
Tutorials in Quantitative Methods for Psychology

2009, Vol. 5 (2), p. 59-67.

59

Using Mathematica within E-Prime

Denis Cousineau

Université de Montréal

When programming complex experiments (for example, involving the generation of

stimuli online), the traditional experiment programming software are not well

equipped. One solution is to give up entirely the use of such software in favor of a low-

level programming language. Here we show how E-Prime can be connected to

Mathematica so that the easiness and reliability of this software can be preserved while

at the same time granting it the full computational power of a high-level programming

language. As an example, we show how to generate noisy images with noise

proportional to the rate of success of the participants with as few as 12 lines of codes in

E-Prime.

 Psychology experiments can be rather simple, being

composed of a fixed number of trials, presenting a fixed set

of stimuli and collecting a fixed set of responses. For such

situations, many software exists that can program the

experiment rapidly and easily (such as Superlab, ERTS,

InQuisit, E-Prime, DirectRT, to name a few, Stahl, 2006).

However, more sophisticated experiments are sometimes

required which can for example (i) continue training until a

performance criterion is reached, (ii) generate random

stimuli, (iii) alter stimulus differently to adapt to the

participant, (iv) interpret the participant’s response and

continue the experiment accordingly, etc. The possibilities

are endless and we are only enumerating a few. All these

possibilities can be implemented as long as a programming

language is available. However, (a) very few experiment

programming software offer the possibility to include lines

of code within the experiment, (b) when they do, it is often a

 Request for reprint should be addressed to Denis

Cousineau, Département de psychologie, Université de

Montréal, C. P. 6128, succ. Centre-ville, Montréal (Québec)

H3C 3J7, CANADA, or using e-mail at

Denis.Cousineau@Umontreal.CA. This research was

supported in part by the Conseil pour la Recherche en

Sciences Naturelles et en Génie du Canada.

low-level programming language.

E-Prime is such a experiment programming software.

Within E-Prime, it is possible to add customized code using

the Visual-Basic programming language. Whereas verifying

that a performance criterion is reached is fairly easy to

program in Visual-Basic (point i above), generating random

stimuli can be more difficult if a random number generator

different from a uniform distribution is needed. As of

altering stimuli, it can be near impossible to do with Visual-

Basic as there is no linear algebra, no Fourier or wavelet

transforms, no convolution sub-routines in this language

(this is why it is called a “low-level” programming

language). Such sub-routines (either procedures or

functions) can be defined in E-Prime, but doing so takes

times (the code for any such sub-routine can be many pages

long, with debugging and testing a tedious process).

When one of those situations arise, there are two

possible courses of action: (A) Give up the use of an

experiment programming software and program everything

with a low-level programming language such as C.

Although advanced sub-routines are not part of the C

language, they can be found in various references (e. g.

Press, Flannery, Teukolsky and Vetterling, 1986). (B) Use a

high-level programming environment as long as it is capable

of presenting stimuli and reading responses with a very

high timing accuracy. To our knowledge, only Matlab is

capable of this if a special library is downloaded, the

Tous
Stamp

http://dx.doi.org/10.20982/tqmp.05.2.p059

 Mathematica within E-Prime

60

Psychophysics toolbox (Brainard, 1997).

We believe that both solutions are too radical as they

totally evacuate the experiment programming software.

These software are robust, very easy to program and easy to

connect to other devices such as response boxes, fMRI and

EEG acquisition systems, etc. In what follow, we propose a

third alternative: a mixed environment in which all the

stimulus presentation and response collections are assumed

by an experiment programming software and in which all

the advanced computational capabilities are assumed by a

high-level programming software.

The duo discussed in this article is E-Prime and

Mathematica (E-Prime, 2004, Chen, Cui, & Zhang, 2005,

Wolfram, 1996). Here, E-Prime is used as the primary

program: It will start Mathematica, send requests and read

responses, and finally, shut down Mathematica when the

experiment is finished. In the first section, we show how E-

Prime can start and end a Mathematica session. In the

subsequent section, we will briefly explain the protocol used

to exchange information between the two programs.

However, all these technical details are not essential: Section

3 provides the necessary sub-routines to add to E-Prime.

You can simple type them into E-Prime and use them to

control Mathematica without advanced understanding of

how they operate. Section 4 gives a complete example where

additive noise is added to images in proportion to the

accuracy of the identification responses.

1- Starting and ending a session with the Mathematical

kernel

Mathematica is in fact composed of two programs: The

Mathematica front-end (the file mathematica.exe) which is

the user interface, and the Mathematica kernel (the file

mathkernel.exe) which is responsible for actually

performing the computations. When the user type “Enter”

in the front-end, the expression in the current cell is packed

and send to the kernel. The kernel processes it and returns

packages (“packet” in the Mathematica idiom) containing

the response(s) of the kernel. The sending and receiving of

packets are managed by the MathLink protocol. Figure 1

summarizes this.

The MathLink protocol is implemented in a library

composed of functions and subprograms. The latest version

(Implementation 3) is available for both 32-byte and 64 byte

processors (in doubt, the 32-byte version works on all

machines). It is installed by Mathematica in the

C:\Windows\System32 folder under the name ML32I3.dll

(or ML64I3 for the 64-byte version). Here, the extension

“.dll” stands for “dynamically-linked library”. Such files

contain functions and subroutines that can be used by any

programs written in any language. They are already

compiled and ready to use.

To start a kernel and be able to communicate with it, you

need to use two functions provided in the MathLink library,

MLInitialize and MLOpenString. The second will return a

link which will identify the kernel with which E-Prime is

interacting (many kernels can be opened simultaneously).

The link is necessary for all interaction and to close the

kernel. To start the kernel, a connecting string is required

which specifies that a new kernel must be launched (the

alternative would be to spy on an existing kernel) and what

is the path and file name of the kernel on your computer.

The instructions in E-Basic (Visual Basic for E-Prime) are:

Dim MLEnv as long, MLLink as long, MLErrNo as long

MLEnv = MLInitialize(0)

MLLink = MLOpenString(MLEnv,

"-linkmode launch –linkname \"C:\\\\Program

 files\\\\Wolfram Research\\\\Mathematica

 \\\\6.0\\\\MathKernel.exe –mathlink\" ",

MLErrNo)

The second command is all on a single line. Because both

E-Prime and the MathLink library interpret the backslash as

an escape character, it has to be doubled twice (hence

quadrupled). Finally, the path must be enclosed in " so they

must be preceded by the escape character (the backslash).

To close the kernel, the instructions are:

MLClose MLLink

MLDeinitialize MLEnv

2- The protocol to communicate with the Mathematical

kernel

Before it can be sent to the kernel, an expression must be

Mathematica

front-end

Any program

e.g. E-Prime

MathKernel MathKernel

Mathlink

protocol

Figure 1. Relation between a front-end software and the

Mathematica kernel

 Mathematica within E-Prime

61

packaged, that is, enclosed in wrappers which identify what

kind of package is being sent to the kernel. Since it is most

convenient to send a string of text containing a Mathematica

command, the wrapper is often EnterTextPacket followed

by a Mathematica expression, e.g. "2+2" (here, Enter is to be

understood as "Entered into the kernel").

Once received, the kernel returns the response,

accordingly wrapped in a ReturnTextPacket, followed by a

string containing the response, e.g. "4" (here, Return means

"Returned from the kernel"). The kernel also returns

identifications of the current output label (e.g. "Out[1]=")

wrapped in OutputNamePacket as well as the next input

label (e.g. "In[2]:=") wrapped in InputNamePacket. In

addition, if an error occurred, an ErrorMessagePacket and a

TextPacket will be issued giving the error name and the

error description (e.g. Part::partd : Part specification <<1>> is

longer than depth of object). Figure 2 left gives an example

where the wrappers are shown.

In@1D:= 2 +2

EnterTextPacket@"2+2"D

Packets sent Content Nber of args

EnterTextPacket 1

String "2+2"

MathKernel

Packets received Content Nber of args

OutputNamePacket Out@1D=

ReturnTextPacket 1

String "4"

InputNamePacket In@2D:=

OutputNamePacket@"Out@1D="D

ReturnTextPacket@"4"D
InputNamePacket@"In@2D:="D

Out@1D=4

In@1D:=2 +2

EnterExpressionPacket@Plus@2, 2DD

Packets sent Content Nber of args

EnterExpressionPacket 1

Function Plus 2

Integer 2

Integer 2

MathKernel

Packets received Content Nber of args

OutputNamePacket "Out@1D="

ReturnExpressionPacket 1

Integer 4

InputNamePacket "In@2D:="

OutputNamePacket@"Out@1D="D

ReturnExpressionPacket@4D
InputNamePacket@"In@2D:="D

Out@1D= 4

Figure 2. Examples of protocol in response to the input 2+2. Left: the protocol uses a text packet; right: the protocol uses an

expression packet. The first step is to put the wrappers, then each element of the packet can be sent. Likewise, the kernel

returns packets that include wrappers.

 Mathematica within E-Prime

62

If more flexibility is required, instructions can be sent

under the form of an expression. Expressions detail

explicitly the functions, the symbols, the integers, the reals

and the strings being sent. For example, the expression 2+2

is in fact given by Plus[2,2] (use FullForm in Mathematica to

know how to represent an expression explicitly). To do so,

the expression is wrapped in an EnterExpressionPacket and

the response is wrapped in a ReturnExpressionPacket.

Figure 2 right gives and example.

Once the packets have been set, they must be sent using

the appropriate function from the MathLink library, one

function call per element in the packet.

Functions are sent using the function MLPutFunction

followed by the name of the function (or wrapper, they are

seen as function as well) and the number of arguments to

the function. Data are sent using MLPutInteger, MLPutReal

or MLPutString depending on the type of data. Finally,

symbol names (variables and constants) are sent using

MLPutSymbol. To signal the end of a packet, use

MLEndPacket. Listing 1, top, indicates how to send a string

containing 2+2 using the EnterTextPacket while Listing 2,

bottom does the same using an expression. Those functions

returns a non-zero value if an error occurred (but if the link

opened properly and the packet is syntaxically correct, there

should not be an error).

Table 1 gives the list of functions that are required to

manage a link to a kernel. If the wrapper

EnterTextExpression is used, the functions to put and get

reals, integers and symbols are no longer useful since

everything is sent and received as strings.

The kernel places the response packets in a waiting list

where they can be fetched. The packets have a packet type

and a packet content. For example, in response to Plus[2,2],

the response packet will be of type Integer and its content

will be the number 4. Response packets are wrapped in a

ReturnTextPacket. This packet has a type of its own (see

Table 2) but has no content of its own. It only signals that a

string packets follows.

To know the packet type, use the function

MLNextPacket. Packet types are identified by a unique

number, listed in Table 2. As wrapper packets have no

content, simply fetch the subsequent packet with

MLGetNext or skip the remaining of the packet with

MLNewPacket.

3- Integrating all this into E-Prime

All the previous considerations can be reduced to four

operations: Opening and closing the kernel, sending

Mathematica instructions and receiving responses. To

achieve this within E-Prime, we programmed two sub-

procedures and two functions:

Sub MLStart starts the kernel in mathlink mode; you

must verify that the path to the file

MathKernel.exe is correct on your

system.

Sub MLEnd end and close the kernel.

Table 1. Functions part of the MathLink library

Functions that send packet content to the kernel; returns 0 if no

error
 MLPutFunction(link, "function name",
 number of arguments)
 MLPutString(link, "string content")
 MLPutReal(link, realvalue)
 MLPutInteger(link, integervalue)
 MLPutSymbol(link, "symbol name")

Functions that returns the packet type (see Table 2)
 MLNextPacket(link) get the beginning of a
 packet
 MLGetNext(link) get the next item in
 the packet
 MLNewPacket(link) skip the whole packet

Functions that get the packet content; returns 0 if no error
 MLGetFunction(link, stringvariable,
nbargs)
 MLGetString(link, stringvariable)
 MLGetReal(link, realvariable)
 MLGetInteger(link, integervariable)
 MLGetSymbol(link, stringvariable)

Listing1. Sending packets with E-Basic

Listing 1a: Sending an EnterTextPacket
Dim ErrNo As Long
ErrNo = MLPutFunction(MLLink,
"EnterTextPacket",1)
ErrNo = MLPutString(MLLink, "2+2")
ErrNo = MLEndPacket(MLLink)

Listing 1b: Sending an EnterExpressionPacket
Dim ErrNo As Long
ErrNo = MLPutFunction(MLLink,
"EnterExpressionPacket",1)
ErrNo = MLPutFunction(MLLink, Plus,2)
ErrNo = MLPutInteger(MLLink,2)
ErrNo = MLPutInteger(MLLink,2)
ErrNo = MLEndPacket(MLLink)

Table 2: types of packet and the number identifying them

(received by MLNextPacket or MLGetNext).

Wrappers Data

ReturnExpressionPacket 16 Function 70

ReturnTextPacket 4 String 34

InputNamePacket 8 Integer 43

OutputNamePacket 9 Real 42

ErrorMessage 5 Symbol 35

TextPacket 2

 Mathematica within E-Prime

63

Function MLWrite(astring) As String This is

the function that you will use to send an

expression as a string and get the result

as a string as well.

Function MLRead(n) As String This function

reads n packets from the kernel. You

should not use this function, as MLWrite

reads the returned packets automatically

after the command has been sent.

As an example within E-Prime, you can use the

following in an Inline object:

msgbox "The result of 2+2 is " & MLWrite("2+2")

Any command known to Mathematica can be send, e.g.

msgbox "The result of 1-ê (-i pi) is " &

MLWrite("1-Ê (-I Pi)")

in which E is 2.7182, I is the square root of -1 and Pi is 3.1415.

Appendix 1 gives the code for all four subprograms. This

code must be given to E-Prime in the "User" tab of the script

page (visible using the menu View: Script).

The code given in the appendix, in addition to interact

with the kernel, also send an echo of all the inputs and

outputs processed by the kernel in the Ouptut window of E-

Prime (near the bottom of the screen). In case of difficulties,

this might be helpful for debugging.

4- A complete example

As an example, we show how to use MathKernel to

create noisy images, with additive noise in proportion to the

proportion of success achieved in the previous trials. The

example is available on the journal's web site (don’t forget to

adapt the paths to your system in the MLStart subroutine).

At the beginning of the experiment, it is necessary to

start the kernel so an Inline object is added which contains

only the instruction`

MLStart

Likewise, at the end of the experiment, an Inline object

contains

MLEnd

At the beginning of the experiment, we must inform the

kernel of the locations where the original, unnoisy images

are to be found. It is not possible to send backslashes with

the MathLink protocol within E-Prime (the kernel, the

protocol and E-Prime all believes that the backslashes are

escape characters, resulting in uncontrollable interactions).

A way around is to use the Mathematica function

ToFileName which can be use to construct a complete path

from separate folder names. Hence:

Dim useless as string

useless = MLWrite("mypath = ToFileName[{\"C:\",

 \"Documents and settings\","\yourusername\"];

")

in which \" represents literally the double-quote character,

not the end of the E-Prime string. The result (here "Null"

since the Mathematica instruction ends with a semi-comma)

is useless so we discard it.

To keep count of the number of trials and the number of

successes, we also set two counters at zero in the kernel

before the block begins:

useless = MLWrite("nbtrial = 0; nbsuccess = 0;")

Finally, in order to add additive noise to an image, a random

matrix is superposed to the image matrix. In Mathematica 7,

the instructions for an image of 360 pixels by 360 pixels

would be:

noise = RandomReal[NormalDistribution[0, nbsuccess

/ nbtrial],{360,360}];

image = Import[mypath<>"imageX.bmp", "GrayLevels"];

image2 = Image[image + noise];

Export[mypath<>"imageX2.bmp",image2];

In these Mathematica instructions, the letter X should be

replaced by the current stimulus from E-Prime, which we

can get with:

dim stim as string

stim = c.getattrib("StimulusIdentity")

as long as the attribute "StimulusIdentity" is defined in the

list of stimuli in E-Prime. Therefore, the second line above is

sent to the kernel with

useless = MLWrite("image = Import[mypath<>\"image"

+ stim + ".bmp,\"GrayLevels\"];")

in which the segment + stim + interrupts the command

string, insert the variable stim then resume it.

As seen, it was possible to generate an experiment

generating complex stimuli in E-Prime with as few as a

dozen commands in four Inline objects by using the

computational power of Mathematica.

The present example is deliberately very simple. To save

lines of code, more complex operations could be

preprogrammed with Mathematica functions and saved in a

.m file (e.g. MyFunctions.m). This file could be loaded into

the kernel with

useless = MLWrite("Get[mypath <> \"MyFunctions.m\"]

")

if the file is located in the folder mypath.

The file MyFunctions.m might contain the following

Mathematica function

AdditiveNoise[stim_,prop_]:=Module[{},

 noise=RandomReal[NormalDistribution[0,2

 prop+0.0001],{360,360}];

 image=Import[mypath<>"image"<>

 ToString[stim]<> ".bmp","GrayLevels"];

 image2=Image[image+noise];

 Export[mypath<>"image"<>ToString[stim]<>

"b.bmp",image2]

 Mathematica within E-Prime

64

]

so that the randomly generated stimuli would be obtained

with only one line of code

useless = MLWrite("AdditiveNoise[" + stim +

",nbsuccess/nbtrial]")

This demonstration is also available on the journal's web

site. Finally, the function name AdditiveNoise could even be

an attribute manipulated in E-Prime:

fct = c.getattrib("NoiseFunction")

so that

useless = MLWrite(fct + "[" + stim +

",nbsuccess/nbtrial]")

would generate a noisy image using a noise function

selected by E-Prime. The possibilities becomes endless.

References

Press, W. H., Flannery, B. P., Teukolsky, S. A. & Vetterling,

W. T. (1986). Numerical Recipes: The art of scientific

computing. New York: Cambridge University Press.

Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial

Vision, 10, 433-436.

Chen, W., Cui, Y., Zhang, J. (2005). Introduction to E-Prime

and its application. Psychological Science (China), 28,

1456-1458.

E-Prime (Version 1.1) [Computer program] (2004).

Wolfram, S. (1996). The Mathematica Book (third edition).

New York: Cambridge University Press.

Manuscript received June 16, 2009

Appendix follows.

Appendix: Code that needs to be added to E-Prime to manage communications with the Mathematica Kernel

'++

' Global variables

'++

' Global variables containing the connections environnement and link

Public MLEnv As Long, MLLink As Long, MLerrno As Long

' Global variables containing the input label and output label from the kernel, e.g. In[1]:=

Public MLcurrentinput As String, MLcurrentoutput As String

'++

' Functions provided by MathLink

'++

' All the following functions are part of the MathLink library,

' installed in C:\Windows\system32 by Mathematica

' Here, we use the third implementation (the most recent one) of the 32 bytes version

Declare Function MLInitialize Lib "ML32I3.dll" (ByVal p As Long) As Long

Declare Function MLOpenString Lib "ML32I3.dll" (ByVal env As Long, ByVal comm As String, ByRef errno As Long)

As Long

Declare Sub MLClose Lib "ML32I3.dll" (ByVal link As Long)

Declare Sub MLDeinitialize Lib "ML32I3.dll" (ByVal env As Long)

Declare Function MLPutFunction Lib "ML32I3.dll" (ByVal link As Long, ByVal funct As String, ByVal n As Long)

As Long

 Mathematica within E-Prime

65

Declare Function MLPutSymbol Lib "ML32I3.dll" (ByVal link As Long, ByVal symb As String) As Long

Declare Function MLPutString Lib "ML32I3.dll" (ByVal link As Long, ByVal comm As String) As Long

Declare Function MLPutInteger Lib "ML32I3.dll" (ByVal link As Long, ByVal n As Integer) As Long

Declare Function MLPutDouble Lib "ML32I3.dll" (ByVal link As Long, ByVal x As Double) As Long

Declare Function MLGetString Lib "ML32I3.dll" (ByVal link As Long, ByRef funct As String) As Long

Declare Function MLGetFunction Lib "ML32I3.dll" (ByVal link As Long, ByRef funct As String, ByRef n As Long)

As Long

Declare Function MLGetInteger Lib "ML32I3.dll" (ByVal link As Long, ByRef n As Integer) As Long

Declare Function MLGetDouble Lib "ML32I3.dll" (ByVal link As Long, ByRef x As Double) As Long

Declare Function MLGetSymbol Lib "ML32I3.dll" (ByVal link As Long, ByRef symb As String) As Long

Declare Function MLEndPacket Lib "ML32I3.dll" (ByVal link As Long) As Long

Declare Function MLNextPacket Lib "ML32I3.dll" (ByVal Link As Long) As Long

Declare Function MLGetNext Lib "ML32I3.dll" (ByVal link As Long) As Long

Declare Function MLNewPacket Lib "ML32I3.dll" (ByVal Link As Long) As Long

'++

' Functions and sub-procedures for Kernel <-> E-Prime exchanges

'++

Function MLRead(nb As Integer) as String

 ' nb is the number of packets to read

 ' Do not use unless you know the kernel has issued a packet

 ' MLNextPacket and MLGetNext return one of the following:

 ' 16 (returned expression packet) 8 (inputname packet) 9 (outputname packet)

 ' 5 (error message packet) 2 (content of an error message)

 ' 70 (function), 34 (string), 43 (integer) 42 (real) 35 (symbol)

 Dim nbarg As Long, ans As Integer, x As Double

 Dim pkttype As Long, res As Long, tmpstr As String

 Dim errornam As String, errortxt As String, errordsc As String

 Do While nb >= 1

 pkttype = MLNextPacket(MLLink) 'Get the packet head type

 Select Case pkttype

 Case 16 'This signals the begining of a complex expression

 ' in fact, it should never be anything else but a string, but just in case...

 pkttype = MLGetNext(MLLink)

 Select case pkttype

 Case 34 'a string

 res = MLGetString(MLLink, tmpstr)

 Case 70 'a function name

 res = MLGetFunction(MLLink, tmpstr, nbarg)

 res = MLNewPacket(MLLink) 'lets skip the remaining of the packet...

 tmpstr= tmpstr+"[...(" & nbarg & " arguments)...]"

 Case 35 'a symbol

 res = MLGetSymbol(MLLink, tmpstr)

 Mathematica within E-Prime

66

 Case 42 'a real number

 res = MLGetDouble(MLLink, x)

 tmpstr=cstr(x)

 Case 43 'an integer

 res = MLGetInteger(MLLink, ans)

 tmpstr=cstr(ans)

 Case Else

 MsgBox "ML warning: unknown packet type: " & pkttype

 End select

 Debug.print MLcurrentoutput & " " & tmpstr

 Case 8 ' input and output labels

 res = MLGetString(MLLink, MLcurrentinput)

 Case 9

 res = MLGetString(MLLink, MLcurrentoutput)

 ' treating error message sent by mathematica; always sent by three.

 Case 5

 res = MLGetSymbol(MLLink, errornam) 'Get the symbol of the error

 res = MLGetString(MLLink, errortxt) 'Get the name of the error

 res = MLGetFunction(MLLink, errordsc, nbarg) 'Skip the "TextPacket" wrappper

 res = MLGetString(MLLink, errordsc) 'Get the description of the error

 Debug.print errornam & "::" & errortxt & " " & errordsc

 nb = nb + 1 ' this was unexpected, so read one extra packet

 Case 2 ' a textpacket producted by Print[]

 res = MLGetString(MLLink,tmpstr)

 Debug.print "\t\t" & tmpstr

 nb = nb + 1 ' this was unexpected so read one extra packet

 Case Else

 MsgBox "ML warning: unknown packet head: " & pkttype

 End Select

 nb = nb - 1

 Loop

 MLRead = tmpstr ' returns the answer given by the kernel

End Function

Function MLWrite(astr As String) as String

 'The expression is wrapped within "ToString" so that the result ought to be a string

 'The expression to evaluate is ToString[ToExpression[astr]]

 'The result of this function is the string returned by the kernel

 dim res as long

 res=MLPutFunction(MLLink, "EnterExpressionPacket",1)

 res=MLPutFunction(MLLink, "ToString",1)

 Mathematica within E-Prime

67

 res=MLPutFunction(MLLink, "ToExpression",1)

 res=MLPutString(MLLink, astr)

 res=MLEndPacket (MLLink)

 debug.print MLcurrentinput & astr

 MLWrite = MLRead(3) 'reads the output name, the result, and the new input name

End Function

'++

' Sub-procedures for starting/closing the kernel

'++

Sub MLLaunch()

 ' The mathematica connection string requires to quadruple the backslash in the path

 ' Adapt the path according to your system

 dim strmath as string, temp as String

 strmath="-LinkMode Launch -LinkName \"c:\\\\Program Files\\\\Wolfram

Research\\\\Mathematica\\\\7.0\\\\MathKernel.exe -mathlink\" "

 ' initialize then start the mathematica kernel in mode -mathlink

 MLenv = MLInitialize(0)

 MLLink = MLOpenString(MLenv, strmath, MLerrno)

 If MLerrno = 0 then

 Debug.print "MATHLINK::Mathematica started with success"

 else

 Debug.print "MATHLINK::Mathematica kernel has returned an error " & MLerrno

 end if

 ' reads the initialisation message

 temp = MLRead(1) 'it should return "In[1]:=" only

end sub

Sub MLEnd()

 ' close the link then deinitialize the environnement

 MLClose MLLink

 MLDeinitialize MLenv

 Debug.print "MATHLINK::Mathematica closed."

end sub

