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Eliminating Aggregation Bias in Experimental Research:

Random Coefficient Analysis as an Alternative to Performing

a ‘by-subjects” and/or ‘by-items” ANOVA

Glenn L. Thompson
University of Ottawa

Experimental psychologists routinely simplify the structure of their data by computing
means for each experimental condition so that the basic assumptions of
regression/ANOVA are satisfied. Typically, these means represent the performance
(e.g. reaction time or RT) of a participant over several items that share some target
characteristic (e.g. Mean RT for high-frequency words). Regrettably, analyses based on
such aggregated data are biased toward rejection of the null hypothesis, inflating
Type-I error beyond the nominal level. A preferable strategy for analyzing such data is
random coefficient analysis (RCA), which can be performed using a simple method
proposed by Lorch & Myers (1990). An easy to use SPSS implementation of this
method is presented using a concrete example. In addition, a technique for evaluating
the magnitude of potential aggregation bias in a dataset is demonstrated. Finally,

suggestions are offered concerning the reporting of RCA results in empirical articles.

Researchers routinely transform their data in order to
satisfy the assumptions of statistical analyses (e.g. regression
analysis). For example, log, reciprocal, and square-root
transformations are all used to correct the shape of empirical
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distributions so that the assumption of normality (Gaussian
distribution) is satisfied. Such considerations also guide how
raw data is prepared for analysis. For instance, the
regression/ANOVA that is
undergraduate and graduate-level statistics classes requires

approach taught in
that each data point be independently collected or at least
uncorrelated. In practical terms, this means that each
participant must contribute a single data-point to an
analysis. This assumption is violated in many situations
such as when a repeated measures design is used. The
solution in the special case of repeated measures is to extract
the offending ‘correlated’” between-subject variance prior to
analysis (e.g. repeated-measures ANOVA; correlated t-test).
A limitation of this strategy is that it is only applicable to
cases where researchers are interested in comparing the
This
approach is not applicable to cases where participants

repeated observations or matched observations.
generate a number of responses that is greater than the
number of experimental conditions. Often, this is the case
when the independent variable (IV) is the property of items
or a collection of items, such as a comparison of reaction

times (RTs) in response to high- and low-frequency words.
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In such cases, the data points or observations contributed by
each subject constitute clusters of inter-dependent scores
within the dataset as a whole that are often summarized by
a mean to satisfy the assumption of independence (e.g. mean
RT in response to high- or low-frequency words). Such
clustering is a consequence of a dataset structure that is said
to be complex, hierarchical, or multi-level.

The purpose of this paper is to present an SPSS macro for
analyzing multi-level data using the Random Coefficient
method proposed by Lorch & Myers (1990). First, the case is
made for abandoning a commonly used strategy for
accommodating multi-level data, namely aggregation (i.e.
computing subject- or item-type means for each
experimental condition), in favour of Random Coefficient
Analysis (RCA). This discussion is limited to a relatively
non-technical summary of previous work. Readers
interested in more technical details, such as mathematical
proofs, may consult Lorch & Myers (1990) and the other
relevant sources cited below. The development of the
followed by (a)

instructions for using the SPSS syntax provided here to

justification behind using RCA is

perform RCA, (b) a description of how the results of such
analyses are interpreted using a concrete example, (c)
demonstration of a method for evaluating the magnitude of
potential bias in a dataset, and (d) suggestions on how to
report a RCA in an empirical article.

Strategies for Analyzing Hierarchically Structured Data

It is easiest to introduce the concept of hierarchical
structure with a concrete example. As discussed above,
hierarchically structured datasets contain clusters of inter-
dependent observations that are caused by the presence of
multiple levels of analysis (e.g. participant, item). For
instance, a researcher may examine whether a group of
participants reads frequently used words aloud more
rapidly than words that are used infrequently in print. A
sample of high- and low-frequency words (e.g. 20 each) is
collected and each participant (e.g. N = 40) generates a single
response for each word. The comparison of interest is high-
vs low-frequency words on RT. Each item is associated with
40 responses and each participant produced 20 responses
per condition. Clearly, whether the dataset is examined from
the item or the subject perspective, it contains correlated
observations that must be accommodated somehow.

Cohen, Cohen, West, & Aiken (2003) identify three
possible ways of dealing with this situation, which they refer
to as the “clustering” problem (p. 539). The simplest strategy
is called disaggregation, which amounts to ignoring the
correlated responses in the dataset despite the fact it violates
a fundamental assumption of regression (i.e. independent
observation). The problems with this strategy are so obvious
that they will not be considered further here. A much more
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common strategy involves replacing correlated observations
with an estimate of central tendency like the mean so that
the dataset satisfies the assumption of independent
observation or, stated differently, the assumption of
uncorrelated observation (Hox, 2002). This strategy is called
aggregation and it yields results that are subject to important,
but oft-ignored, conceptual limitations (e.g. ecological
fallacy; Robinson, 1950) and a host of concomitant statistical
problems that are discussed below. A third strategy,
sometimes called Random Coefficient Analysis (i.e. RCA),
the data within
participants, and then determining whether the magnitude

involves first analyzing individual
of this within-subject effect differs significantly from zero on
average for the sample of participants. In what follows, the
drawbacks of the aggregation strategy are presented and

then the superior alternative RCA is discussed.

The Aggregation Strategy

The habitual way of dealing with the type of
hierarchically structured data discussed here is aggregation
(Hox, 2002). Aggregation involves computing an estimate of
central tendency to summarize multiple scores at one level
of analysis (e.g. items) with a single observation at another
level of analysis (e.g. participants). For example, the
responses of each participant might be averaged over items
within cells of the experimental design (averaging over
subjects is also an option, but bias remains an issue).! For
the scenario developed earlier, this procedure would result
in two observations per participant: mean RT for high- and
low-frequency words. The ‘by-subjects’ solution yields data
that can be submitted to a repeated-measures analysis
because the structure of the dataset has been simplified to
reflect the comparison of interest, which is high vs low
frequency words. However, while accurately estimating cell
means, aggregation decreases the complexity of datasets at
the expense of (i) forcing researchers to choose between
performing a by-subjects analysis or a by-items analysis, (ii)
decreasing the accuracy of population variability estimates,
and (iii) inflating the probability of spuriously rejecting the
null hypothesis (Lorch & Myers, 1990; Raudenbush & Bryk,
2002; Raaijmakers, 2003).

Type-I error inflation arises in the by-subjects frequency
example because the treatment effect is confounded with the

! Raaijmakers (2003) recommends analyzing aggregated data
by-subjects or by-items, but not both unless there is a special
reason for doing so. Statistics that are available for
combining the F-tests produced by both analyses are too
conservative in most cases (i.e. they inflate Type-II error
rates). The RCA method presented here renders the point
moot, however, as it effectively combines both by-subjects
and by-items analyses.



degree to which the treatment effect varies across
participants. Thus, statistically significant effects that are
observed with ANOVA using the aggregate strategy may be
due to a participant by experimental-effect interaction rather
than the experimental effect per se (Lorch & Myers, 1990).
To understand why this is so, the logic of the F-test
(ANOVA, Regression) needs to be understood.

The reasoning behind the F-ratio test is simple. If an
estimate of overall variance is large enough relative to an
estimate of error variance, then the null hypothesis of no
experimental effect is rejected (Howell, 2002, pp. 324-325).
The estimate of overall variance is called the mean square
treatment (MSetfect) and the estimate of error variance is
called the mean square error (MSerror). The MSettect estimate
comprises two general components: (a) variance caused by
the experimental effect and (b) error variance. In contrast,
the MSerror variance estimate is comprised solely of error
variance. If MSeffect and MSerror are equal, then F is equal to 1,
and there is obviously no treatment effect. If MSeftect is
greater than MSeror, then the probability of obtaining the
resulting F value — assuming the null hypothesis of no effect
is true — is determined using its degrees of freedom and the
known F-ratio probability distribution. If this probability is
small enough (say .05), we reject the null hypothesis in favor
of the alternative: the treatment has an effect. The logic of
the F-ratio test, of course, only holds if the error variance
component within MSeffect is comparable to that represented
by MSerror.

Regrettably, the aggregation strategy produces MSeffect
and MSerror terms that contain qualitatively different error
estimates. The violation of the F-ratio’s logic is apparent
when one examines the MSeftect (1) and the MSerror (2) terms
that result from aggregation:
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interaction” components. This more appropriate error term
can be obtained by analyzing the effect of item variables
within each subject separately and then testing whether
estimates for these effects differ reliably from zero, on
average, across participants. The MSerror that is produced
using such a strategy effectively isolates the treatment effect
when the F-ratio is computed (3).

MSerror = [ (Subject - Treatment error) + (Residual error) ](3)
Among other things, this strategy avoids the biases inherent
in the aggregation strategy, and it is less awkward to apply
because the statistical analysis is tailored to the dataset
rather than vice-versa.

Random Coefficient Analysis (RCA)

Lorch & Myers (1990) recommended the use of a simple
RCA procedure for analyzing the type of multi-level data
that is common in experimental research.? Within this

2 An analytical strategy that accomplishes the same thing as
RCA is called the fixed-effects approach to clustering (Snijders
& Boskers, 1999, as cited in Cohen et al, 2003, p. 541;
Presented as an alternative way of implementing RCA in
Lorch & Myers, 1990). This strategy requires that the raw
data file (as defined in the body of the text) be analyzed with
a single regression equation. The experimental effect and
error variance (e.g. participant by treatment interactions) are
disentangled by entering a series of dummy variables in the
regression equation along with the predictor variables. The
simple between-participant differences are statistically
controlled by coding the identity of each participant using
N-1 dummy variables. These variables remove the same
variance that is associated with the main effect of

participants (i.e. the individual differences) in a standard

MSettect =[ Treatment effect | + [ (Subject - Treatment Interaction error) + (Residual error)] (1)
MSerror = [ Residual error ] (2)

An F-ratio based on such a mean square error does not
disentangle the contribution of the experimental effect (i.e.
the linear component) and the degree to which the treatment
effect varies across participants (i.e. the non-linear
participant by experimental-effect interaction). Thus, a
statistically significant effect could be due to one of three
things: (a) a significant experimental effect, (b) significant
variation in the treatment effect across participants, or (c)
both of these things. The ambiguity is caused by the absence
of the participant by treatment interaction in the MSerror term.
This source of error must be present in the denominator of
the F-ratio to statistically control for its presence within the
numerator.

An obvious solution to this problem would be to
generate an F-ratio based on an MSerror term that includes

both the ‘residual error’ and the ‘participant by treatment

repeated-measures analysis. To control for the error variance
associated with aggregation bias, the product of each
dummy variable with the predictor variable(s) is entered
into the regression equation (i.e. the participant by treatment
interaction).

While this strategy and the RCA method presented in the
body of this paper accomplish the same goal, there are
reasons for choosing one over the other as circumstances
dictate (Cohen et al, 2003, pp. 565-566). The fixed-effects
approach is appropriate when the cluster has a substantive
meaning, but less useful for cases where the grouping is
simply a random sample across which a researcher wishes
to generalize experimental effects. For example, a social-
psychology project where participants are clustered within
ethnic neighborhood may be an appropriate case. In the case
of item-attribute effects, the participants are not meaningful



context, the term random refers to the fact that RCA
examines the effect of IVs on the dependent variable (DV)
indirectly via the values of unstandardized beta coefficients
that are sampled “at random’ from a probability distribution
for each participant (for elaboration on this use of the term
‘random’, see Cohen et al, 2003, p. 544).

RCA is a two-step procedure for evaluating the
reliability of effects in hierarchically structured designs that
has been used only sporadically by cognitive scientists (e.g.,
Borowsky, Owen, & Masson, 2002; Chateau & Jared, 2003)
despite the fact that it estimates the statistical significance of
experimental effects more accurately than does aggregation.
At step one, the analysis begins with the assessment of item-
level effects within each participant (e.g. item-characteristics
predicting subject responses). For step two, the statistical
significance of the item-level effects across participants is
assessed using standard tests like the single-sample t-test
and possibly ANOVA/regression. In other words, the
influence of subject-level variables can be evaluated at this
(e.g. The
combination of steps 1 and 2 are essentially equivalent to a

point individual differences like gender).
least-squares estimated hierarchical linear or multi-level
model (Hox, 2002; Raudenbush & Bryk, 2002). Such analyses
can be applied to many types of hierarchically structured
data (e.g. students nested within schools; children nested
within families), but only the special case of items nested
within participants will be considered here. In what follows,
steps 1 and 2 of the Lorch & Myers (1990) method for RCA
are each described in turn.

The first step in performing an RCA is to run an ordinary
regression within each participant. This level of analysis can
be considered the item-level or level-1. Each regression at
the item-level involves the prediction of a DV (e.g. RT) on
the basis of a set of predictors that can be item attributes or
other types of variables (see Hox, 2002). These predictors can
be both main effects and interactions involving categorical
(e.g. ANOVA design; Cohen et al., 2003, pp.302-308) and/or
continuous variables (pp. 255-300). The N regressions
performed during the first step of a RCA yield N
unstandardized beta coefficients for each item-level IV.
These beta coefficients serve as data at the level of
participants in the second step of RCA (level-2).

For the second step, the beta coefficients from step one

per se except in so far as they are associated with
participant-attributes (e.g. gender). Therefore, the type of
research discussed here (item-attribute effects within and
across participants) is more appropriately submitted to an
RCA. The only exception is the case where there are fewer
than 10 participants, in which case the fixed-effects method
is recommended.
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can be used to answer at least two kinds of level-2 statistical
questions (i.e. participant-level questions). First, a researcher
might be interested in determining whether estimates of an
item-level effect, which are represented by beta coefficients
computed for each participant, are significantly different
from zero for the sample on average. Alternatively, a
researcher might be more interested in evaluating the effect
of individual differences by, for example, comparing groups
of participants to each other. Both types of comparisons are
possible so long as the same type of regression analysis is
performed within each participant (i.e. same predictor
variables).

The first type of participant-level test is performed by
comparing a collection of beta coefficients to the value of
zero using a single-sample t-test. A statistically significant
result indicates that, providing that the null hypothesis is
true, the probability of observing an average beta coefficient
as big as this or bigger for the sample of participants is less
The second kind of
participant-level test evaluates the relationship between
(e.g.
parameters. To test whether a participant-level variable has

than the nominal alpha level

participant  variables gender) and item-level
a direct effect on the DV (main effect), its association with
the item-level intercepts is evaluated. The intercept is useful
here as it is a baseline value on the DV for each participant
with which a predictor may or may not be associated. Of
some use is the fact that, when predictors are centered (see
below), regression equation intercepts can be interpreted as
an unweighted mean for the participant on the DV. To test
whether a participant-level variable interacts with an item-
level predictor by modulating its effect on the DV, a
regression predicting the item-level unstandardized beta
coefficients is performed. The nature of the observed
relationship depends on whether the participant-level
variable is associated with an increase or a decrease in the
absolute magnitude of the item-level beta coefficients
(increasing or decreasing the strength of the effect) and
whether the direction of the effect is reversed.

RCA

hierarchical datasets in a single, if multi-step, procedure

In summary, represents the complexity of
without introducing the bias associated with aggregation.
The advantages of RCA are many and they include (a)
unbiased estimation of error variance, (b) synthesis of ‘by-
subject’ and ‘by-item’ analyses within a single procedure
without artificially inflating Type-II error (for a discussion of
the limitations associated with other strategies for
combining subject and item analyses, see Note 2; for a more
detailed discussion, see Raaijmakers, 2003), (c) outputs that
facilitate use of alternative forms of data presentation (e.g.
confidence intervals for main effect and interaction slopes;
for recommendations, see Loftus, 1996; for formula and

other details, see Loftus & Masson, 1994; Masson & Loftus,



2003), and (d) the possibility of using continuous predictor
variables so as to avoid the loss of power associated with
imposing an artificial dichotomy on the predictor to satisfy
the requirements of a by-subjects ANOVA with aggregated
data (on the cost of dichotomization, see Cohen, 1983;
Donner & Eliasziw, 1994; Hunter & Schmidt, 2004, p. 210).
Finally, the procedure does not require major leaps in
conceptual and mathematical understanding for the typical
researcher because it is based on a straight-forward
combination of statistical techniques that are covered in
undergraduate-level statistics courses (regression, t-test).

The simplicity of RCA is advantageous as the strengths
and limitations of the statistical procedures on which it is
based are well-studied and familiar to most researchers. The
responsible application of RCA involves, among other
things, ensuring that the assumptions of regression and of t-
test analyses are satisfied for the data to which they are
applied. For example, the assumptions of regression must be
verified within each participant to ensure the validity all
inferences (for a detailed treatment see Cohen et al., 2003; for
an introductory treatment see Tabachnick & Fidell, 2001).
Similarly, care should be taken to plan studies that are likely
to have sufficient power for detecting meaningful effects at
each step in the analysis. Formulas for power calculation are
widely available for regression and t-tests.3

When should RCA be applied? RCA is appropriate when

3. Green (1991) proposed formula for estimating power and
sample size for regression analyses. To ensure adequate
power for the item-level coefficients (e.g. minimum of .80),
the following formula can be applied for estimating N: N >
(8 / f2) + (m -1 ), where N is the number of observations
required, m is the number of beta coefficients to be
estimated within each participant, 2 is equal to r2/ (1 - 12),
and r? is the expected effect size (w? or another adjusted
“percent explained” effect-size estimator may be used in
place of r?). For t-tests, Campbell and Thompson (2002)
present a simple technique for computing effect sizes,
power, and required N to achieve a given level of power for
tests with 1 degree of freedom (for other cases, see Levine,
1997). First, the expected effect size (Cohen’s d) is estimated
based on past research (See Thalheimer & Cook, 2002, for
many simple formulas for calculating observed d in
published research using commonly reported statistics like
MSerror) or the values proposed by Cohen (1988) for small
(.20), medium (.50), and large (.80) effects. For both
regression and t-tests, special circumstances that would
like
participants or unreliable measures would require that the

reduce power non-normal distributions within

sample size be increased to maintain the stated level of
power (Tabachnick & Fidell, 2001, p. 117).
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data are hierarchically structured and the fundamental
assumptions of regression are satisfied (for its application to
the case of a binary DV, see Myers & Broyles, 2000). Many, if
not most, experiments reported in the cognition literature
that examine the effect of item-attribute variables across
these Under
circumstances, RCA may prove to be useful as a tool for

participants ~ meet criteria. certain
verifying results obtained using an aggregation strategy (e.g.
it is reported alongside conventional analyses by Chateau &
Jared, 2003). In principle though, RCA can and should
replace more commonly-used techniques like aggregation
when it is appropriate (see above), unless the total number
of participants is very small (e.g. N < 10), in which case a
procedure known as the fixed effects approach to clustering
should be employed (see Note 2).

More advanced procedures for estimating parameters
(e.g. maximum likelihood) and adjusting parameters (e.g.
Empirical Bayes estimation) within a random coefficient
framework are available with sophisticated specialized
programs like HLM (e.g. Raudenbush, Bryk, & Congdon,
2004) or MLwin (e.g. Rasbash et al., 2000), and also in SPSS.
However, the simple RCA method described here and
developed by Lorch & Myers (1990) is a viable alternative to
without the

necessary for using more advanced techniques effectively

aggregation for researchers background
(for readable introductions to such analyses see, Hox, 2002;

Raudenbush & Bryk, 2002).

A Macro for RCA

It is possible to perform the RCA described above using
the SPSS drop-down menus (i.e. with a mouse), but this
procedure is time-consuming and prone to errors. A more
efficient and reliable strategy is to run RCA analyses using a
user-supplied program called a macro. In the appendix, the
macro syntax for performing RCA as well as some syntax for
executing the macros is presented. The functions performed
by this syntax are described in what follows. In the final
section, this macro is applied to some realistic data in the
hopes of facilitating understanding of RCA in general and
the macro in particular.

RCA in SPSS

To perform a RCA, the relationship between the DV (e.g.
RT) and the IVs must be summarized by beta-weights for
each participant. In the appendix, the macro named
‘RCAsetup’ performs this function. To use this macro, the
raw data file must contain a variable that identifies each
participant uniquely (i.e. an ID variable), one variable or
column for each item-level independent variable (IV), and a
variable/column for the dependent variable (DV).
Essentially, the data file should be structured so that each
row represents a single experimental trial. The datum (DV



value) for a given trial is generated by a participant (Subject
ID) in response to an item with particular properties (IV 1,
IV 2, etc...). For example, the first trial in a data set may
contain an RT of 566, a subject ID of 1, and values for the IVs
of .5 (e.g. for ‘high frequency’) and -5 (e.g. for ‘low
imageability” ). If necessary, an IV representing the
interaction between two IVs can be created by computing a
of the

variables/vectors (for important cautions when using

variable representing the product two
continuous IVs, such as the need to center predictors, see,
Cohen et al., 2003, pp. 255-300).

If the data file is structured appropriately, executing the
macro should generate a new data file containing one row
with an intercept and a series of unstandardized beta-
weights for each participant. The number of beta-weight
variables in the new file should be equal to the number of
first-order predictors (e.g. item-level variables like frequency
or imageability). In the new file, the initial ID field is
preserved but all other variables in the original file will be
absent.*

The second macro tests the mean value of each beta-
weight variable against 0 (i.e. a one-sample t-test). This
macro generates an output containing descriptive statistics
for the beta-weight variables (Mean, Standard Deviation,
Standard Error), 95 percent confidence intervals for the
average beta-weights, and summary statistics for a single-
group t-tests, which is equivalent to a repeated-measures
test of the differences between conditions with unbiased
error terms. If an ANOVA or a Regression is desired using
participant-level IVs, then it can be performed through the
drop-down menus in the usual manner using the intercepts
(CONST_) as a DV to test for a main effect, or using the beta-
weights as DV to test for interactions between IVs (item-
level by participant-level interaction).

To use these macros effectively, they should be executed
in isolation. This can be accomplished by selecting the
relevant syntax, and selecting ‘run current’ from the right-
click menu. Executing this syntax loads the macros into SPSS
memory. Once the macros are in memory, separate syntax

4 If applicable, participant-level variables may be recovered
from the original file by using the Data/Merge Files/Add
Variables from the drop-down windows. From the resulting
window, simply select the original data file and choose to
The two
files can be matched using the participant ID field. Once

import the participant-level variable of interest.

participant-level variables are in the same file as the
unstandardized beta coefficients, level-2 hypotheses can be
tested in the usual way using intercepts as DV to test main
effects and the average beta coefficients as DV to test for
interactions (see text).
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must be provided for analyzing data with the macros (i.e.
macro calls). This syntax must begin with the macro name
and be followed by a list of variables to be included in the
analysis. For the first macro, this list of variables must be
provided in a specific order: ID variable name in rounded
brackets, followed by the DV name in rounded brackets, and
finally a list of item-level IVs in rounded brackets. An
example of syntax for executing the macros is provided in
the Appendix, but the variable names that correspond to
those in your database must replace the default names. A
description of how to analyze the dataset that is available for
download with this article using the supplied macro syntax
is presented in the following section.

An Example to Try with the RCA Macro

This section begins with a description of how to use the
RCA syntax to analyze the data provided. A detailed
description of how to interpret the results generated by this
analysis is then wundertaken, which is followed by
suggestions for effect size estimation in RCA, and a
comparison of the RCA results with the results of an
analysis based on aggregated data.

Replication of the example reported here requires the use
of two files that are available for download with this article.
The first is an SPSS data file labeled Thompson.sav. The
second is an SPSS syntax file labeled Thompson.sps. The data
file contains four variables (columns): participant ID
number, the DV (RT in milliseconds, ms, for a specific item)
and the IVs Imageability (coded as - .5 = low-imageability, +
.5 = high-imageability), Frequency (coded as - .5 = low-
frequency, + .5 = high-frequency), and the interaction
between the two, which was obtained by the following SPSS
command:

COMPUTE fxi = freq*imag.

EXECUTE.

The data are structured so as to allow the regression
equivalent to ANOVA to be performed within each
participant. The logic behind using the values .5 and -.5 to
denote membership within levels of the IVs is explained in
the section below entitled “Coding issues’.

To perform Step one of RCA on these data, both the data
file and the syntax file identified above must be opened in
SPSS using File/Open/Data and File/Open/Syntax from the
drop-down menu. Begin by examining the syntax file. It
contains two types of lines: those that begin with the
character * are dedicated to comments explaining the syntax,
which are ignored by SPSS; those that do not begin with this
character contain active syntax that is interpreted by SPSS
when executed. Initially, the RCA macros must be loaded
into memory. To do this, select the block of text containing
the macro syntax, right-click the mouse, and then click the
‘run current’ option. The macro is now available to be called



upon like any other syntax command. To call the first macro
into action, select the syntax beginning with the word
‘RCAsetup’. Executing this syntax causes SPSS to perform a
standard regression analysis within each participant
individually, and then to create and open a data file named
betas.sav containing a row of unstandardized beta
coefficients for each participant. Examine the output file that
is generated for error messages and then close the output file
without saving. If there are no problems, execute the next
line of syntax to call the second macro into action and test
whether the item-level effects are significantly different from
zero for the sample of participants (e.g. for frequency,

imageability, and frequency by imageability).

Coding the predictors.

In this example, we are analyzing ANOVA type data
(categorical predictors, continuous DV) using a regression
approach. In order to produce meaningful unstandardized
beta coefficients, the predictors, in this case frequency and
imageability, must be given appropriate values. Cohen and
colleagues (2003) suggest a number of methods for coding
categorical variables that produce equivalent overall
regression equations, but different unstandardized beta
coefficients. Arguably the simplest of these strategies is to
“dummy code” the IVs assigning the value of 0 to one group
and the value of 1 to the other.> However, in most cases it is
desirable to center predictors so that 0 represents the
average value of each predictor. Centering predictors prior
to running regression produces beta coefficients that
represent the effect of a predictor averaged over levels of the
other predictors included in the analysis, which is useful
since that is precisely the type of effect that an F-test in an
factorial ANOVA table evaluates. Similarly, centering
predictors causes the intercept to be equal to the value of the
DV when all predictors are average (i.e. 0), which makes it
the unweighted participant mean on the DV across all
predictors.

In the present case, the item-level IVs are centered round
the value zero because the low-frequency and high-
imageability items are coded as -.5 while the high-frequency
and high-imageability items are coded as +.5. We use the
absolute value of .5 so that the difference between groups is
equal to 1 [.5 — (-.5) = 1], which is important to ensure that
the unstandardized beta coefficients is easy to interpret. If

5 If there are more that two levels (g) per predictor, the
categorical variable is represented by g-1 dummy variables
(e.g. 0 vs 1) or contrast code variables (.5 vs -.5). For details
on how to devise coding schemes for regressions with
categorical independent variables (especially orthogonal
coding schemes), see Cohen et al (2003), Tabachnick & Fidell
(2001, pp. 149-150), or another good statistics textbook.
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the difference between codes was a value other than 1, the
beta coefficient would not represent the average difference
between levels of a main effect. This is true because beta
coefficients represent the average increase in DV associated
with a 1-unit increase in the predictor.

Interpreting the results.

The data from 64
participants (mixed condition; Thompson & Desrochers,

Thompson.sav file contains
2003) that were modified slightly by adding a small non-
zero value that was sampled from a normal distribution to
each observation. The original data were taken from an
experiment examining the influence on lexical decision
performance of lexical frequency (i.e. the frequency of
occurrence of a word in a corpus of text) and imageability
(i.e. the ease with which participants evoke a mental image
in response to a word). Visual lexical decision is a task that
requires participants to discriminate between real words
and nonsense words that are presented one at a time on a
computer screen by button press. The DV in the data file is
reaction time (RT) in milliseconds (ms). Each participant
made twenty-five responses to words per experimental
condition (e.g. 25 highly imageable words of low-frequency,
25 highly imageable words of high-frequency, etc...) for a
total of 100 observations per participants minus the data for
incorrect responses, which were discarded prior to analysis.
Participants made an equal number of responses to
nonsense words and these were also discarded.

As noted above, regression analyses were performed
separately for each participant (i.e. step one). Interpretation
of an average beta coefficient for a sample of participants is
similar to the interpretation of beta coefficients generated by
a more conventional analysis. If a beta coefficient is
interpreted as the average x-unit increase in the DV
associated with a 1-unit increase in the IV, then the average
beta for a sample of participants is interpreted as the mean
average x-unit increase in the DV associated with a 1-unit
increased in the IV for the sample. From an ANOVA
perspective, an average beta is simply the average mean
difference between conditions for the sample.

For the present example, interpretation of the average
beta coefficients is relatively easy. Because the main effects
discussed here only have two levels (coded -.5, +.5), an
average beta coefficient is equal to the average difference in
ms across participants between the two conditions and also
the average effect of the IV in ms. If the procedure described
above was executed correctly, the results should indicate
that the average beta coefficients for the Frequency effect,
the Imageability effect, and their interaction are -129.13, -
53.33, and 84.43 respectively. The single-sample t-tests
indicate that all three effects are significantly different from
zero. Thus, we have observed statistically significant main



Table 1. Magnitude of Aggregation Bias: Comparing ANOVA Statistics and Effect Size Estimates for the Aggregation and

RCA Strategies
Strategy MSeffect SSerror MSerror ~ F-ratio  d cohen  Partial n?
Aggregation (A)
Frequency (F) 1067243.74 346104.96 5493.73 194.27 -1.76  0.76
Imageability (I)  182013.45 205091.60 325542 5591 -094 047
FxI 114060.36  207184.95 3288.65 34.68 1.48 0.36
RCA
F 1067242.72 351601.56 5580.98 191.23 -1.74 0.75
I 182013.50  208300.96 3306.36 55.05 -0.94 047
FxI 114060.47 210460.74 3340.65 34.14 147 0.35
Bias (A - RCA)
F 1.02 -5496.60 -87.25  3.04 -0.02  0.01
I -0.05 -3209.36 -5094  0.86 0.00 0.00
FxI -0.11 -3275.78 -52.00 0.54 0.01 0.01
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Note. The observed (retrospective) power for all tests is effectively 1. MSettect is equal to SSettect because all treatment effects

have a single degree of freedom. Partial n? reflects the proportion of variance explained by a predictor after between-subject

variance and the variance attributable to the other predictors has been removed. The symbol d cohen is an estimate of effect

size that expresses the mean difference between conditions in standard deviation units. All A and RCA effects in the

example data are statistically significant for degrees of freedom (1, 63) at p <.01.

effects for frequency and imageability, and a significant
interaction between the two. These significant effects are
interpreted as follows. The direction of the frequency effect
(negative) indicates that high frequency words (coded +.5)
are read aloud 129.13 ms (Standard Error = 9.27) more
rapidly than low-frequency words (coded -.5), t (63) = 13.93,
p < .001. The direction of the Imageability effect (negative)
indicates that high-imageability words (coded +.5) are
recognized 53.33 ms (Standard Error = 7.13) faster than low-
imageability words (coded -.5), t (63) = -7.48, p < .001. These
two main effects are qualified by a statistically significant
interaction, average unstandardized beta = 84.43 (Standard
Error = 14.34), t (63) = 5.89, p < .001. The signs of the main
effects (both negative) and the interaction (positive) indicate
that the effect of one IV is reduced as the value of the other
increases. Decomposing the interaction so that it can be fully
interpreted requires a bit more work.

Simple effects testing.

Statistically significant interactions are the justification
for examining the statistical significance of one IV within
levels of another. The reason for this is clear in RCA as the
unstandardized beta coefficient for the interaction is literally

the average difference between the simple effects (or simple
slopes) of one IV across levels of the other for the sample.
Because the difference between simple effects is significant
here, we know that the effect of imageability is statistically
different depending on the frequency of the associated
words. We now might want to determine more precisely
what the nature of the imageability effect is within levels of
frequency. For example, is the effect of imageability reversed
as frequency-level changes? It is possible to answer this
question using the simple slope tests that are available in the
literature (Aiken & West, 1991; Cohen et al, 2003). However,
an easier way to perform simple effects testing with
categorical predictors is to re-run the analysis that tests the
effect of only one of the IVs (e.g. imageability) twice: once
using only low-frequency words and once using only high-
frequency words.

To perform simple effects testing with the example data,
open the original data file (Thompson.sav) and then execute
the first block of simple effects syntax. Then, open the
original data file again (without saving the version that is
already open) and execute the second block of simple effects
syntax (see Thompson.sps). This procedure will re-execute
the original analysis twice, once with high-frequency words



and once with low-frequency words. If performed correctly,
the results should indicate that the effect of imageability is
statistically significant for low-frequency words only. The
average beta value for the imageability effect within the low-
frequency condition is -95.54 ms (Standard Error = 11.72), t
(63) = 8.15, p <.001. In contrast, the average unstandardized
beta coefficient for high-frequency words is only -11.11 ms
(Standard Error = 8.19), t (63) = 1.36, p = .18. Examination of
the 95 % (within-subject) confidence interval for this non-
significant difference, which is provided in the output,
indicates that the data are consistent with both a relatively
large high-imageability advantage over the low-imageability
condition (lower-bound for the difference between
conditions: -32.88 ms) and a small effect that is of about the
same magnitude as the observed difference in the opposite
direction (upper-bound for the difference between
conditions: + 10.65 ms). In other words, the evidence for an
effect of imageability with high-frequency words, in either
direction, is weak to say the least. Note that the difference
between the simple slopes is equal to the average beta
coefficient for the interaction that was obtained in the

overall analysis, — (-11.11) — (-95.54) = 84.43.

Calculating effect-size in RCA.

Lorch & Myers (1990) did not recommend an estimate of
effect size for the RCA technique described here. Reaction
time (e.g. in ms) is a DV that has an intuitive meaning and
therefore standardized measures of effect size are less
relevant than they otherwise might be. However, if
standardized estimates of effect size are desired, it is
possible to compute an appropriate within-subjects Cohen’s
d (d cohen) by dividing the average beta coefficient value for
the sample of participants, which can be considered an
average difference between conditions, by its standard
deviation, which can be considered the standard deviation
for the difference between conditions (for more details, see
Cohen, 1988; Howell, 2002, pp. 235-236). This estimate of
effect-size can be conceived as an expression of the
experimental effect (absolute difference between conditions)
in standard deviation units (i.e. a standardized effect or
standardized difference). For more information on dcohen
consult the sources noted above or a good textbook. To
explore the implications of different effect sizes on things
like distribution overlap try the program g*power 3, which
is freely available for download (Faul, Erdfelder, & Buchner,
in press).

Readers that prefer thinking about effect size in terms of
percent of variance explained can calculate partial-n?, which
is the estimate of observed effect size produced by SPSS for
repeated-measure designs, for RCA using sum of squares
that are calculated in the manner described below. For any
given IV, partial-n? is the proportion of variance in the DV
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left unexplained by the other IVs in the analysis that is
accounted for by that variable (analogous to a partial
correlation, or more accurately partial-r?). Using within-
subject SS, the formula for this calculation is: partial-n? =
SSeftect / (SSeffect + SSerror). The d cohen and partial-n? values for
the RCA along with those obtained by analyzing the
aggregated data are reported in Table 1.

Practical Importance of Aggregation Bias

At this point, one might wonder what the importance of
aggregation bias is in practice. Lorch & Myers (1990)
examined this issue through simulations, but empirical
study of this issue in experimental psychology (esp.
cognitive psychology) is hard to find. The purpose of this
section is to provide two types of evidence designed to
convince skeptical readers of the practical importance of
aggregation bias. First, the results of the Lorch & Myers
simulations are briefly reviewed. These results demonstrate
that in principle the magnitude of aggregation bias can be
quite large. Then, researchers are provided with a method to
estimate the potential bias in their own data. By providing
researchers with this method, it is hoped that the problem
presented by aggregation bias will be more difficult to
ignore. The method is demonstrated using the data
described above, but this demonstration is not intended as a
general test of the practical importance of aggregation bias
nor should it be interpreted as such.

Review of Simulation Results

Lorch & Myers (1990) demonstrated that the magnitude
of aggregation bias, which they operationalized as Type-I
error inflation in their simulations, depends on at least three
factors that seem to interact synergistically. In other words,
the effect of one of these factors is magnified as the
magnitude of the others increases. The first and most
obvious factor is the variance of between-condition
differences in the population (i.e. the population variance for
the average beta coefficients computed in RCA). The larger
the variance is in the population, the greater the potential
magnitude of aggregation bias. We can extend the
implications of this finding a bit by calling upon what is
known about sampling error, which causes over- or under-
estimation of the population variance from sample to
sample. Because the magnitude of aggregation bias depends
on this variance, it should also vary from sample to sample
even if all other factors are kept constant. These fluctuations
will be especially important when sample sizes (number of
participants) are small (see the law of large numbers; central
limit theorem). The two other factors examined by Lorch &
Myers (1990) were (a) the number of items per participant
and (b) the inter-item correlation within experimental
conditions. Both factors are positively associated with



aggregation bias, which is a somewhat counter-intuitive
finding in that both factors are positively associated with a
score’s — in this case a mean’s — reliability. In fact,
‘improvement’ on these two parameters can actually
degrade the quality of the analysis in situations where RCA
is appropriate and aggregation is used instead. According to
the results reported by Lorch & Myers (1990), even with a
of wvariability (.25),
correlation (.20) and the use of only 10 items per participant,

conservative estimate inter-item
aggregation bias can inflate the nominal alpha level from .05
to .79 (their Table 2)! Again, sample to sample fluctuations in
reliability (for a discussion of this issue, see Thompson &
Vacha-Haase, 2000) could cause additional variation in the
extent of aggregation bias across experiments, even those
with identical methodologies.

In addition to the factors examined by Lorch & Myers,
many other methodological factors (e.g. the magnitude of
real experimental effects, the number of participants, design
complexity) could directly or indirectly determine the extent
of bias. Though we know some things about what tends to
increase or decrease the amount of potential bias in a given
dataset, it is currently impossible to know what the practical
importance of aggregation bias will be for any given
experiment. Ultimately, it is best to avoid aggregation bias
altogether by using a bias-free technique like RCA.

Assessing the Magnitude of Aggregation Bias with Real
Data

The demonstration provided by Lorch & Myers (1990)
should be sufficient to convince researchers of the practical
importance of aggregation bias. Nevertheless, researchers
may be more motivated to change their ways if they are able
to evaluate the extent of potential aggregation bias within
their own data. Further, in the absence of formal meta-
analyses examining the issue, informal tests of aggregation
bias that are conducted by researchers could increase
awareness of the problem and its potential magnitude for
specific types of research. For these reasons, a method is
demonstrated for comparing RCA results to those produced
by analyzing aggregated data. A secondary benefit of
providing this demonstration is that it requires the
conversion of RCA statistics into a form that is familiar to
many researchers: the ANOVA summary table. Among
this
computation of effect-size estimates like partial-n

other things, transformation allows the easy

To perform the comparison, two types of values were
obtained: (a) ANOVA and effect size estimates from an
analysis using the aggregation method and (b) ANOVA and
effect size estimates computed based on the RCA statistics
from the example reported above. The results for the
analysis of aggregated data were obtained by running the

syntax in the file Thompson_aggr.sps with the following
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data file open: Thompson_aggr.sav. This data file was
produced by transforming the original (Thompson.sav)
using the aggregation and restructure functions in SPSS. In
contrast, the standard ANOVA counterparts to the RCA
statistics reported above were obtained through calculations
that were made without the use of SPSS. This conversion
process must be explained in detail to be easily understood
and replicated. First, the sum of squares effect (SSeffect) and
the sum of squares error (SSerror) are computed based on the
unstandardized beta values and their respective standard
deviations.

To compute the SSeffect Values, the unstandardized beta
coefficients are squared and then multiplied by N. The
exception is the interaction coefficient, which is divided by
two before squaring.® To obtain the SSeror for a given effect,
the standard deviation of its coefficient is squared and then
multiplied by N. Again, the exception is the interaction
SSerror, which requires that the standard deviation be divided
by two before squaring. The other F-test statistics are
derived from the resulting sums of squares values in the
usual manner. First, each sum of squares value is divided by
its degree(s) of freedom to produce corresponding mean-
square values. Second, F-ratios are computed by dividing
each MSefect estimate by its associated MSerror term. The
ANOVA statistics for the RCA and Aggregation analysis are
reported for easy comparison in Table 1.

The first thing to note about Table 1 is that the MSefrect is
identical for both analytical strategies. The hand calculation
of the RCA values introduced a little rounding error, but
otherwise the comparison is consistent with formal
that RCA
equivalent estimates of the absolute magnitude of treatment

demonstrations and aggregation produce
effects (i.e. estimates of means and therefore differences
between means; Lorch & Myers, 1990). The second thing to
note about the table is the difference between the MSerror
values that are produced by the two strategies. For the main
effects and the interaction, the error term is larger in the
RCA than it is in the aggregation analysis. This result was

expected because RCA produces relatively unbiased error

¢ Without getting into too many details, we have to
divide the interaction beta coefficient by two because the
difference between .025 and -.025 is .5 rather than 1. To be
able to compute a SSefiect that is comparable to (a) the two
main effects and (b) the estimate produced by an ANOVA
using aggregated data, the ‘squared deviations” must be put
on the same basis. Since beta coefficients reflect the average
increase in the DV associated with a 1-unit increase in x, the
scale of the interaction coefficient is effectively double that
of the effect used to calculate the SSeftect for the aggregation
ANOVA. Dividing the interaction coefficient by two puts all
effects on the same basis again.



estimates (Lorch & Myers, 1990), which are larger and
therefore result in standardized effect-size measures that are
smaller than those obtained from aggregated data (e.g. d
Cohen).

It is clear that aggregation bias is present in the data. The
bias can be examined
like
throughout) and the effect size estimates. Note that in Table

magnitude of this through

standardized statistics the F values (same df
1 the differences between the F-ratios across aggregation
and RCA strategies range from .54 to 3.04. Given the overall
size of the experimental effects, these differences might be
considered small. The effect size estimates would seem to
that

aggregation bias is limited to about 1 percent of partial

support interpretation because the observed

variance explained (frequency effect, the interaction).
Nevertheless, the aggregation bias observed here could
mean the difference between a significant result and a null
result with a smaller sample size or when examining less
powerful effects, which is important if only because
statistical significance plays a role in determining whether a
study is published.

Reporting RCA Results

At present, there are no official norms for reporting the
results of RCA. In principle, the results can be reported as a
regression analysis or as an ANOVA analysis as long as use
of the technique is acknowledged. A regression analysis can
vary in complexity depending on the number of predictors
involved. When the number of item-level predictors is large,
the results of the analysis can be reported in a table as with
other with  proper
acknowledgement that the results were obtained using

any regression analysis,
Lorch & Myer’s method (for an example, see Chateau &
Jared, 2003). If the regression analysis is simply an
implementation of an ANOVA design (3 or fewer IVs), then
its results can be reported within the body of the text in a
manner similar to that used to report ANOVA analyses in
the literature (see the example below).

Interestingly, the output generated by the RCA macro
presented here lends itself well to reporting within-subject
confidence intervals of different types as well as within-
subject dconen effect sizes (for a critique of the dominant
hypothesis testing philosophy, see Loftus, 1996). Within-
subject confidence intervals (95%) for main effects and
interactions are provided automatically in the output (i.e. for
Further,
confidence intervals can be computed for individual cell

the average beta coefficients). within-subject
means by first transforming the standard error for the
average beta coefficients (i.e. difference between means) into
the standard errors for the means themselves (Note: the
value will be the same for both means) by the following
formula: SEmean = SEditference / V2 (for additional formula and
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recommendations for calculating confidence intervals for
various designs and comparisons, see Loftus & Masson,
1994; Masson & Loftus, 2003).

The italicized paragraphs that follow demonstrate how
the RCA results that are discussed above might be reported
in-text within the results section of an empirical article.
Estimates of effect size are not reported directly, but dcohen,
for example, can be computed using the reported
information in the manner described above (simply convert
the standard error into a standard deviation, SD = SE - Vn.
Similarly, the average beta coefficients are not reported
because they can be derived from the reported t-values and
their standard errors (b = t - SE) or from the difference
between the reported means. The example is intended to
reflect a style that is typical of articles reporting repeated-
measures ANOVA results in the field of cognitive
psychology.

The frequency by imageability (2 x 2) design was analyzed
using random coefficient analysis (Lorch & Myers, 1990).
Random coefficient analysis (RCA) is a multi-level regression
technique that produces unbiased error term estimates, unlike
ANOVASs based on aggregated data. Within RCA, the magnitude
of an experimental effect is first estimated within each participant
and then the hypothesis that these within-subject effects are
significantly different from zero for the sample is tested. The tests
of main effects and interaction are reported as one-sample t-tests,
which in this case are equivalent to correlated t-tests of the
difference between conditions, because that is how such effects are
evaluated in RCA.

The results indicate that the latency advantage for high-
frequency words over low-frequency words (578.42 vs 707.55 ms)
is significant for the sample of participants, t (63) = 13.93, SE
difference = 9.27, p < .001. Similarly, the advantage of high-
imageability words over low-imageability words (616.32 vs 669.65
ms) is significant across participants, t (63) = -7.48, SE difference
= 7.13, p < .001. These two main effects are qualified by a
statistically significant interaction, t (63) = 5.89, SE difference =
14.34, p < .001. Decomposition of the interaction confirmed that
high-imageability words were associated with faster responses than
the low-imageability words (659.78 vs 755.33 ms), t (63) = 8.15,
SE difference = 11.72, p < .001. In contrast, the effect of
imageability fell short of significance for high-frequency words
(572.86 vs 583.78 ms), t (63) = 1.36, SE difference = 8.19, p = .18.
The 95 percent confidence interval for this non-significant
difference indicates that the data are consistent with both a
relatively large high-imageability word advantage over the low-
imageability condition (lower-bound difference: -32.88 ms) and a
small effect that is of about the same magnitude as the observed
difference (i.e. -11.72), but in the opposite direction (upper-bound
difference: + 10.65 ms). In other words, the results do not support
the idea that imageability exerts a meaningful effect on reaction
times when words are also high-frequency.



Conclusion

The numerous flaws of the aggregation strategy that is
widely applied by cognitive psychologists and experimental
psychologists more generally were reviewed. In its stead, it
has been proposed that a procedure sometimes referred to
as random coefficient analysis should be used to test the
effect of item-attribute variables (Lorch & Myers, 1990). The
simple RCA procedure proposed by Lorch & Myers was
described in general terms, and then an easy to use program
for performing random coefficient analysis in SPSS (version
11 or better) was presented. The operation of this program,
called a macro, was explained in terms of a concrete
example using data that is available for download with this
article. The results obtained from analysis of this data were
interpreted in detail and suggestions were offered for
reporting such results in empirical articles. Finally, a method
for evaluating the potential magnitude of aggregation bias
for any dataset was presented so that researchers can better
appreciate the consequences of choosing to report analyses
based on aggregated data.

In closing, RCA can and should be applied in most cases
when a repeated measures design is used to examine item-
attribute effects. More generally, RCA is preferable to
aggregation whenever multi-level data are involved (Hox,
2002). Whether a traditional hypothesis testing approach is
adopted or more informative confidence intervals are used,
it is important that error variance be accurately estimated
because otherwise the validity of effect size estimation (e.g.
power- and meta-analyses) and hypothesis testing are
negatively affected. In a discipline where the difference
between p = .03 and p = .06 can mean the difference between
a manuscript’s publication and its rejection, the use of
strategies like aggregation that are known to bias error
estimation and therefore p-values is hard to justify, no
matter what the practical importance of such bias may be.

Program Availability

A syntax file containing both macros is available directly
from the author (GlennLThompson@gmail.com) or online
(http://www.geocities.com/glennleothompson
/OriginalCode.html). The code may also be typed into an
SPSS syntax editor from the Appendix or downloaded from
the journal’s website, where the data reported in this article
may also be found.
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Educational and

Appendix

This appendix contains SPSS syntax (version 11 or later)
for the two macros that were discussed within the main
body of the text (see the downloadable syntax file named:
Thompson.sps). The macro named ‘RCAsetup’ performs step
one of RCA, which involves running regression analyses
within each participant and saving the resulting intercepts
and unstandardized beta coefficients to a new datafile. The
macro named ‘RCAtest’ performs step two, which involves
testing whether the unstandardized beta coefficients are
significantly ~different from zero for the sample of
participants. In what follows, each block of syntax
(italicized) is presented within its own section and is
preceded by a short description.

Macro for Step One: RCAsetup

The macro called RCAsetup accepts three variable-name
parameters as input. The first is the name of the participant
identification variable. The second is the name of the
dependent variable. The third is a list of the names of the
executed with an

independent variables. If it is

appropriately structured data file open, the program creates
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a data file called betas.sav containing the participant

identification variable and an intercept as well as
unstandardized beta coefficient(s) for each participant. A
commented version of the syntax is available in the
downloadable SPSS syntax file. Example syntax for the
macro is provided in the final section of the appendix, but
the default variable names must be replaced.

DEFINE RCAsetup (!positional !'enclose ('(', )" )/

Ipositional !enclose ('(',")" )/

Ipositional !enclose ('(',)")).

SORT CASES BY I1.
SPLIT FILEBY !1.
REGRESSION
/MISSING LISTWISE
ISTATISTICS COEFF OUTS R ANOVA
/NOORIGIN
/DEPENDENT !2
/METHOD=ENTER !3
/OUTFILE=COVB('C:\templ.sav') .
SPLIT FILE OFF.

GET FILE ="c:\templ.sav'.

SELECT IF (rowtype_ ='EST").

SAVE OUTFILE='C:\temp2.sav’
/DROP=DEPVAR_ ROWTYPE_ VARNAME_
/COMPRESSED.

GET FILE ='C:\temp2.sav'.
EXECUTE.
SORT CASES BY 1.
CASESTOVARS

/ID=11

/GROUPBY = VARIABLE .
SAVE OUTFILE='C:\betas.sav".
GET FILE ='C:\betas.sav'.
EXECUTE.

ERASE FILE= ‘c :\templ.sav’.
ERASE FILE= ‘c:\temp2.sav’.
EXECUTE.

IENDDEFINE.

Macro for Step Two: RCAtest

The macro called RCAtest accepts a single variable-name
input parameter: a list of the item-level independent
variables. If it is executed with the file called betas.sav open,
it produces as output a t-test for each variable that evaluates
the hypothesis that the associated effect is statistically
significant for the sample of participants. A commented
version of the syntax is available in the downloadable SPSS
syntax file. Example syntax for the macro is provided in the



following section, but the default variable names must be
replaced with more appropriate ones.
DEFINE RCAtest (!positional !enclose ('(, )")).
T-TEST
ITESTVAL =0
IMISSING = ANALYSIS
/VARIABLES =11
/ICRITERIA = CI(.95) .
IENDDEFINE.

Calling the Macros: Example syntax

What follows is example syntax for calling the macros
reported above. In order for the syntax to work, the macros
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they refer to (RCAsetup, RCAtest) must have been
previously loaded into memory. Macros are loaded into
memory by selecting the associated syntax and executing it.
To adapt the example below to a particular case, simply
replace the default variable names (ID, DV, IV1, and IV2)
with appropriate variables from the dataset to be analyzed.
RCAsetup (ID) (DV) (IV1 IV2).

RCAtest (IV1 IV2).
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