4 24 14 22 -16 i 19 1833

Using Equation 8 the canonical correlation matrix R can be

obtained - L
R = 0.93673 -0.349632
0.2258 0.136781
And the error matrixji (Equation 9) is then equal tc:
E- 94.5 76.5
76.5 114

Finally, the error df (Equation 10) is n-kxI = 24-2x3=18. With
this last information, each statistics and their corresponding
power can be computed. The first step is to test for
interaction. Using the interaction part (f) of the full coding
matrix defined previously, the hypothesis matrix H,s is

|

Using Equation 13, HL,; = 0.2897 and its corresponding

obtained using Equation 11.
14.33
21.33

21.33
32.33

Ha/;’=

Hotelling-Lawley trace

effect size (Equation 19) is 0.1265 which gives an F-value
(Equation 18) of 1.1588 (sig = 0.3473) with dfi equal to 4 and
df2 (Equation 20) equal to 32. The critical F (Equation 28) is
2.66844 and the ncp (Equation (26) is 4.635. From those
outputs, the corresponding power (a = 0.05) is obtained
using Equation 27 or the Mathematica algorithm (Listing 1)
POWER(HL,) = 0.32106
or using the Mathematica function:
power[4, 32, 0.1265, 0.05] = 0. 32106.

Pillai-Bartlett trace

Using Equation 15, PB,s = 0.22695 and its corresponding
effect size (Equation 21) is 0.11348 which gives an F-value
(Equation 18) of 1.152 (sig = 0.34808) with dfi equal to 4 and
df2 (Equation 22) equal to 36. The critical F (Equation 28) is
2.6335 and the ncp (Equation (26) is 4.608. From those
outputs the corresponding power (a = 0.05) is obtained
using Equation 27 or the Mathematica algorithm (Listing 1)

POWER(PB,) = 0.32407
or using the Mathematica function:
power[4, 36, 0.11348, 0.05] = 0. 32407.




Wilk's likelihood ratio

Using Equation 16, W4 = 0.7744 and its corresponding
effect size (Equation 23) is 0.12 which gives an F-value
(Equation 18) of 1.15933 (sig = 0.3459) with dfi equal to 4 and
df> (Equation 24) equal to 34. The critical F (Equation 28) is
2.6499 and the ncp (Equation (26) is 4.6373. From those
outputs the corresponding power (a = 0.05) is obtained
using Equation 27 or the Mathematica function (Listing 1)

POWER(W ) = 0.32375
or using the Mathematica function:
power[4, 34, 0.12, 0.05] = 0.32375.

In a similar fashion, theses steps are repeated for the
main effects « (sex) and S (drug). Table 5 summarized the
results.

Numerical example II: A priori power

In this example, it is assumed that there are 3 groups
where in each group there are 20 participants (n=60). In the
present example, there is only one factor (I =1). Each
participant is measured with two variables (7 = 2). Now
suppose that the expected effect size is 77 = 0.15, what will
be the power? The complete details will be given for the
Wilk’s likelihood ratio. The required information is

n=60 7y =0.15

k=3 «=0.05
q=2 df,=k-1=2
=1

Using Equation 10, the error degree of freedom is dferr = n-kxI
= 60-3x1 =57 and df; =df, xq=2x2=4. From Equation 24,
df is obtained

2 _ 26
o gdfa 4 :\/52 4
q°+df, -5 2°+2-5
:57_2+1—2

q+1-df,
2

0 =dfg — =56.5

df, =oxg +1—%:56.5x2+1—%:112

Then the critical F (Equation 28) is computed
Ferit = CDF ™ (1- o, dfy, df, ) = CDF (1 0.05,4,112) = 2.453

Finally, the noncentral parameter is computed according to
Equation (26).
2
nepqw) - Ao W) _015x112 _,q 7
L-ny) (1-0.15)
The power can then be estimated using Equation 27.

Power (W) ~1-CDF (NoncentraIFdistribution(dfl,df2,ncp(\N)), Forit)
Power(W) ~1-CDF (NoncentraIFdistribution(4,112,19.76), 2.453) ~0.95

or using the Mathematica function (Listing 1)
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Table 6 Power estimation as a function of sample size when
the estimated effect size 7% is 0.1, the number of group for
the first factor is 3 and the number of group for the second
factor is 1 (i.e. there is no second factor) and there are three
variables measured

n power
2 0.076
3 0.124
4 0.185
5 0.254
6 0.329
7 0.406
8 0.481
9 0.553
10 0.620
11 0.681
12 0.735
13 0.782
14 0.823

power[4, 112, 19.76/4, 0.05] = 0.954
A similar procedure can be repeated for the other two
statistics (HL and PB). After the various computations, those

results are nearly identical.
Power(HL) ~ 0.95

Power (PB) ~ 0.958

Numerical example III: Sample size estimation

For sample size estimation given a power probability,
tables like the one found in statistical book could be used.
However, Mathematica can be used to find the appropriate n.
The easiest method is to estimated power starting with the
smallest possible n (=2) and then, if the resulting power is
less than the desired value (e.g. 1-f = 0.8), the n value is
increase by 1 (n=n+1) and the new power is computed. This
is repeated until the power is equal or higher of the desired
value (ex. 1-# = 0.8). The Listing 2 illustrated this algorithm
using Mathematica for the PB statistic. This algorithm can be
extended to the other two methods (W and HL).

For example, assumed that there are 4 groups where
each participant is measured with three variables (g = 3).
Now suppose that the expected effect size is 72 = 0.1 and the
type I error rate is set to 0.05, then what is the minimum
sample size if a power of 0.8 is desired? Table 6 indicates the

various powers as a function of n. From the

table, the required number of participant per
4 8roup is about 14. Thus, since there are 4 groups,
the total number of participant needed is 4x14 =
56. The algorithm given in Listing 2 will output only the last
row; the other rows were added to show the power



Table 1: MANOVA Summary
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Interaction

Statistics Value e dfi df2 F Sig nep power
HL 0.2897 0.127 4 32 1.1587 0.3473 4.6531 0.321
PB 0.22695 0.114 4 36 1.152 0.3481 4.608 0.324
w 0.7744 0.12 4 34 1.1593 0.3459 4.637 0.324

Effect o (sex)

Statistics Value 7 dfi df2 F Sig nep power
HL 0.0075 0.0075 2 17 0.6391 0.9383 0.1278 0.0582
PB 0.0075 0.0075 2 17 0.6391 0.9383 0.1278 0.0582
w 0.993 0.0075 2 17 0.6391 0.9383 0.1278 0.0582

Effect g (drug)

Statistics Value e dfi df2 F Sig nep power
HL 4.64 0.699 4 32 18.59 <0.0001 74.23 >0.9999
PB 0.88 0.44 4 36 7.077 0.0003 28.31 0.989
w 0.169 0.589 4 34 12.2 <0.0001 48.8 0.9999

progression as a function of n. Although the Mathematica
function is for factorial MANOVA, the present example is
simply a special case where there is only one factor (I =1).

Discussion and conclusion

Unfortunately there is no single test that is the most
powerful if the MANOVA assumptions are not met. If there
is a violation of homogeneity of the covariance matrices or
the multivariate normality, then the PB statistic is the most
robust while RLR is the least robust statistic. If the
the
centroids are largely confined to a single dimension), RLR

noncentrality is concentrated (when population
provides the most power test. If on the other hand, the
noncentrality is diffuse (when the population centroids
differ almost equally in all dimensions) then PB, HT or W
will all give good power. However, in most cases, power
differences among the four statistics are quite small (<0.06)
(Muller et al., 1992; Stevens, 1992), thus it does not matter
which statistics is used.

Power estimation is essential in a priori testing.
However, for post hoc estimation, careful interpretation
must be considered (Lenth, 2001). Since power and p value
are inversely proportional (Hoenig & Heisey, 2001) a non

significant p value will gives a low power; this is

tautological and uninformative. Thus, it makes no sense to
use retrospective power to “enhance” the interpretation of a
significance test (Baguley, 2004). In fact, for post hoc
analysis, likelihood and Bayesian methods (Gelman, Carlin,
Stern, & Rubin, 2004) or equivalence testing (Berger & Hsu,
1996; Chervoneva, Hyslop, & Hauck, 2007; Schuirmann,
1987) should be preferred. Therefore attention should be
focused on the effect size. Consequently, a low observed
power reflects the absence of an interesting effect rather then
a low sample size (Baguley, 2004).

Moreover, standardized effect sizes, like effect sizes
proposed by Cohen (1988), should be avoided (Baguley,
2004; Lenth, 2001). Their uses are particularly wrong when
they do not provide any information about the practical
importance of a given effect. Moreover standardized effect
sizes are function of the measurement error. Thus, it is
wrongly assumed that studies with similar standardized
effect sizes have similar effect amplitude (Baguley, 2004;
Lenth, 2001). In power analysis like any other type of
statistical analysis, flawed design can never be corrected by
a given analysis. Therefore much attention must be spent in
the design phase before it is too late.

It has been shown that power estimation principles for
MANOVA is not different from ANOVA. The same steps



are carried out as illustrated in Figure 1. Only independent
groups were considered here, however the same principles
can be applied for repeated measures (Muller et al., 1992).
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