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Most psychological research employs tables to report descriptive and inferential 

statistics. Unfortunately, those tables often misrepresent critical information on the 

shape and variability of the data’s distribution. In addition, certain information such as 

the modality and score probability density is hard to report succinctly in tables and, 

indeed, not reported typically in published research. This paper discusses the 

importance of using graphical techniques not only to explore data but also to report it 

effectively. In so doing, the role of exploratory data analysis in detecting Type I and 

Type II errors is considered. A small data set resembling a Type II error is simulated to 

demonstrate this procedure, using a conventional parametric test. A potential analysis 

routine to explore data is also presented. The paper proposes that essential summary 

statistics and information about the shape and variability of data should be reported 

via graphical techniques.  

 
 Exploratory data analysis (EDA), as an analytical 

routine, is alarmingly rare in the current normative practice 

of conducting research in psychology and other related 
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fields (Behrens & Yu, 2003). Kline (2008) reminds us of the 

importance of EDA with the blunt yet pithy phrase, 

“garbage in, garbage out”. The author argues that “the 

quality of computer output depends on the accuracy of the 

input. Thus, it is critical to check the data for problems before 

conducting any substantive analyses” (p. 233; emphasis in 

original). To address these concerns and offer an analytical 

tool for researchers, the current paper illustrates the benefits 

of using graphical techniques in EDA processes.  

First, it is shown how simple graphical techniques aid in 

making statistical decisions regarding Type I and Type II 

errors. Second, a simulated data set that exemplifies a Type 

II error is explored using conventional statistical tests, i.e., 

homogeneity and normality tests. Then, the same data set is 

inspected using EDA processes, i.e., looking for outliers and 

using data transformations. Both approaches have valuable 

properties that when put together can generate a reliable 

analytical tool. Thus, a tentative routine is proposed to 

analyse data sets which takes the best of both worlds. 

Finally, the role of graphical techniques that present 

essential and informative summary statistics for given data 

is discussed. Particularly, it is suggested that graphics 

reporting results should not only represent summary 
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statistics such as the mean and the standard deviation, but 

also valuable information on the shape and variability of the 

data’s distribution. With this concern in mind, this paper 

suggests a graphical variation that can provide an effective 

tool in reporting research results. 

Where EDA Helps With Statistical Decisions: Type I and 

Type II Errors 

In scientific research it is commonplace for researchers to 

face two possible errors when making statistical decisions: 

To reject the null hypothesis when it is in fact true or failing 

to reject the null hypothesis when it is in fact false. These 

possible errors are known as Type I and Type II errors, 

respectively 1. In most sciences, researchers are cautious 

about committing a Type I error when performing a 

                                                                 
1 In drawing a conclusion, there also can be a Type III 

error and a Type IV error: The former refers to the error of 

“correctly rejecting the null hypothesis for the wrong reason” 

(Mosteller, 1948, p. 61), whereas the latter refers to “the 

incorrect interpretation of a correctly rejected hypothesis” 

(Marascuilo & Levin, 1970, p. 398). These errors are, 

however, not directly related to EDA. Given the scope of 

the current paper, we therefore chose to focus our attention 

to Type I and Type II errors. 

statistical analysis and guard against it by setting a pre-

established alpha level (usually .05). However, it is less 

frequent to encounter situations where researchers guard 

against Type II errors (Sato, 1996) 2. The next section 

graphically exemplifies what happens in each type of error, 

emphasises the situation where a Type II error occurs, and 

where EDA can help prevent these errors.  

Type I Error Case 

Let us assume there are two groups, a control group and 

a treatment group. When their means are compared, the test 

reveals that there is a statistically significant difference. A 

potential pitfall here is that a significant difference can occur 

because some observations in one of the groups drive its 

group mean away from the other group’s mean, whereas the 

groups, as a whole and without those outliers, are 

equivalent.  

                                                                 
2 Sato (1996) argues that researchers are typically less 

concerned with Type II error as they are with Type I error, 

perhaps because of the assumption that false-positive 

conclusions would do more harm than false-negative ones. 

Nonetheless, neither error is acceptable because they both 

mark threats to the validity of a conclusion (Kline, 2008). 

 

 

 
Figure 1. Hypothetical situation that would likely lead to a Type I error. In both cases the treatment is genuinely ineffective, 

but spurious observations in the treatment group drive its mean away from the control group’s mean (a). In other situations, 

it is the control group that has spurious observations driving its mean away from the treatment group’s mean (b). In both 

situations the null hypothesis is rejected when in fact it is false. 
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This can happen more often than a researcher may 

expect. For example, even if a treatment—a newly 

developed speech-training program, say—has little effect, 

some individuals assigned to the treatment group might 

already have the ability of interest, such as a verbal skill, and 

score high on the administered test. Although, theoretically, 

random assignment should distribute those innately skilled 

individuals evenly across groups, it might fail especially 

when the given sample size is small (Kline, 2008). 

Additionally, sampling error might occur when some 

subjects in the control group do not belong to the target 

population but are included in the sample. Note that all 

these realistic scenarios could produce outliers in the 

collected data set. If those observations had been identified 

earlier, however, researchers could have taken 

countermeasures, including the removal of those outliers 

from the data set, and prevented the erroneous rejection of a 

genuine no difference between the groups’ means. 

Figure 1 illustrates one such situation. Simply comparing 

the groups’ means, i.e., Mc (the observed mean of the control 

group) and Mt, (the observed mean of the treatment group 

including outliers), yields a statistically significant result, 

although the “true” score mean of the treatment group (i.e., 

Mt) is actually no different from Mc. Hence, concluding that 

the treatment had a significant effect is false, leading to a 

Type I error (Figure 1a). Alternatively, the control group 

might include some observations whose scores are lower 

than what is expected in the respective population. Again, 

failing to detect such cases can result in a Type I error (i.e., a 

false-positive conclusion that the treatment was effective) 

(Figure 1b). 

Type II Error Case 

Similar to the case of Type I error illustrated above, 

suppose there are two groups, a control group and a 

treatment group. This time, however, the test reveals that 

there is no statistically significant difference. The 

problematic potential in such cases is that a non-significant 

difference can occur when some observations in one of the 

groups drive its mean near the other group’s.  Perhaps some 

individuals in the treatment group might have failed to 

follow the instructions during the experiment and their 

scores unexpectedly deviate from those of the other subjects 

who properly followed the procedure. Or, subjects in the 

control group somehow manage to “receive” the treatment 

by communicating with those assigned to the treatment 

group, contaminating the experiment.  

Figure 2 illustrates those situations. Figure 2a shows a 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Hypothetical situation that would likely lead to a Type II error. In both cases the treatment is genuinely effective, 

but spurious observations in the treatment group drive its mean near the control group’s mean (a). In other situations, it is 

the control group that has spurious observations driving its mean near the treatment group’s mean (b). In both situations 

the null hypothesis is not rejected when in fact it is false. 
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case where, although the treatment per se has an appreciable 

effect, the outliers in the treatment group pull down the 

overall treatment group mean score; consequently, testing 

the difference between Mc and Mt may result in a failure to 

reject the null hypothesis, or a Type II error. Alternatively, 

when extreme observations in the control group boost its 

mean, the true significant effect of the treatment is therefore 

concealed (Figure 2b).  

In all these cases, drawing a false conclusion (either Type 

I or Type II error) can be prevented through EDA and visual 

inspections, particularly graphical techniques that enable the 

researcher to know more about how the data are distributed. 

To discuss this utility of EDA, we demonstrate below how 

EDA helps avoid a Type II error.  

Simulated Data 

In order to illustrate how the use of data exploration 

enables us to grasp the essential features of the data 

distribution for further analysis, two groups of data were 

generated using R (R Project for Statistical Computing, 

2007). Both groups were generated from a normal 

distribution, but in one of the groups two normal 

observations were replaced with two outliers. The whole 

data set consists of two groups, each with a sample size of 

20; Group A has a mean of 50.00 (SD = 12.49), whereas 

Group B’s mean is 54.50 (SD = 20.93). 

These parameters were specified so that the statistical 

computations and the graphs accompanying every step are 

simple enough to keep track of every single observation and 

reach clarity. Next, a research scenario in psychology is used 

to put the data in context so that statistical computations 

and graphical techniques used are readily interpretable. The 

hypothetical research design presented here is commonly 

utilized in many areas in psychology like social (e.g., 

Moorehouse & Sanders, 1992), developmental (e.g., 

Valenzuela, 1997) and health psychology (e.g., Frisch, 

Shamsuddin, & Kurtz, 1995), and thus, provides a realistic 

case. Indeed, the following research situation resembles a 

study carried out some years ago (see Guy & Cahill, 1999). 

Imagine that 40 individuals are recruited to participate in 

an experiment to test human memory for emotional events. 

Researchers divide these subjects into two experimental 

groups, Group A and Group B. Subjects in Group B are 

presented with video clips which are considered to arouse 

happiness (i.e., treatment condition), whereas subjects in 

Group A are presented with video clips that do not evoke 

any particular emotional state (i.e., control condition). After 

one week participants are given a free recall test of all the 

clips viewed. Based on previous emotion research, it is 

expected that subjects in Group B have higher scores in the 

free recall test than those in Group A.  

Conventional Data Exploration  

Initially, we apply two tests that are conventionally 

utilized for preliminary analyses: normality and 

homogeneity of variance tests. Normality tests are almost 

routinely applied because most parametric analyses such as 

independent-samples t test, analysis of variance, and 

regression invoke the assumption that the given sample is 

drawn from a normally distributed population. Given the 

relatively small sample size (each group’s n < 30), the 

Lilliefors (also known as Kolmogorov-Smirnov) normality 

test is considered (Lilliefors, 1967). The results of the 

Lilliefors normality test applied to our simulation data 

suggest that both groups are drawn from normally 

distributed populations: for Group A, D (20) = 0.09, p = 0.95; 

for Group B, D (20) = 0.16, p = 0.20. Thus, researchers 

drawing on the outcomes of this test would conclude that 

these data have no problem regarding their normality.  

 
Figure 3. Bar plots with error bars representing the simulated groups of data before (a) and after (b) outlier removal. Error bars 

represent one standard error.  

a 
b 

t (38) = 0.83, p = 0.42 (two-tailed) 
t (36) = 2.41, p = 0.02 (two-tailed) 
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The second step that is typically taken before statistically 

examining the difference between two independent groups 

is to verify the homogeneity of variance. The accuracy of a 

statistical test is adversely affected if the groups under study 

have different variances (see Zimmerman, 1998). In such 

cases, some data manipulations are called for in order to 

render the data amenable to a parametric test. To explore 

this possibility, we subjected our simulation data to the 

Levene’s test (Levene, 1960), which provides a robust test of 

homogeneity of variance between relatively small groups 

(i.e., n < 50) (see Correa, Iral, & Rojas, 2006). With the current 

data, the results of the Levene’s test suggest that the two 

groups have homogeneous variances, F (1, 38) = 2.23, p = 

0.14. Thus, again, no problem is detected by the 

conventionally utilized preliminary test. 

Accordingly, researchers examining these data would 

feel content and ready to take the final step of performing a 

parametric test. Given the nature of the hypothetical 

research scenario described above, they would most 

appropriately run an independent-samples t test to see if 

there s a statistically significant difference between the two 

groups’ mean scores. To their disappointment, however, the 
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Figure 4. Kernel densities of the simulated groups of data before (a) and after (b) outlier removal. In (a) both groups of data 

have similar variances but different distributions, whereas in (b) both groups have similar distributions and variances. The 

rugs (short vertical lines) are added to highlight the actual observations for each data set. The horizontal lines represent the 

groups’ standard deviations. The vertical lines represent the groups’ means. 
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results of the t test would show that the groups are not 

significantly different, t (38) = 0.83, p = 0.42 (two-tailed) (see 

Figure 3a). 

In terms of the research hypothesis, these results suggest 

that the video clip shown in the treatment condition did not 

sufficiently arouse the participants’ happiness to claim 

theoretically appreciable effects.  This conclusion, however, 

leads the researchers to commit a Type II error. As 

illustrated below, the current data sets were devised to 

mimic a situation where the observed mean of the treatment 

group is indistinguishable from that of the control group, 

even though the treatment per se is effective. We 

demonstrate how the EDA procedures we propose help 

detect this problem (which are undetectable through 

conventionally utilized techniques) in the following section. 

Innovative Approaches to Data Exploration 

In this section, we propose and illustrate the EDA 

procedures to inspect data not only using numerical 

computations but also graphic-based inspections. The core 

purpose of the EDA procedures is to find patterns in the 

data, non-admissible observations (via outlier detection), 

and adjust data to generate a balanced data set (via data 

transformation) (see Tukey, 1969). More specifically, EDA 

serves to spot problematic features of the data that may not 

be detectable via conventional approaches (see Behrens & 

Yu, 2003). Additionally, the combination of graphical 

explorations of the data with confirmatory calculations is 

discussed (see Gelman, 2004).  

Figure 3a shows bar plots of both groups’ means with 

their standard errors (SE). The large overlap between the SE 

visually suggests that both groups are not significantly 

different (as the t test confirmed). Unfortunately, those 

graphics do not reveal density estimates in order to visualize 

critical differences between the groups’ distributions and see 

if there could be observations affecting the distribution of 

the data. 

Figure 4a shows the distributions of both groups of data. 

The densities were estimated using a kernel (and denoted 

hereafter as kernel densities; see Silverman, 1986; Wilcox, 

2004). It can be noticed that whereas Group A seems to be 

normally distributed, Group B seems to be not. Not all 

normality tests show similar results regarding the normality 

of a group. Normality tests are heavily dependent on the 

given sample size and therefore not entirely reliable. It has 

been argued that more robust tests of normality are used to 

check whether a data set dramatically departs from 

normality. Some researchers argue that the Lilliefors test is 

not very sensitive and instead the more sensitive Shapiro-

Wilk test should be used (Field, 2005). According to this test, 

Group A is still within normal parameters, W (20) = 0.99, p = 

0.99; however, Group B departs from normality, W (20) = 

0.88, p = 0.02. 

On data transformation 

One of the techniques used by statisticians to normalise 

skewed distributions and heterogeneous variances is via 

data transformation. There are several transformations 

available, but Box-Cox, logarithmic, square-root, and inverse 

transformations are broadly used (see Bland & Altman, 

1996, 1996a, 1996b, 1996c; Osborne, 2002). The core idea 

behind data transformation is to ensure that the data set 

meets the assumptions of normality and homogeneity of 

variance (Osborne, 2002). Also, in practical terms, it permits 

researchers not to discard valuable data. 

When the data set of Group B is submitted to a 

transformation process, it does not benefit its distribution. 

For example, it is known that the log-transformation can be 

used to deal with highly skewed distributions (see Olivier, 

Johnson, & Marshall, 2008), but it only works effectively 

when distributions are positively skewed. Given that Group 

B is negatively skewed, the logarithmic transformation just 

exacerbated this problem. Also, other transformations 

showed similar results. 

On outlier identification 

It is common practice in social sciences to regard 

observations with less than 5% frequency as “outliers” and, 

on its flipside, 95% as the “acceptable” confidence level (see 

Cowles & Davies, 1982), i.e., it is common to use a 2 

standard deviations (SD) cut-off. By looking again at the 

kernel density of Group A (see Figure 4a), it can be noticed 

that there are no observations too distant from the mean. 

However, there are in Group B a couple of observations 

which seem to be below 2 SD from the mean, which in turn 

create a high variance and a significant departure from 

normality (according to the Shapiro-Wilk test). Those 

observations could be causing the distribution to skew to the 

left (skewness = -1.22, SEsk = 0.512). The important issue to 

note here is that this sort of graphic representation of the 

data permits the researcher to visually pinpoint the actual 

observations that might be distorting the distribution of the 

data, despite some normality tests suggesting otherwise.  

If the Lilliefors test had been the sole normality test used, 

there could have been no grounds to perform any data 

manipulation despite the visual representation of the data 

set suggesting otherwise. Given that the graphic indicated 

that Group B did not seem to be normally distributed, it was 

a reason to check its normality with another test. Again, this 

situation suggests that some normality tests are not totally 

reliable and that visual inspection is highly recommended. 

As mentioned earlier, it is essential to confirm any visual 

inspection with formal statistical tests. Using the 

standardised values of the dependent measure, it can be 
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determined which observations are above or below 2 SD 

from the mean in each group. In Group A, there are no 

observations 2 SD below or above the group mean. 

However, there are two observations in Group B (with the 

value of 5) which are 2 SD below the group mean. Outlier z 

tests showed that both observations are significant outliers, 

both z (20) = -2.36, p = 0.009 (see Shiffler, 1988). Once these 

observations are removed, the distribution and shape of 

Group B look more normal-like (see Figure 4b). This fact is 

again corroborated using the sensitive Shapiro-Wilk test, W 

(18) = 0.99, p = 0.99. Also, the homogeneity of variances 

between the two groups was highly improved by removing 

those spurious observations, F (1, 36) = 0.067, p = 0.797. 

Not all researchers are fond of outlier identification (see 

Orr, Sackett, & DuBois, 1991). However, we support the idea 

that identifying outliers is an important procedure that 

avoids reporting biased results (see Judd, McClelland, & 

Culhane, 1995). The method to identify outliers used here 

(standardized residuals) is just one of the possible options to 

use. Other useful techniques include the shifting z score 

criterion (see Thompson, 2006; van Selsts & Jolicoeur, 1994), 

Cooks’ and Mahalanobis distances, leverage values as well 

as multivariate outliers detection via kurtosis (see Peña & 

Prieto, 2001). Finally, outlier identification is a very 

debatable issue which has no consensus among researchers. 

This situation renders this topic a quite interesting one and 

worthwhile of further investigation. 

A final comment on data manipulation 

Using data transformation can improve homogeneity 

and normality of a data set, but it is not always the case as 

was explained earlier. Finding a fine balance between 

homogeneity of variance and normality implies a trade-off 

between data transformations and identification of outliers. 

Some researchers place the identification of outliers as a 

previous step to data transformation (e.g., Behrens, 1997), 

while other researchers favour the other-way-around 

procedure (e.g., Tabachnick & Fidell, 2007). Here, we 

suggest a negotiable use of data transformations and 

outliers’ identification. If the first procedure chosen does not 

contribute much to meet the assumptions which parametric 

tests are based on, then begin with the other procedure and 

continue the process. Figure 5 illustrates this situation. 

The role of graphs in exploring data 

When the spurious observations in Group B are 

removed, not only does the distribution become more 

normal-like but also the homogeneity of variances between 

Group A and Group B improves (see formal tests above). 

Under these conditions, the data set has ideal levels of 

normality and homogeneity that make both groups’ means 

comparable. A two-tailed t-test indicates that both groups 

have different means, t (36) = 2.41, p = 0.02. In terms of the 

hypothetical research scenario, the video clips did arouse 

 
 

Figure 5. Suggested routine for parametric data analysis. This flow chart takes into account the considerations about data 

screening outlined by Tabachnick and Fidell (2007), therefore it can be applied to univariate and multivariate data. Data 

sets that are non-normally distributed and that present heterogeneous variances can be submitted to a non-parametric test. 

However, such an issue is not tackled here since it goes beyond the scope of the paper. 
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participants’ happiness and their free recall test scores were 

significantly different from the scores given by the 

participants who watched videos with neutral emotional 

content (see Figure 3b).  

As mentioned earlier, the hypothetical situation 

presented here exemplifies a Type II error (see Figure 2a) 

where the treatment group’s mean was higher than that of 

the control group even before the spurious observations 

were removed. So, if the researcher of this hypothetical 

situation looked only at the groups’ means, (s)he would 

likely fail to detect the real reason for the non-significant 

result (i.e., presence of outliers) and falsely conclude that the 

treatment was not effective enough. 

Graphical techniques that represent spread and shape of 

data 

Earlier, kernel densities were presented to highlight 

changes in data spread and shape given that this 

information is impossible to extract from bar plots like those 

representing the results of the t test. Unfortunately, kernel 

densities are graphical techniques which are not commonly 

reported in research papers unless the paper is focused on 

the study of distributions. More critically, it is quite rare to 

find papers reporting parameters of the data’s underlying 

distributions like skewness, kurtosis, normality, and 

homogeneity values. Kernel densities and summary 

statistics are of great importance since they throw light on 

how groups of data differ which in turn provides a basis for 

further hypothesis testing (see Wilcox, 2004). 

Fortunately, there are graphical methods that 

communicate more about the shape and spread of the data 

than bar plots do. A very useful graphical technique that 

enables researchers to have some information about the 

spread of the data is the boxplot (McGill, Tukey, & Larsen, 

1978). Although the summary statistics presented in a 

boxplot centre around the median, the boxplot enables 

identification of potential outliers. Nevertheless, it is still 

difficult to note the data’s spread and shape without further 

visual scrutiny. A graphical technique that keeps properties 

of the box plot but also plots the underlying distribution of 

the data is called the violin plot (Hintze & Nelson, 1998). 

Violin plots are a recent technique used to report data in 

other sciences, e.g., biology (e.g., Julenius & Pedersen, 2006), 

economics (Chumpitaz, Kerstens, Paparoidamis, & Staat, in 

press), and politics (Kastellec & Leoni, 2007), but it has not 

been used in exploring or reporting data in psychological 

research. The core feature of the violin plot is that it presents 

the same information given in a boxplot plus a smoothed 

histogram - a density estimate - of the groups of data (see 

insets in Figure 6). 
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Figure 6. Violin plots representing the mean and the 95% CI of groups of data before (a) and after (b) outlier removal. The rugs 

next to each data set are added in order to highlight the actual observations. Insets show the traditional violinplot 

representing the groups of data. The black bars represent the first and third quartile and the white dots represent the median. 

Note that the traditional violinplot and the modified violinplot use different types of kernel densities to represent the density 

estimate for each data set. Hence, the obvious visual difference between the two violinplots.  
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A variation of the violin plot based on the mean 

Violin plots are a very informative graphical technique 

since they show the spread and shape of a data set based on 

statistics around the median. This fact might, though, 

discourage many researchers to implement it since summary 

statistics and computations around the mean are the usual 

currency. However, using software for statistical computing 

and graphics, violin plots can be customised to represent 

summary statistics around the mean.  

The variation on the violin plot presented here is 

implemented in order to show the density estimate of the 

data plus 95% confidence intervals (CI) around the mean. 

The core advantage of plotting the mean is that it is a very 

frequent statistic reported in most scientific research. Also, it 

is advantageous to report the 95% CI since it indicates where 

the true mean might fall (see Cumming, Fidler, & Vaux, 

2007) and gives a visual opportunity to note if groups of 

data might have significant differences between their means 

(see Masson & Loftus, 2003). Figure 6 presents Groups A 

and B, before and after data treatment, as violin plots 

together with their means and 95% CIs around them.  

A brief note on the computation of confidence intervals and 

their interpretation 

The type of 95% CIs assumed here are not those 

computed using z scores (i.e., the 1.96 value,  ) 

but the t critical values for two-tailed tests 

( ). This assumption is adopted on the basis 

that the computation based on z scores applies to situations 

when population variance is known (which usually is never 

known) or the sample size is large (see Cumming, 2007). 

Cumming (2007) presents some recommendations on how to 

interpret confidence intervals when they are reported 

graphically. The essential idea is that the closer the 

confidence interval of one of the groups gets to the mean of 

the other group, the closer the p value gets to the 

significance level (i.e.,  0.05). In other words, a rule of thumb 

to visually estimate when two groups have significantly 

different means is when there is less than 50% of overlap 

between the CIs of the groups. Note that these 

recommendations are straightforward only when groups 

have homogeneous variances which are graphically denoted 

by CIs of similar length. However, as in most cases groups 

should have homogeneous variances for a parametric test to 

be performed (see above), the rule of thumb proposed here 

holds. 

Conclusions 

This paper stresses the need to use graphical techniques 

to explore and report data by exploring and analysing a 

simulated small data set. Recommended procedures for data 

analysis are presented and an educated routine is proposed 

in order to fit data to parametric tests’ assumptions. 

Although the procedures and the routine are well-founded, 

they are by no means exhaustive and raise questions that 

deserve further empirical investigation.  

Combining various graphical techniques permits 

researchers to know more about the data and have access to 

relevant information about the spread and shape of the data. 

This information is supported also by essential summary 

statistics like the confidence intervals around the mean. 

Given that the mean is the statistic most frequently reported 

in psychological research and other sciences, future work 

should propose graphical techniques which represent 

essential summary statistics around the mean and give 

information about the data’s distribution (e.g., Marmolejo-

Ramos & Tian, 2009). 

The use of violin plots should start to take place in the 

report of psychological research given the qualities they 

have. As mentioned earlier, the advantages of using violin 

plots is that they display the actual spread and shape of the 

data and can be customised to show basic summary 

statistics. It was also graphically demonstrated that violin 

plots can be altered to show the mean and the confidence 

intervals around it in conjunction with the kernel density of 

the data. The code that produces the modified violinplot can 

be obtained from the journal’s website 3. 
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