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How to use MATLAB to fit the ex-Gaussian and other

probability functions to a distribution of response times

Yves Lacouture
Université Laval

Denis Cousineau
Université de Montréal

This article discusses how to characterize response time (RT) frequency
distributions in terms of probability functions and how to implement the
necessary analysis tools using MATLAB. The first part of the paper discusses
the general principles of maximum likelihood estimation. A detailed
implementation that allows fitting the popular ex-Gaussian function is then
presented followed by the results of a Monte Carlo study that shows the
validity of the proposed approach. Although the main focus is the ex-Gaussian
function, the general procedure described here can be used to estimate best
fitting parameters of probability functions. The proposed
computational tools, written in MATLAB source code, are available through the

various

Internet.

In recent years there has been an upsurge of interest in
the response times (RT) of cognitive processes. This can be
attributed in part to the wide availability of computer
that to Dbe
automatically and RT to be measured with millisecond

programs allow experiments conducted
precision. However, and perhaps more importantly, many
researchers see RT as major constraints when testing models
of cognitive processes. Although RT are now routinely
measured and frequently reported, there is a lack of
standard tools for characterizing RT distributions. The
difficulty is that simple descriptive statistics usually do not

provide an adequate characterization of the data, and a
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description in terms of probabilistic functions is generally
more suitable.

For instance, Figure 1 presents three data sets having the
same mean X =300. Each panel on Figure 1 shows the
frequency distribution of 250 response times sampled from a
specific population, each one characterized by a specific
distribution. Although the mean of all three distributions is
Panel (A) shows the
distribution of data sampled from a population for which

the same, the shapes are different.

the distribution of response times has the shape of an
exponential function. Panel (B) presents the resulting
distribution of response times sampled from a process for
which the data follow a normal (Gaussian) distribution.
Finally, Panel (C) shows the resulting distribution of
response times obtained when the underlying process yield
data following the ex-Gaussian function (the usefulness of
this function for characterizing a distribution will be
discussed later). A distribution of response time that
matches the shape of an exponential function is believed to
be characteristic of decision processes (see Luce, 1986, chap.
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Figure 1. Three distributions of response times sampled from different populations each characterized by a specific

probability functions. Panel (A) shows a distribution of response times shaped like an exponential function. Panel (B) shows

data following a normal distribution and Panel (C) presents a distribution of data matching the ex-Gaussian function. All

three distributions have the same mean x =300 .

6). A normal distributions of response times is typical of a
large variety of human performances including perceptual
and motor processes. Finally, distributions of response times
that follow the ex-Gaussian function results of two or more
sequential processes made of a mixture of exponential and
normal distributions. Characterizing the shape of a
distribution of responses times allows a better description of
the results but also permits testing hypothesis about the
underlying cognitive processes.

Finding the best matching distribution to a set of
response times provides information about the underlying
processes, but also the specific parameter values of the best
fitting function allows to test specific hypothesis. There are a
large number of probabilistic functions that can be used to
characterize a set of response times. The use of some
functions is theoretically justified. Other functions yield
parameter values easier to interpret. Among the wide
variety of functions that can be fitted to characterized a
distribution of response times, the ex-Gaussian function is
especially popular because it is theoretically justified and
also because it provides parameter values that are easy to
interpret. For that reason, the ex-Gaussian is the main focus
of this paper.

Several researchers have shown that distribution analysis
allows finding results that are not revealed by usual statistics.
& Mewhort (1991)

presented data from the Stroop Task for which an analysis

Among them, Heahtcote, Popiel
of mean RT misleadingly showed interference but no
facilitation whereas a distribution analysis showed both
Other
demonstrated that some models that adequately predict

interference and facilitation. studies have

mean RT sometimes inadequately account for the shape of
RT distributions (Hockley & Corballis, 1982; Ratcliff &
Murdock, 1976). Also with distribution analyses, it was
shown that some visual searches proceed both in serial and
in parallel, whereas usual statistics yield to conclude that
the search is sequential (Cousineau & Shiffrin, 2003). Some
authors have also demonstrated the need to take the shape
of RT distributions into account when comparing the
adequacy of different theoretical propositions (Hacker, 1980;
Hockley, 1984; Ratcliff, 1978, 1979).

This
distributions in terms of probability density functions
(especially using the ex-Gaussian) and how to implement

article discusses how to characterize RT

the necessary analysis tools using MATLAB. Several key
features make MATLAB a popular choice as a simulation
package and analysis tool. First, the software runs on a
variety of platforms, including Windows, Mac OS, LINUX
and UNIX. Second, software implementations developed for
one platform can easily be transposed to other platforms.
Also, MATLAB provides a sophisticated computational
environment with a simple, yet powerful, programming
language, debugging tools, and a sophisticated graphical
Also, MATLAB is
computationally very efficient. Finally, a large community
of scientists develops and shares tools for the MATLAB
system.

interface. and not the least,

The first part of this paper discusses the general problem
of characterizing a frequency distribution of RT in terms of
probabilistic functions. The general principles of maximum
likelihood estimation for parameter estimation are then
reviewed. A detailed mathematical tutorial on likelihood



methods is presented in Myung (2003). In this paper, we
present an implementation that allows fitting the popular
ex-Gaussian function. The last section of the paper reports a
Monte Carlo study that shows the validity of the proposed
approach. Although the main focus of the present paper is
the ex-Gaussian function, the general procedure described
here can be used to estimate best fitting parameters of
various probability functions. The proposed computational
tools are written in MATLAB source code. They can be
customized and run in any MATLAB environment and are
through the
http://www.psy.ulaval .ca/~yves/distrib.html.

available Internet at

Fitting Probability Density Functions to a Distribution of
Response Times

A probability density function (PDF) represents the
distribution of values for a random variable. The area under
the curve defined the density (or weight) of the function in a
specific range. The density of a function is very similar to a
probability. Characterizing a phenomenon in terms of PDF
is very useful as it allows to estimate the probability that the
process yields values in a specific range. Some phenomena
in psychology are well described by PDF. For instance, the
distribution of results for most standardized intelligence
tests follows a Gaussian (normal) function. With a known
mean and standard deviation, the probability that the
results of an intelligence test are in a specific range of values
can easily be computed. For example, a test characterized by
a Gaussian distribution of results with a mean of 100 and a
standard deviation of 15 implies that 50% of the population
have results above the mean while an IQ above 145 (three
standard deviations above the mean) corresponds to a very
low probability.

The task of finding the parameter values of a probability
function that best represents the distribution of empirical
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algebraic mean and standard deviation of the data are the
most accurate estimates of the mean and standard deviation
of the best-fitting Gaussian function. In other cases, the task
of getting good estimations of the parameter values is more
complex.

With non-trivial cases, like the popular ex-Gaussian
function, an iterative approach allows the parameter space
to be searched and the parameter values that best fit a
frequency distribution to be estimated. To do this, the fit of
the probability function to the data is evaluated using a
goodness of fit (or error) criterion. An efficient and powerful
fit criterion is the likelihood value (see Myung, 2003 for a
tutorial). Given a data set and a PDF with specific parameter
values, the likelihood criterion provides an indication of the
fit between the data and the function. The best-fitting
parameter values are associated with the greatest likelihood.
This is why this statistical approach is known as maximum
likelihood estimation. Given a PDF f(x | 8 ) with k parameters
0= [491, (92, ceey Hk] and an empirical set of data
composed of N observations x;, i=1, ..., N, the likelihood
function is

N

L(o1xX)=] T f(x19).

i=1

)

where Ilis the product operator. For large data sets, the
computation of the likelihood value returns values close to
zero and may provoke underflow errors. This is why the log
of the likelihood criterion is often used instead of the
likelihood criterion. The log transformation substitutes the
sum operator to the product operator, less likely to provoke
overflow errors. For historical reasons, minimization
procedures were more widespread, so it became customary
to minimize minus the log-likelihood instead of maximizing

the log-likelihood. The minus log-likelihood criterion is
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Figure 2. The minus log-likelihood criterion for the Gaussian distribution computed for various value of parameter p. The

left panel shows the correspondence between the frequency distribution and the PDF functions with parameters p, =750,

pg = 1250, and p- =1500. The right panel shows how the LogL values change according to the value of parameter p.
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where In is the natural logarithmic function. Figure 2
illustrates how the LogL criterion is minimized when the
parameter values of a probability function best fit an
empirical distribution. The histogram (top panel) represents
a frequency distribution of N=100 observations sampled
from a random variable that follows a Gaussian PDF with a
mean p=1250 and a standard deviation ¢ =150. The top
panel also shows three overlay Gaussian PDFs (marked A,
B, and C), which have different mean values of n, =750,
ug = 1250, and p-=1500. The three Gaussian PDFs have the
same standard deviation ¢ = 150. Equation (2) allows LogL to
be computed according to the specific values of parameter p.

For the Gaussian function,

| ew?
_ 202
f(x |ﬂ10)—m‘3
and
|, -l —g)z
LogL(,u,crlX):—;ln Pk 20 3)
The computation yields LogL(palX)=11787,

LogL(ps1X)=6365, and LogL(pc | X)=7835. It can be seen
that LogL is smaller with parameter values that best fit the
frequency distribution. The bottom panel of Figure 2 shows
how, given the frequency distribution in the top panel, LogL
changes according to the value of parameter p. LogL has a
minimum value for p = 1250, which corresponds to the best-
fitting Gaussian function.

Searching Parameter Spaces With the Simplex Method

To find the parameter values that correspond to a
minimum of the minus log-likelihood criterion, a search of
the parameter space is required. Systematically trying all
possible values would certainly be time consuming. This is
especially true with functions that have several parameters
defining a multi-dimensional space. Fortunately, there are
general purpose algorithms such as the Simplex method that
are robust and allow finding a minimum of a multi-
parameter function (see Press, Flannery, Teukolsky &
Vetterling, 1988, for a review of search methods and
Cousineau, Brown and Heathcote, 2004 for a review in the
context of distribution analyses). Using the LogL criterion
with the the
parameters of a PDF to a distribution of data to be found

Simplex algorithm allows best-fitting
with great efficiency.

The LogL criterion defines a fit surface in a multi-
parameter space. Starting with predetermined parameter

values, the Simplex method uses the steepest gradient on
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Figure 3. Global and local minima of a function: a search
algorithm following the steepest gradient to find the
minimum of f(x|x ) might get stuck in the local minimum

and converge without finding the global minimum.

the fit surface to determine how the parameter values
should be changed to improve the fit of the adjusted
function. The algorithm follows an iterative procedure that
is applied until a minimum on the error surface is found.
The steepest gradient corresponds to the steepest slope on
the fit surface and, like a marble going down on a smooth
surface, allows a minimum of the function to be found. The
Simplex method works well providing that the fit surface is
continuous and smooth. This is generally the case when
using the LogL criterion with a reasonably large data set.

Typically, the search involves changes in parameter
values that are made smaller at each iteration until the
adjustment yields only small changes in the fit criterion. The
search stops either when the improvement in fit is smaller
then a pre-determined criterion or when the change in
parameter values is smaller that another pre-determined
value. The stopping criteria are called folerances. The search
is said to have reached convergence when the improvement
in the goodness of fit is smaller than the termination tolerance
or when the change in parameter values is smaller than the
function tolerance.

When the Search Fails to Converge: Local Minima and
Erratic Error Surfaces

Although the Simplex method is robust and efficient, the
parameter search may fail to converge. This occurs when,
after performing many iterations, the change in the fit
criterion at a given iteration does not become smaller than
the value of the termination tolerance or when the change in
parameter values does not become smaller than the function
tolerance. Two conditions may vyield a failure of
convergence. First, it is possible that the error surface is not

smooth enough to allow a good adjustment of the parameter



values. As mentioned before, this is usually not the case
when using the LogL criterion for which the error surface is
generally continuous and smooth. Second, it is possible that
the search gets stuck in a local minimum. A local minimum
is a region on the error surface that provides a minimum
that is not a global minimum of the function. Figure 3
illustrates this situation. On this figure, the fit surface
(vertical axis) is a function of a single parameter 6
(horizontal axis). The function has a local minimum around
parameter value 8 =8.5 and a global minimum for 6 =3. In
this situation, like a marble rolling down the error surface,
the search algorithm might get stuck in the local minimum
and never reach the lower global minimum value. By doing
a few big steps on the fit surface in the beginning of the
search, most implementations of the Simplex method can
usually detect a local minimum and find a global minimum.
Nevertheless, a good strategy to avoid getting stuck in a
local minimum is to start the search process with parameter
values that are known to be in the neighborhood of the real
parameter values. For example, with the popular ex-
Gaussian function, a reasonably good estimation of
parameter p is the difference between the algebraic mean
and the skewness of the data. Using this value as a starting
point for the search process reduces the risk of getting stuck
in a local minimum. Even with reasonable starting values,
the search may still fail to converge. When this happens,
three things can be done to increase the probability of
finding a global minimum of the function: (1) increase the
maximum number of iterations allowed for the search
process, (2) perform a new search with different starting
parameter values, or (3) increase tolerances.
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Comparing the Fit of Different PDFs to the Same
Distribution of Data

The LogL criterion does not allow the adequacies of
different probability functions that have different number of
parameters to be compared. For instance, the ex-Gaussian
function has three parameters (u, o, 1), the Gaussian two
(u, 0), and the Exponential function only one (t). For a given
data set, the best-fitting function is the one that yields the
smallest LogL value with the smallest number of parameters.
Hélie (2006) discusses various fit criteria that allow
comparing the fit of functions (or models) having different
number of parameters. Among those fit criteria, Akaike’s
information criterion (AIC) is a popular goodness of fit
indicator that takes into account the number of parameters.
It is given by

AIC =2LogL(61X)+2k, (4)
where LogL is the minus log-likelihood value and k is the
number of parameters of the fitted function. AIC is smaller
for probability functions with better fits. See Hélie (2006) for
more details.

The ex-Gaussian PDF

The ex-Gaussian function is the convolution of two
additive processes, a Gaussian (normal) function and an
exponential function. Luce (1986, chap. 6) describes the ex-
Gaussian as a decision time model in cognitive processes.
the
function is written as

2
f(xly,o,r)—lexp['u+o-—x]q)
T T 2.2 7

ex-Gaussian probability density

2
A

o

Mathematically,

®)

In this equation, the exponential function (exp) is multiplied
by the value of the cumulative density of the Gaussian

A B C
Gaussian component Exponential component ex-Gaussian function
005 .005
004 =500 T=250 u=>500 1.004
c =100 6 =100

£.003 t=250 1.003
: ' i
£ .002 1-002

001 | 1.001

0 : : 0
0 500 1000 1500 0 500 1000 1500 0 500 1000 1500
RT (ms) RT (ms) RT (ms)

Figure 4. The ex-Gaussian probability function with parameters p =500, o =100, and t = 250 (Panel c) resulting from the

convolution a Gaussian probability function (Panel A) with an exponential function (Panel B).



function symbolized by ®. The resulting ex-Gaussian
function has three parameters, p, o, and t. The two first
parameters (i and o) correspond to the mean and standard
deviation of the Gaussian component. The third parameter
(1) is the mean of the exponential component.

In the this
convolution can be seen as representing the overall

framework of cognitive processes,
distribution of RT resulting from two additive or sequential
processes. As proposed by Luce (1986, chap. 6), the
exponential process can be seen as the decision component,
i.e., the time required to decide which response to make,
while the Gaussian component can be conceptualized as the
transduction component, i.e., the sum of the time required by
the sensory process and the time required to physically
make the response. Although the theoretical proposition
that RT of cognitive processes are the sum of two additive
processes is difficult to test, several researchers have
demonstrated that the ex-Gaussian function provides a very
good fit to several empirical RT distributions (Ratcliff &
Murdock, 1976; Hockley, 1984; Luce, 1986). Other have
emphasized that, in the absence of any theoretical
assumptions, the ex-Gaussian function can effectively be
used to characterize an arbitrary RT distribution (Heathcote
et al., 1991). An interesting characteristic of the ex-Gaussian
function is that its parameter values can easily be
interpreted. Parameters p and o are the mean and standard
deviation of the Gaussian component and can readily be
interpreted as localization and variability indicators.
Parameter t is the mean of the exponential component,
which corresponds to the right ‘tail’ of the distribution; a
larger T implies a more skewed distribution.

Figure 4 illustrates how an ex-Gaussian function results
from two additive processes. If the time (in ms) required by
the normal process has a mean n=500 and a standard
deviation =100 (Panel A in Figure 4), and the time
required for completion of the second process follows an
exponential distribution with a mean t =250 (Panel B), then,
for a given trial, the resulting RT is the sum of a value
sampled from the Gaussian process and a value sampled
from the exponential process. The resulting distribution of
values follows the ex-Gaussian probability function with
parameters p =500, ¢ =100, and t =250 (Panel C) and has a
mean X = u+7 and a standard deviation s= o’ +72.

Varying the parameters of the ex-Gaussian function
leads to a continuum of shapes from ‘pure’ exponential to
‘pure’ Gaussian functions. Figure 5 presents three ex-
Gaussian curves with different parameter values. As
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illustrated, with parameters p=0 and ¢ =0, the ex-Gaussian
function reduces to an exponential function. With parameter
7 =0, the ex-Gaussian function reduces to a normal function.

One difficulty with the ex-Gaussian function is that there
is no arithmetic or other simple way to derive the
parameters of the underlying processes from the observable
data. To estimate the (unobservable) parameters, an iterative
procedure like the one discussed above is used to find the
parameter values for which the shape of the probability
function best fits the frequency distribution of data.

Using MATLAB to Fit the Ex-Gaussian Function to a
Frequency Distribution of RT

This section presents a MATLAB implementation that
allows the popular ex-Gaussian function to be fitted to a
frequency distribution of data. Implementing a search
algorithm to fit the ex-Gaussian PDF to an empirical
distribution requires three MATLAB functions:

1. A function implementing the ex-Gaussian PDF;

2. A function implementing the computation of the
LogL criterion for the ex-Gaussian;

3. A search
parameter values.

DISTRIB is a MATLAB toolbox comprising the necessary
functions to fit the ex-Gaussian PDF. The complete set of

algorithm to find the best-fitting

functions is presented in Appendix 1, including
exgausspdf.m, which implements the ex-Gaussian PDF. The
function takes the following form:

functionf=exgausspdf(mu,sigma,tau,data)



Listing 1.the function simple_egfit

function R=simple_edfit(data)

tau=std(data).*0.8;
mu=mean(data)-skewness(data);
sig=sqrt(var(data)-(tau™2));

pinit = [mu sig tau];

41

% reasonable starting value for tau
% reasonable starting value for mu
% reasonable starting value for sig

% put starting parameter values in an array

% given the data, and pinit, find the parameter

% values that minimize eglike

% the function returns R=[mu, sig, tau]
R=fminsearch(@(params) eglike(params,data),pinit);

Exgausspdf takes four arguments and returns the density
of the ex-Gaussian PDFs with parameters mu, sigma, and tau,
given the value in data. Arguments mu, sigma (> 0), and tau
(>0) are scalars (numbers) and argument data is either a
scalar, vector, or matrix. The function returns a vector of
probabilities f that has the same size as data.

Function eglike.m returns the likelihood value computed
for the ex-Gaussian PDFs given specific parameter values
and a data set. It has the following form:
function logL=eglike(params, data).

The
params = [mu, sigma, tau] is a three-element vector that

function takes two arguments. Argument
specifies the parameter values of the ex-Gaussian function.
The second argument is a vector of data for which the LogL
value is computed. The function returns the minus log
likelihood for the ex-Gaussian given the parameter values
and data.

Function simple_egfit.m is a simple implementation that
performs parameter searches using the Simplex method.
This function is defined in Listing 1.

Simple_egfit takes a single input argument data (a

ex-Gaussian, p=500 =100 =250
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column vector of data) and returns a three—element vector
R =[mu, sigma, tau] made of the best-fitting ex-Gaussian
parameter values. The starting values for the search
procedure are estimated using simple heuristics. The search
is done using MATLAB'’s
implements the Simplex search method. Function eglike is

fminsearch function that

the fit criterion for the search process. Below is a description
of fminsearch, MATLAB’s implementation of the Simplex
method.

Fminsearch, a MATLAB Function that Implements the
Simplex Method

Fminsearch is a general purpose function that allows the
minimum of a multi-parameter function to be found. To use
fminsearch with the LogL criterion, one needs to provide
fminsearch with (1) the name of the function to be
minimized, (2) starting parameter values for the search
process, (3) the data to be fitted, and (4) some options that
control the tolerances and the maximum number of
iterations in the search process. If no options are provided,
The format of

fminsearch works with default values.

ex-Gaussian, u=500 ¢=100 t=1000
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Figure 6. Results of the Monte Carlo study: mean estimated parameter values. Results are reported according to sample

size (10 to 5000) and are based on 1000 estimations.



fminsearch is as follows:
[x fval,exitflag,output] = fminsearch(funfcn,x,options),
where funfcn is the function to be minimized, x is a vector
containing the starting parameter values for the search
process, options is another vector containing some options
that control the search process. Fminsearch returns a vector
containing four elements [xfval, exitflag, output].
Element x contains the parameter values that correspond to
a minimum of the objective function; element fval is the
value of the minimized function given the data and returned
exitflag additional
information regarding the search process (for a detailed
description see MATALB’s Reference Guide).

In simple_egfit, fminsearch is called as follows:

parameters; and output provide

R=fminsearch(@(params) eglike(params, data),pinit)

The string eglike(params, data) indicates that function
eglike is to be minimized. Eglike return the likelihood for
the ex-Gaussian function given the parameters in
params=[mu, sigma, tau] and the actual data. The first part
of the argument @(params) indicates which argument of
eglike is to be estimated, in that case, the parameters in

params while data is held constant. Also, pinit is a vector

Table 1. Results of the Monte Carlo study. Mean estimated
parameters, standard errors, and confidence intervals for each

theoretical distribution and sample size
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containing the starting parameter values used when the
starting the search. In brief, the above syntax line calls
function fminsearch to find the parameters value (params)
for which function eglike show a minimum given the data.
The search is done starting with the parameter values in
pinit.

Egfit.m, a More Robust Fitting Function for the Ex-
Gaussian PDF

Egfit is a MATLAB function that implements a more
flexible and robust search process to fit the ex-Gaussian PDF
to a frequency distribution. This function has the following
form:
function R = egfit(data, params, options).

Egfit requires at least one argument data, which is a
vector containing the data for which the ex-Gaussian is to be
fitted. Two optional arguments, params and options, allow
the search process to be controlled. Params = [mu, sigma,
tau] allows the starting parameter values for the search
process to be specified, and options = [ttolerance, ftolerance,
niter] allows optional controls for fminsearch to be set. The
optional tolerance values control the termination tolerance

(ttolerance) and the functional tolerance (ftolerance)
of the Simplex method. Default values are 0.0001. Lastly,
optional argument niter controls the maximum number
Table 1 (continued)

ex-Gaussian
p =500 ¢ = 100 t = 250

Ex-Gaussian
p =500 ¢ = 100 T = 1000
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T = 249.3 (11.0) T = 997.6 ( 33.4)
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° 100.0 € 3-1) [240.5 - 259.2] ° = 99.1 ( 5.5) [970.5 - 1032.6]
t = 250.0 ( 4.9) 4 = 1000.7 (15.7)




of iterations in the search process. The default value is
niter = 200*length(data).

Testing egfit: a Monte Carlo Study

A Monte Carlo study was performed to evaluate
possible biases and estimate the standard error associated
with the parameter estimates when using the present
implementation of the search process. The general approach
consisted of generating a large number of samples of fixed
size by sampling an ex-Gaussian random variable with
known parameter values. Parameter estimations were then
obtained using egfit for each of the samples. This allowed
a distribution of estimated parameter values to be
reconstructed. For example, consider an ex-Gaussian
function with some specific parameters. By generating 1000
samples of size 100 and estimating the parameter values for
each sample, a good representation of the sampling
distributions of the parameter values was obtained. The
this
corresponds to the standard error for a given parameter and

standard deviation of sampling  distribution

sample size. Moreover, the mean of the sampling
distribution can indicate possible biases. For an unbiased
estimator, the mean of the sampling distribution should be
close to the actual parameter value. A comprehensive and
detailed Monte Carlo study of parameter estimation
methods for popular probability functions is presented in

Van Zandt (2000).

Method

The Monte Carlo study was performed using two sets of
parameter values for the ex-Gaussian function (EG1 and
EG2). For EG1, the parameter values were u; =500, o, =100,
and t, =250, and for EG2, they were p, =500, 5, =100, and
T, = 1000.

For each of the two theoretical distributions, the Monte

ex-Gaussian, u=500 c=100 1=250
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Carlo study was performed for sample sizes N =10, 20, 30,
50, 100, 500, 1000, and 5000. A Monte Carlo estimation of the
sampling distribution was obtained for each sample size by
sampling the theoretical distribution one thousand times
and performing a likelihood estimation of the parameters
for each sample. Sixteen Monte Carlo simulations (two
functions, EG1 and EG2 x 8 sample sizes), each based on
1000 samples, were performed.

Results

For each of the two theoretical functions, the sampling
distribution of each parameter was constructed for each
sample size. Table 1 summarizes the results. For each
sample size, the mean and standard deviation of the
sampling distribution are presented along with a 95 %
confidence interval based on the observed percentile values
of the distribution. Figure 6 shows the average estimated
parameter values plotted according to sample size for each
distribution.

The sampling distributions show some small biases for
smaller sample sizes. For the specific parameter values used
in this Monte Carlo study, the means of the sampling
distributions do not appear strongly biased for sample sizes
of 100 or more. Figure 7 presents the standard deviations of
the sampling distributions (the standard error) plotted
according to sample size. For both of the ex-Gaussian
distributions, the results show a monotonic decrease with an
increase in sample size. The decrease in standard deviation
with increasing sample size is sharp up to sample size N =
500. The Monte Carlo study shows that egfit provides good
parameter estimations for the ex-Gaussian function, at least
for the test values that were used.

Conclusion

This paper discusses the problem of characterizing RT

ex-Gaussian, u=500 c=100 1=1000
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Figure 7. Results of the Monte Carlo study: standard deviation of the estimated sampling distributions. Results are

reported for each parameter according to sample size (10 to 5000) and are based on 1000 estimations.



distributions in terms of probability functions. The functions
implemented in this paper provide simple and efficient
ways to estimate parameter values of the ex-Gaussian
function. A Monte-Carlo study has shown the validity of the
proposed implementation. Other implementations can be
developed with the same approach using the MATLAB
fminsearch function, as discussed in the present paper.
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Appendix

Description of the functions in DISTRIB, a MATLAB toolbox implementing the fitting process for the ex-Gaussian
PDF

aic.m y = aic(logl, k)
Given the minus log likelihood value logl and the number of parameters k, returns
Akaine’s information criterion. Both arguments must be the same size.

simple_egfit.m R = simple_edfit(data)
Simple implementation of the search process to fit the ex-Gaussian function using
MATLAB’s implementation of the Simplex search method. Argument data is a column
vector containing the data to be fitted. The function returns a maximum likelihood
estimate of parameter values for the data in hand.
R = [mu, sig, tau] contains the three estimated ex-Gaussian parameters.

edfitm R = edfit(data)
R = edfit(data, params, options)
R = edfit(data, [mu, sig, tau], [ttolerance, ftolerance, niter])
Does a parameter search for the ex-Gaussian function using MATLAB's implementation of
the Simplex search method. This implementation is more robust and flexible than function
simple_egfit. Argument data is a column or row vector containing the data to be fitted.
Optional argument params = [mu, sig, tau] allows starting parameter values for the search
process to be specified; optional argument options = [ttolerance, ftolerance, niter] allows
optional controls for fminsearch to be set; The optional tolerances control the termination
tolerance (ttolerance) and the functional tolerance (ftolerance). Default tolerance is 0.0001.
Optional argument niter controls the maximum number of iterations in the search process.
The default value is niter = 200 * length(data).
R = [mu, sig, tau] contains the three estimated ex-Gaussian parameters.

eglike.m logl = eglike(params, data)
Given parameters params=[mu, sigma, tau] and vector data, returns the minus log-
likelihood value for the ex-Gaussian function.

exgausspdf.m f = exgausspdf(mu, sig , tau, x)
Returns the probability at value x of the density function for the ex-Gaussian distribution
with parameters mu, sig, and tau.

exppdf.m y = exppdf(x, mu)
Returns the probability at value x of the density function for the exponential distribution
with parameter mu.

plotedfitm plotedfit(params, data)
Plots an histogram of data vector with overlay ex-Gaussian PDFs with parameters
params = [mu, sigma, tau].

pnf.m p=pnf(x, mu, sig)
Returns the cumulative value, observed at x, for the density function of the Gaussian
distribution with parameters mu and sig.
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