
Tutorials in Quantitative Methods for Psychology 

2010, Vol. 6(1), p. 1-15. 

 1 

The Application of Canonical Correlation  

to Two-Dimensional Contingency Tables 

Howard B. Lee Gary S. Katz  Alberto F. Restori 

California State University, Northridge 

 

This paper re-introduces and demonstrates the use of Mickey’s (1970) canonical 

correlation method in analyzing large two-dimensional contingency tables. This 

method of analysis supplements the traditional analysis using the Pearson chi-square. 

Examples and a MATLAB source listing are provided. 

 

 
  Almost every elementary statistics textbook has some 

coverage of the chi-square test (e. g., Comrey & Lee, 2007, 

Kirk, 2007, Howell, 2002). In particular, the chi-square test is 

presented in the analysis of categorical data. Most of these 

textbooks will take the reader up to the contingency table 

that involves the cross tabulation of two categorical 

variables. With contingency tables, there are two modes of 

analyses (Kennedy, 1983): (1) Symmetric and (2) 

Asymmetric. In the symmetrical case, no distinction is made 

between the two variables as to which is the dependent 

variable and which is the independent variable. The primary 

interest is in whether the two variables are related. In the 

asymmetric case one of the categorical variables is identified 

as the independent variable and the other categorical 

variable is the dependent variable. Here the interest is in 
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whether a difference exists between the categories of the 

independent variable. In both cases, the test statistic is the 

Pearson chi-square statistic and it is computed using the 

same formula:  

 , 

where the Oi’s are the observed frequencies for category i 

and the Ei’s are the expected or theoretical frequencies for 

category i. 

Additional information can be obtained about these two 

variables by computing indices of association such as the phi 

or Cramer’s V coefficient. If the categorical variables have 

only two categories, the odds-ratio can be computed to 

provide more information (Kerlinger & Lee, 2000). Other 

than these only a few other statistics such as kappa or the 

contingency coefficient provides information about the two 

variables. In the case where a categorical variable has more 

than 2 categories, some have recommended additional tests 

using the chi-square statistic between pairs of categories. 

This is tantamount to multiple comparison tests made in 

ANOVA with three or more levels of the independent 

variable. However, unlike ANOVA, research done on these 

post hoc tests in terms of the experimentwise error rate has 

been mixed (Garcia-Perez & Nunez-Anton, 2003; Macdonald 

& Gardner, 2000; Thompson, 1988). Hence such tests should 

be used and interpreted with caution.  

Nearly 40 years ago in a rather obscure technical report 

written by Mickey (1970), the notion was put forth that 

canonical correlation could be used to analyze large 2-way 

contingency tables and provide descriptive information 

beyond those commonly discussed in statistics textbooks. 
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The traditional approach to 2-dimensional contingency 

tables did not yield information about categorical variables 

in the same way that canonical correlation could (Mickey, 

1970). Thirty years after Mickey’s report, Dunlap, Brody and 

Greer (2000) published an innovative article demonstrating 

how one could analyze large 2-dimensional contingency 

tables through canonical correlation. The method proposed 

by Dunlap, et al. (2000) was considerably more complicated 

than the one proposed and demonstrated by Mickey (1970). 

Dunlap, et al., (2000) outlined an elaborate method to obtain 

the proper correlation tables suitable for analysis by 

canonical correlation. Dunlap, et al.’s (2000) approach was to 

take a contingency table and transform it into a correlation 

matrix that is then submitted to a canned computer program 

such as SPSS1 or SAS for canonical analysis. One of Dunlap, 

et al.’s (2000) goal was to show the interpretative advantages 

provided by canonical correlation analysis in describing 

relationships between categorical variables and sets of 

categorical variables over the more traditional approaches. 

However, canonical correlation has not had the 

widespread popularity as other multivariate statistical 

methods. With the IBM PC version of SPSS that appeared in 

1984 canonical correlation was no longer listed in the index 

or table of contents of the user’s manual (see Norusis, 1984). 

In a PsycInfo search of peer-reviewed journal articles from 

1998 to 2009 using canonical correlation analysis, there were 

only 286 reported studies. In contrast, for the same period of 

time and using the same search parameters, multiple 

regression reported 5,425 hits, factor analysis had 11,709, 

structural equation modeling reported 17,534 and 

MANOVA had 947. Cluster analysis had 2367 hits, 

discriminant analysis had 961 and logistic regression 

reported 9628. The second lowest multivariate method was 

multidimensional scaling (MDS) which had 722 studies. 

Canonical correlation is covered in many multivariate 

statistics textbooks (e.g. Lattin, Carroll & Green, 2003; 

Tabachnick & Fidell, 2005; Kashigan, 1991) but its use in 

research studies have lagged. In fact, SPSS no longer has it 

easily available as a subprogram in their latest packages. 

SPSS has designated canonical correlation to a macro that 

the user can execute through a series of syntax statements 

instead of a point-and-click menu. Garson (2008) reports that 

canonical analysis can be obtained through SPSS’s 

MANOVA subprogram. However, it is available only 

through syntax and not from the SPSS menus. 

Canonical correlation is considered to be the most 

general correlational method. It attempts to find the highest 
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correlation between two sets of variables. In each set there 

are two or more variables. This is unlike multiple correlation 

where the correlation is found between one variable 

(dependent variable) and a linear combination of two or 

more variables (independent or predictor variables). In 

canonical correlation there exist sets of linear combinations 

that are maximally correlated. The objective of canonical 

correlation can involve any one or all of the following: 

a) Determining whether two sets of variables made on each 

object (person) are linearly correlated 

b) Determining which variables in each of the two sets 

contribute the most to the relationship between the two sets 

of variables. 

c) Predicting the combined linear score for an object (person) 

of one set of variables using the variables in the other set. 

Canonical correlation is useful for descriptive research 

purposes because it does not require the data to be normally 

distributed. The data are assumed to be drawn from a 

common covariance and dispersion matrix whose elements 

are finite and that the sets of variables are related linearly. 

This paper will examine the Mickey method of analyzing 

contingency table data using canonical correlation. It is 

much simpler than the method put forth by Dunlap, et al. 

(2000). The Dunlap, et al. (2000) method involves the 

creation of a correlation matrix and a factor analysis to 

determine the missing row and column correlations before 

being submitted to canonical correlation computations. The 

Mickey method only requires the creation of a dummy 

variable data set using information from the cross 

tabulations of the two categorical variables and the 

computation of the total variance-covariance matrix (or total 

covariance matrix) unadjusted for the means of the two 

variables. Essentially the total covariance matrix is the sums 

of squares and cross-products matrix divided by the sample 

size. The use of BMD09M, BMDP6M or BMDX75 for the 

Mickey method is straightforward since there are different 

options as to what the canonical correlation analysis would 

use in terms of the dispersion matrix. The Mickey method 

uses the option “covariance matrix about the origin.” 

Unfortunately, public domain versions of the BMD 

programs are no longer available or are hard to find. 

However, BMDP6M is still available commercially through 

a company called Statistical Solutions 

(http://www.statsol.ie/index.php). The BMD canonical 

analysis program provides the user with different options in 

terms of the dispersion matrix to be used, e.g., correlation 

matrix, covariance matrix. SPSS however will only analyze 

correlation matrices. For those researchers that are familiar 

with MATLAB, the algorithm for the Mickey method is not 

difficult and can be programmed in MATLAB. The 

appendix for this manuscript contains the MATLAB 
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commands and syntax for canonical correlation and the data 

set used for each example. After a considerable effort, the 

authors were able to locate a public domain version of 

BMDX75. The executable version of BMDX75 is also 

provided with this article. This program will execute in 

Windows XP, but it is not a Windows based program and 

does not conform to the Windows graphical user interface. 

The command and data files for each example are also 

included along with setup instructions similar to those 

found in the old BMD manuals. The authors have also 

written a very easy to use BASIC program for converting a 

2-dimensional contingency table into a data set suitable for 

analysis by the Mickey method. This program will execute 

on most Microsoft BASIC language products such as 

GWBASIC Interpreter-Compiler or QBASIC. As of this 

writing, a GWBASIC Interpreter-Compiler is available at the 

website:  

http://www.thefreecountry.com/compilers/basic.shtml.  

A QBASIC Compiler is available at  

http://www.qbcafe.net/qbc/english/download/compiler/qbas

ic_compiler.shtml 

The Mickey method is demonstrated on three 

contingency tables. The first is from the original Mickey 

study (1970) concerning kidney transplant outcome for 254 

patients based on tissue matching. The second is taken from 

Dunlap, Brody and Greer (2000). Dunlap et al. (2000) reports 

the cross-classification of 1660 people according to mental 

health symptoms and parents’ social economic status. The 

third is from Lindeman, Merenda and Gold (1980). 

Lindeman, et al. (1980) reports the cross-classification of 

1889 arrestees across 6 cities in the United States by the level 

of heroin use and type of crime.  

Creating the Dummy Variable Data Set  

for the Mickey method 

To use the Mickey method, the data presented in a two-

way contingency table must be transformed into a dummy 

variable data set.  With a p × q contingency table the dummy 

variable data set will contain p + q variables. Each data point 

(or person) would have a “1” for one of the p variables (Xi) 

and another “1” for the q variable (Yj) as dictated by the 

cross-tabulation in the contingency table. All other variables 

(Xi•, Yj•) would have a “0” (zero).  

Symbolically, this would look like: Let [nij], i = 1, …, p; j = 

1, …, q denote a p × q contingency table where Σnij = N. 

Generate N cases of p + q variables X1, …, Xp; Y1, …, Yq such 

that for nij cases 

 Xi = Yj = 1; 

 Xi• = 0, i• ≠ i; 

 Yj• = 0, j• ≠ j; 

Example: Let’s say we are given the following 

contingency table with the two categorical variables political 

affiliation and opinion: 

 

 Approve Do Not Approve No Opinion 

Republican 

Democrat 

9 

2 

4 

10 

3 

4 

 

The data set required for the Mickey method would be 

 

Republican Democrat Approve Do Not 

Approve 

No Opinion 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

0 

0 

0 

0 

0 

0 

0 

1 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

1 

1 

0 

0 

0 

0 

0 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

1 

1 
 

One can see that the first nine lines in the dummy 

variable set correspond to the 9 Republicans who approved 

of some political issue. The next four are Republicans who 

did not approve of some political issue, and so on. 

Computing the Total Covariance Matrix 

The variance-covariance matrix (sometimes called the 
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covariance matrix) is usually computed with a correction of 

the sums-of-squares and cross products for the means and a 

division by N – 1. The Mickey method, however, requires a 

covariance matrix that is unadjusted for the means and with 

a divisor of N. This covariance matrix is called the total 

covariance matrix. The computational formula for the total 

variance-covariance matrix using the Mickey method is 

 , 

where Z is the N × p matrix of dummy coded variables 

created for the Mickey method. There are alternative 

covariance matrices that can be used for the analysis. This 

paper is staying with the original procedures used by 

Mickey (1970). 

Partitioning the Covariance Matrix 

The covariance matrix computed for the p + q variances 

would be partitioned into sub matrices where the first set, 

called X, will be for the p variables and the second set called 

Y for the q variables. There are two other sub matrices that 

represent the cross between the X variables and the Y 

variables. The partitioned figure is shown in Figure 1. 

Using the Partitioned Matrix and Submatrices 

Once the partitioned matrix has been created, the usual 

analysis (Tabachnick & Fidell, 2005) calls for creating a 

square matrix V (of size p × p) using the following formula: 

  

Next, the characteristic roots and vectors or eigenvalues (λi) 

and eigenvectors for V are computed. 

The eigenvectors are the canonical function coefficients. 

The canonical correlations are found by taking the square 

root of the eigenvalues. 

Next, the same computations are done for the second set. 

Compute 

 

Next find the eigenvalues and eigenvectors for U. The 

eigenvectors for this set provides information on how the 

variables in the second set are related. 

This procedure, however, is less robust than other 

methods. This procedure as pointed out by a reviewer will 

not work if the Cov(YY) matrix is not positive definite. He 

suggested using the method that utilizes the Cholesky 

decomposition procedure. This procedure involves using 

the Cholesky algorithm to decompose two matrices, 

Cov(XX) and Cov(YY). If the decomposed matrices for 

Cov(XX) and Cov(YY) are designated as r1 and r2, 

respectively, then compute the following matrix:  

  

By putting the w matrix through singular value 

decomposition, the first and second sets of canonical 

coefficients and the canonical correlations are obtained. This 

is the method used in this article. If XS is used to represent 

the first set of canonical coefficients and YS is used to 

represent the second set of coefficients, then the 

unstandardized canonical coefficients are obtained by 

. Likewise for the second set, the unstandardized 

coefficients are found by computing . Standardized 

coefficients are found for each variable by computing the 

square root of the sums-of-squares of the coefficients for 

each variable and dividing the unstandardized coefficient by 

this square root value. If  represents the unstandardized 

coefficients for variable 1, the standardized coefficients for 

variable 1 can be computed by  

 . 

Significance Tests 

Significance tests are used to determine if the remaining 

canonical correlations are statistically different from zero.  A 

transformed Wilks’ Lambda, Λ, is usually used for this 

purpose. There are many transformed statistics (Lattin, 

Carroll & Green, 2003). One is by Bartlett and it is computed 

using the steps given below. 

1. Compute Wilks’ Lambda:  

  

2. Compute the Bartlett Chi-square approximation to Wilks’ 

Lambda: 

  

with (p – k) × (q – k)  degrees of freedom, where N = total 

frequencies, p is the number of X’s and q is the number of 

Y’s.  This method is the one used by the authors’ of this 

paper when writing the computer program in MATLAB. 

Each eigenvalue or canonical correlation is tested by the 

same test statistic but with an important modification. It is a 

sequential process where the contribution from the previous 

canonical variate is removed before the χ2 statistic is 

calculated. Also with the previous variate removed, the 

degrees of freedom are also reduced by a factor of 2.  

The BMD program (BMDX75) uses a different 

computational algorithm. The BMD program computes the 

Chi-square statistic using the algorithm specified in 

Figure 1. Partitioned Covariance Matrix used in Canonical 

Correlation Analysis.  

Cov(XX) Cov(XY) 

Cov(YX) Cov(YY) 
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Veldman (1967). The chi-square values are different from the 

one used in the MATLAB program and the degree of 

freedom used to evaluate the chi-square statistic is different. 

The difference can be seen in the two outputs. 

Example from Mickey (1970). (N = 254) 

Mickey’s (1970) example dealt with data collected from a 

kidney transplant center. The data were from 254 parent-to-

child transplantation. The two categorical variables were (1) 

Compatibility match between the kidney and the patient 

and (2) the outcome of the transplant. Both variables contain 

ordered categories. Compatibility had 4 categories where the 

best match was assigned to category “A.” The outcome of 

the transplant fell into 5 ordered categories where those 

patients with the best outcome were assigned to category 

“A.” Canonical correlation results showed the number of 

statistically significant canonical correlations and the 

canonical coefficients related to each categorical dimension.  

Table 1. Mickey’s (1970) Contingency Data. 

                Clinical Outcome 

Compatibility 

Matching Grade 

 

A 

 

B 

 

C 

  

D 

  

F 

A 

B 

C 

11 

35 

47 

4 

14 

29 

0 

5 

8 

1 

0 

7 

0 

3 

24 

Table 2a. MATLAB Canonical Correlations and Significant Tests of Mickey’s Data  

Canonical  Correlations are    

1.0000 

 

0.2872 0.1287  0.0521 

Correlation Lambda Chi-Square df Prob 

0.2872 

0.1287 

0.0521 

0.8999 

0.9808 

0.9973 

26.2658 

4.8548 

0.6835 

12 

6 

2 

0.0098 

0.5626 

0.7105 

 

Table 2b. Output from MATLAB of Mickey’s Unstandardized Canonical Coefficients  

X-side Unstandardized Canonical Coefficients 

-1.0000  1.8225  2.3443  2.4612 

-1.0000  1.4264 -1.1271 -0.3889 

-1.0000 -0.3749  0.6810 -0.7774 

-1.0000 -1.0205 -0.7815  1.0938 

 

Y-side Unstandardized Canonical Coefficients 

-1.0000  0.8292 -0.0273  0.5204  0.4603 

-1.0000  0.0607  0.2036 -0.5375 -1.6621 

-1.0000 -0.1876 -1.7680 -2.8710  1.3066 

-1.0000 -0.9899  4.3120 -1.5209  1.5855 

-1.0000 -1.8617 -0.4410  0.8367  0.2091 

 

Table 2c. Output from MATLAB of Mickey’s Standardized Canonical Coefficients  

X-side Standardized Canonical Coefficients 

   -0.5000    0.7128    0.8372    0.8697 

   -0.5000    0.5578   -0.4025   -0.1374 

   -0.5000   -0.1466    0.2432   -0.2747 

   -0.5000   -0.3991   -0.2791    0.3865 

 

Y-side Standardized Canonical Coefficients 

   -0.4472    0.3646   -0.0058    0.1514    0.1711 

   -0.4472    0.0267    0.0435   -0.1564   -0.6178 

   -0.4472   -0.0825   -0.3773   -0.8352    0.4856 

   -0.4472   -0.4352    0.9202   -0.4425    0.5893 

   -0.4472   -0.8186   -0.0941    0.2434    0.0777 
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In using the Mickey method of canonical correlation 

analysis, the first canonical correlation will be equal to 1.0 

and its associated eigenvector coefficients will be 1.0.  

Mickey (1970) states that the eigenvalues and eigenvectors 

are an artifact of his method and that both should be 

discarded and ignored. With the exception of the analysis 

performed on the Mickey data, the output presented in all 

MATLAB examples will omit the eigenvalue of 1.00 and the 

eigenvector coefficients of 1.00 in order to preserve space.  

Likewise, the unstandardized coefficients produced by 

MATLAB will be presented for the first example only.  The 

researcher should consider the other correlation values. 

Table 3a. Means and SDs from BMD09M/BMDX75 of Mickey’s Data 

BMDX75 - CANONICAL CORRELATION ANALYSIS -  

 NUMBER OF VARIABLES       9 

 NUMBER OF CASES             254 

 INPUT FORMAT:             (9F7.0)                                                                  

  VARIABLE    MEAN     STANDARD DEVIATION 

         1             .062992      .243428 

         2             .224409      .418016 

         3             .452756       .498746 

         4             .259842     .439414 

         5             .460630        .499432 

         6             .244094        .430397 

         7             .070866       .257108 

         8            .039370       .194858 

         9            .185039       .389096 

 

Table 3b. Canonical Correlations and Significant Tests from BMD09M/BMDX75 of Mickey’s Data 

THE COVARIANCE MATRIX ABOUT THE ORIGIN IS USED IN THE FOLLOWING 

CALCULATION 

 

 Eigenvalues    CHI-SQUARE       DF      PROB.  

    1.00000        2316.4010              8.      .0000 

     .08247            21.6458               6.      .0019 

     .01656              4.1991               4.      .3807 

     .00272               .6848                2.      .7154 

 

                CANONICAL CORRELATIONS 

 

                  1                2               3             4 

           1.00000      .28717      .12868      .05215 

 

Table 3c. Canonical Coefficients from BMD09M/BMDX75 of Mickey’s Data 

VARIABLE   Unstandardized Coefficients for  

Canonical Variables of the First Set 

 

     1      1.82247    -2.34433     2.46124 

     2     1.42635     1.12714      -.38887 

     3    -.37487      -.68104      -.77741 

     4      -1.02048      .78154     1.09375 

 

VARIABLE   Unstandardized Coefficients for  

Canonical Variables of the Second Set 

 

     5            .82917      .02726      .52040 

     6            .06068     -.20360     -.53749 

     7           -.18758     1.76805    -2.87103 

     8           -.98986    -4.31199    -1.52090 

     9          -1.86171      .44105      .83671 
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Given above are two outputs.  One is from MATLAB and 

the other is from BMDX75/BMD09M. In Mickey’s example 

the first canonical correlation is 0.2872. It does not appear 

very large, but it is the only correlation that is statistically 

significant (see Table 2a). The MATLAB program computes 

and outputs both unstandardized and standardized 

canonical coefficients. Generally, the standardized 

coefficients are used in interpreting the results of the 

analysis (Green & Tull, 1970). The first set of standardized 

canonical coefficients in Table 2c (X-side standardized 

canonical coefficients are set in bold print) that corresponds 

to this canonical correlation show that Match Compatibility 

A and B have positive coefficients (0.7128, 0.5578) while 

Compatibility Match Grades C and D coefficients (–0.1466, 

-0.3991) are negative. This indicates the similarity between A 

and B and between C and D.  It also shows a clear separation 

of A-B from C-D Grades.  The second set of coefficients in 

Table 2c (Y-side standardized canonical coefficients) 

corresponding to the canonical correlation 0.2872, represents 

the weights for the categories of the second variable: Clinical 

Outcome. The coefficients show that Outcomes A and B 

(0.3646, 0.0267) have the same sign while the other 3 clinical 

outcomes have the opposite sign (–0.0825, –0.4352 and 

-0.8186). Even though outcomes B and C have opposite 

signs, they are closer to one another in absolute magnitude 

than they are to the other outcomes. This indicates that B 

and C outcomes are very similar. 

The results of the canonical analysis indicate a 

relationship between transplantation outcome and 

compatibility of tissue matching. The primary association is 

match versus mismatch. The results of the ordering lend 

statistical support that A match is in general superior to B 

and C is superior to D.  

MATLAB give both unstandarized and standardized 

coefficients, while the older BMD programs give 

unstandardized coefficients (see Tables 3a, b, and c).  

MATLAB and BMD generate the same unstandardized 

values.  The unstandardized coefficients reveal the same 

relation found with the standardized coefficients. Another 

glaring difference between the MATLAB output and the 

BMD is the display of the number of sets of canonical 

coefficients for the Y-side. MATLAB shows every set of 

coefficients on the Y-side while BMD only shows the same 

number of coefficient sets as the X-side. 

Note that the zero or empty frequencies in the 

contingency table does not prevent the continuance of the 

analysis. 

Example from Dunlap, Brody & Greer (2000). (N = 1660) 

Table 4 presents the contingency table found in Dunlap, 

Brody and Greer (2000). The analysis involves two 

categorical variables: (1) mental health status and (2) 

parents’ socio-economic status. Mental health status has four 

categories: Well, mild, moderate and impaired. Parents’ SES 

has five categories: A, B, C, D, E and F, where parents in the 

“A” category are of high SES and those in the “E” category 

are low SES. This example is of special interest since it will 

present a direct comparison between the Mickey method 

and the Dunlap method. This table is one of three that 

Dunlap et al. (2000) used in the application of their method 

of canonical analysis of a contingency table. The Mickey 

method and Dunlap method produced very similar results. 

The Mickey method (see Table 5a) found the following 

canonical correlations: .1613, .0371, and .0173. The Dunlap 

method (as reported in Dunlap, et al., 2000) found the 

following coefficients: .1607, .0371 and .0168, respectively. 

The second canonical correlation is identical and the other 

two are quite close. Both methods found only one 

statistically significant correlation. 

The Dunlap method produces factor loadings instead of 

canonical coefficients. When comparing the loadings and 

coefficients from the two methods, the values are not the 

same. However, since we are using canonical correlational 

analysis in a descriptive sense, we need only to look to see if 

the pattern of relationship within the factor loadings and 

within the canonical coefficients appears to be the same. In 

this case, the pattern shown in the first canonical function 

follows the same pattern given in Dunlap’s factor loadings. 

In Table 5b, when looking at the X-side and Y-side canonical 

coefficients produced by the Mickey method, the factor 

loadings found by the Dunlap method are presented next to 

them enclosed in parentheses. Here, the same pattern 

emerges. For the Mental Health categories, Well and Mild 

appear with the same sign and the same ranking. Likewise, 

Moderate and Impaired emerged with the opposite sign and 

the same ranking. Similarly, for Parents’ SES, A, B and C all 

appear with the same sign and ranking. D, E, and F all 

appear with the opposite sign from A, B, and C and with the 

same rankings. 

The canonical analysis of this data set shows that parents 

with higher SES tend to have fewer children with severe 

mental problems than those of the low SES. The relationship 

Table 4. Cross-classifications of 1660 Individuals on Mental Health Status and Parents’ SES. 

                                                               Parents’ SES 

Mental Health A B C D E F 

Well 

Mild 

Moderate 

Impaired 

64 

94 

58 

46 

57 

94 

54 

40 

57 

105 

65 

60 

72 

141 

77 

94 

36 

97 

54 

78 

21 

71 

54 

71 
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between parents’ SES and mental health status was not a 

strong one since the statistically significant canonical 

correlation was .1613. 

Example from Lindeman, Merenda & Gold  (1980)  

(N = 1889) 

Lindeman, Merenda and Gold  (1980) present a study 

involving two categorical variables: (1) heroin use and (2) 

criminal offense. Table 7 is a reproduction of their table. 

Lindeman, Merenda and Gold  (1980) reports a statistically 

significant chi-square  (χ2 = 121.90, df = 12, p < .001), 

between the dimensions of amount of heroin use and type of 

crime. This chi-square test indicates that there is a 

relationship between heroin use and type of crime. It does 

not yield any more information than that. Lindeman, et al., 

(1980) does proceed to show the contribution of each cross-

classified categories by using the observed frequency and 

the expected frequency for each cell (e.g. for “Current user” 

by “Serious Crime Against Persons,” χ2 = 25.50). Table 7 

shows the greatest difference in the category of crimes 

against persons. The arrested non-drug user committed 

35.5% of their crimes in these categories while only 9.5% of 

the heroin users committed these crimes. The canonical 

analysis adds more information to supplement the 

traditional chi-square test. The canonical correlation analysis 

produced one statistically significant canonical correlation 

(see Table 8a). In examining the first set of canonical 

coefficients (see Table 8b) that corresponds to the largest 

canonical correlation we find Current User, Past User and 

Other Drug User to have the same sign (0.6764, 0.4499, and 

0.0311, respectively). Non Drug Users received a value with 

the opposite sign (–0.5823).  The values indicate a ranking of 

the users with Current Users receiving the highest 

coefficient. The magnitude of the coefficients indicates that 

Current and Past heroin users are closer together than the 

other two.  Other drug users are separate from heroin users 

and separate from non-drug users. In examining crime-type, 

the second set of canonical coefficient that corresponded to 

the largest canonical correlation shows a grouping of 

Serious (0.6434) and Less Serious (0.6583) Crimes against 

Persons. The other crimes formed the other grouping where 

Property Crimes (–0.1692) and All others (-0.1790) have the 

closer coefficients then Robbery (–0.3032). These coefficients 

indicate that current and past heroin users tend to commit 

more robbery and property crimes while other drug users 

and non-drug users commit more serious crimes against 

people.  Thus the canonical correlation analysis reveals a 

much more subtle relationship between any history of drug 

use and crime type that the chi-square analysis did not 

reveal. 

Table 5a. MATLAB Canonical Correlations and Significant Tests of Dunlap, Brody & Greer Data. 

Canonical Correlations are 

 

    0.1613     0.0371  0.0173  

  

Correlation  Lambda      chi-sq           df          prob 

    0.1613      0.9723      46.4188    15.0000    0.0000 

    0.0371      0.9983        2.7789     8.0000     0.9475 

    0.0173      0.9997        0.4937     3.0000     0.9203 

 

Table 5b. Canonical Coefficients of Dunlap, Brody & Greer Data. 

X-side Standardized Canonical Coefficients 

    0.7347 (.769)     -0.6619   -0.1569 

    0.0838 (.139)      0.5807   -0.3066 

   -0.0402 (–.052)    0.0947    0.9063 

   -0.6720 (–.811)   -0.4644   -0.2450 

 

Y-side Standardized Canonical Coefficients 

   -0.4257 (.487)     0.2086   -0.6362   -0.2371   -0.0146 

   -0.4353 (.475)     0.1260    0.6330   -0.4861   -0.5477 

   -0.1389 (.166)     0.2406    0.2444    0.7868    0.7607 

    0.0209 (–.026)  -0.4560   -0.2548    0.1234   -0.1387 

    0.3891 (–.447)  -0.4726    0.2396   -0.1881    0.1350 

    0.6769 (–.694)   0.6719   -0.1115   -0.1941   -0.2894 
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Discussion 

This paper re-introduces the Mickey method (Mickey, 

1970) in using canonical correlation analysis for large two-

dimensional contingency tables. Unlike the simple 2 × 2 or 

2 × 3 contingency tables, larger ones pose a difficult problem 

in interpretation. Canonical analysis allows the researcher a 

way to interpret the relationship between the column 

Table 6a. Means and SDs from BMD09M/BMDX75 of Dunlap, Brody & Greer Data 

BMDX75 - CANONICAL CORRELATION ANALYSIS  

NUMBER OF VARIABLES      10 

 NUMBER OF CASES            1660 

 INPUT FORMAT       (F2.0,9F3.0)                                                             

  VARIABLE    MEAN     STANDARD DEVIATION 

       1       .184940     .388366 

       2       .362651     .480910 

       3       .218073     .413061 

       4       .234337     .423712 

       5       .157831     .364692 

       6       .147590     .354800 

       7       .172892     .378268 

       8       .231325     .421807 

       9      .159639     .366381 

      10      .130723     .337199 

 

Table 6b. Canonical Correlations and Significant Tests from BMD09M/BMDX75 of Dunlap, Brody & Greer Data 

THE COVARIANCE MATRIX ABOUT THE ORIGIN IS USED IN 

THE FOLLOWING CALCULATION 

 

 Eigenvalues    CHI-SQUARE       DF      PROB.  

    1.00000         15266.1400            9.       .0000 

      .02602               43.7076            7.       .0000 

      .00138                 2.2873            5.       .8097 

      .00030                   .4940            3.       .9197 

 

               CANONICAL CORRELATIONS 

             1                    2               3               4 

           1.00000      .16132      .03714      .01726 

 

Table 6c. Canonical Coefficients from BMD09M/BMDX75 of Dunlap, Brody & Greer Data 

VARIABLE   COEFFICIENTS FOR CANONICAL  

VARIABLES OF THE FIRST SET 

 

            1     -1.60880       .32584     1.30872 

            2     -  .18341       .63689    -1.14813 

            3        .08808    -1.88224      -.18720 

            4      1.47154       .50883        .91816 

 

VARIABLE   COEFFICIENTS FOR CANONICAL  

VARIABLES OF THE SECOND SET 

 

           5    -1.12156     -.51831     1.59469 

           6    -1.14675     -.31300    -1.58669 

           7      -.36592     -.59767     -.61271 

           8        .05509     1.13307      .63880 

           9      1.02523     1.17418     -.60058 

          10     1.78333    -1.66933      .27942 
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categories and the row categories in addition to a test of 

significance. This article provides the researcher with an 

alternative or additional analysis method for large 2-

dimensional contingency tables.  

Canonical correlation for some reason unknown to the 

authors is not used more. It is disappointing that one of the 

most popular statistical packages, SPSS, no longer includes 

it among its easily accessible, point-and-click procedures. 

Other packages, with the exception of BMDP, do not 

provide the necessary option that allows the computation of 

a total variance-covariance matrix unadjusted for the means. 

Hopefully, this article will modestly lead to a revival of 

canonical correlation analysis in research papers. The use of 

canonical correlation is straightforward and easy to use and 

provides the researcher with additional information beyond 

the simple Pearson chi-square test found in elementary 

statistics books. The Dunlap method (Dunlap, Brody & 

Greer, 2000) is an alternative approach to the Mickey 

method.  It provides essentially the same information, but it 

is a bit more difficult for novice researchers. Example 2 in 

the paper contrasts the results found by Dunlap, et al. (2000) 

and the Mickey method. The Dunlap method requires the 

additional understanding of factor analysis. Dunlap’s 

method does require some level of sophistication in 

transforming raw data to phi (correlation) coefficients and 

the additional step of estimating missing correlation values 

using factor analysis. Dunlap, et al. (2000) have also 

mentioned the similarities of canonical correlation analysis 

on contingency table data and the method of 

correspondence analysis.  

The Mickey method requires a specific data set up. This 

paper, however, includes a simple BASIC program for 

taking a contingency table and converting it to a data set 

suitable for the Mickey method. This paper also includes 

program statements used to perform the Mickey method 

using MATLAB. For those who do not have MATLAB, 

included with this paper is a compiled FORTRAN program 

following the setup of the old BMDX75 computer program. 

These steps, however, can be transferred easily for those 

who have BMDP6M. The BASIC program and the 

executable FORTRAN program will run on Windows XP, 

however, it does not have the graphical user interface for 

Table 7. Cross-classifications of 1990 Arrestees by Level of Heroin Use and Type of Crime 

 Serious Robbery Less Serious Property All Others 

Current User 

Past User 

Other Drug 

Non Drug 

30 

14 

93 

163 

94 

20 

94 

79 

14 

5 

46 

77 

237 

75 

253 

265 

86 

27 

124 

93 

 

Table 8a. MATLAB Canonical Correlations and Significance Tests of the Lindeman, Merenda & Gold Data. 

Canonical Correlations are 

 

    0.2456      0.0541      0.0351 

 

Correlation  Lambda    chi-sq          df        prob 

    0.2456      0.9358    125.0412      12       0.0000 

    0.0541      0.9958        7.8566       6        0.2488 

    0.0351      0.9988        2.3280       2        0.3122 

 

Table 8b. Canonical Coefficients of the Lindeman, Merenda & Gold Data. 

X-side Standardized Canonical Coefficients 

    0.6764   -0.2632   -0.3443 

    0.4499    0.9628   -0.5000 

    0.0311    0.0337    0.7284 

   -0.5823   -0.0516   -0.3177 

 

Y-side Standardized Canonical Coefficients 

    0.6434   -0.4475    0.0767    0.0381 

   -0.3032   -0.1550   -0.0586   -0.8539 

    0.6583    0.8769   -0.2030   -0.3499 

   -0.1692    0.0768    0.3834    0.2152 

   -0.1790   -0.0289   -0.8958    0.3173 
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Windows. 

A Google search reveals the existence of MATLAB 

clones. These MATLAB clones are free but not 100% 

compatible with MATLAB. However, with some 

modifications as specified within each of the clone 

programs, MATLAB source code can be created to work on 

the clone software.  For those interested in trying MATLAB 

clones to perform the statistical analysis presented in this 

paper, a description and availability of these MATLAB 

clones are available at:   

Table 9a. Means and SDs from BMD09M/BMDX75 of Lindeman, Merenda & Gold Data 

BMDX75 - CANONICAL CORRELATION ANALYSIS 

NUMBER OF VARIABLES       9 

NUMBER OF CASES           1889 

INPUT FORMAT        (F2.0,8F3.0)                                                             

 VARIABLE    MEAN     STANDARD DEVIATION 

       1      .   244044     .429633 

       2        .074643     .262883 

       3       .322922     .467717 

       4       .358391     .479655 

       5        .158814     .365599 

       6       .151932     .359050 

       7       .075172     .263739 

       8        .439386     .496444 

       9        .174696     .379807 

 

Table 9b. Canonical Correlations and Significance Tests from BMD09M/BMDX75 of Lindeman, Merenda & Gold Data 

THE COVARIANCE MATRIX ABOUT THE ORIGIN  

IS USED IN THE FOLLOWING CALCULATION 

 

 Eigenvalues    CHI-SQUARE       DF      PROB.  

    1.00000         26859.3000          8.        .0000 

     .06031              117.3441          6.        .0000 

     .00293                  5.5343          4.        .2364 

     .00123                  2.3286          2.        .3125 

 

               CANONICAL CORRELATIONS 

 

             1                    2               3               4 

           1.00000      .24558      .05412      .03512 

 

Table 9c. Canonical Coefficients from BMD09M/BMDX75 of Lindeman, Merenda & Gold Data 

VARIABLE   COEFFICIENTS FOR CANONICAL  

VARIABLES OF THE FIRST SET 

 

      1         1.35655      .68173       -.89029 

      2           .90238      .98991      3.25622 

      3           .06242    -1.44216      .11402 

      4        -1.16792      .62904      -.17468 

 

VARIABLE   COEFFICIENTS FOR CANONICAL  

VARIABLES OF THE SECOND SET 

 

      5        -1.78135      .16774        .09584 

      6            .83946     -.12796    -2.14720 

      7        -1.82254     -.44360      - .87985 

      8           .46841       .83797        .54116 

      9           .49545    -1.95796        .79779 
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http://www.dspguru.com/sw/opendsp/mathclo2.htm. 
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Appendix 1: BASIC Program to convert a 2-dimensional Contingency Table to a Data Set Suitable for the Mickey method. 

The Data is for Example 1 in the paper. 

 
10 DIM A(100),C(10,10) 

20 REM Data from Contingency Table are inputted using a 

30 REM DATA statement. Data are entered one row at a time 

40 DATA 11, 4, 0, 1, 0, 35, 14, 5, 0, 3 

50 DATA 47, 29, 8, 7, 24, 24, 15, 5, 2, 20 

60 REM The data created for the Mickey Method are 

70 REM outputted to a file. 

80 OPEN "mickey1.dat.dat" FOR OUTPUT AS #1 

90 REM  NR = number of rows in contingency table. 

100 REM NC = number of columns in contingency table. 

110 NR=4 

120 NC=5 

130 REM NT = total number of variables in new data set 

140 NT = NC + NR 

150 REM For-Next creates data set for Mickey Method. 

160 FOR I = 1 TO NR 

170 FOR J = 1 TO NC 

180 READ K 

190 M = J+NR 

200 FOR L1 = 1 TO NT 

210 A(L1) = 0 

220 NEXT L1 

230 A(I) = 1 

240 A(M) = 1 

250 FOR L = 1 TO K 

260 REM PRINT L; 

270 FOR LL = 1 TO NT 

280 PRINT A(LL); 

290 PRINT #1,A(LL); 

300 NEXT LL 

310 PRINT L 

320 PRINT #1, L 

330 NEXT L 

340 NEXT J 

350 NEXT I 

360 CLOSE(1) 

370 END 
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Appendix 2: MATLAB program statements for Example 1. 

 

load mickey1.dat  % Read in Data 

s=mickey1'*mickey1 %Compute Sums of Squares and Cross Products 
n=length(mickey1); % Find the number of observations 
p=4;  % number of variables in first set (X-side) 

q=6;  % number of variables in second set (Y-side) 

ss=s/n  %Compute Total Covariance Matrix 
% Partition Total Covariance Matrix 

cxx=ss(1:p,1:p) 
cxy=ss(1:p,p+1:p+q) 
cyy=ss(p+1:p+q,p+1:p+q) 

% Cholesky Decomposition - Method 3 
% Cholesky CXX 
n1 = length( cxx ); 

r1 = zeros( n1, n1 ); 
for i=1:n1 
    r1(i, i) = sqrt( cxx(i, i) - r1(i, :)*r1(i, :)' ); 

  
    for j=(i + 1):n1 
        r1(j, i) = ( cxx(j, i) - r1(i, :)*r1(j, :)' )/r1(i, i); 

    end 
end 
% Cholesky CYY 

n2 = length( cyy ); 
r2 = zeros( n2, n2 ); 
for i=1:n2 

    r2(i, i) = sqrt( cyy(i, i) - r2(i, :)*r2(i, :)' ); 
  
    for j=(i +1):n2 

        r2(j, i) = ( cyy(j, i) - r2(i, :)*r2(j, :)' )/r2(i, i); 
    end 
end 

% End Cholesky. Compute Single Valued Decomposition 
w = inv(r1)'*cxy*inv(r2) 
[U,E,V] = svd(w); 

% Output Unstandardized Coefficients 
disp('X-side Unstandardized Canonical Coefficients') 
XS=inv(r1)*U; 

disp(XS) 
disp('Y-side Unstandardized Canonical Coefficients') 
YS = inv(r2)*V; 

disp(YS) 
EI=diag(E); 
disp('Canonical Correlations are') 

disp(EI) 

cor = EI; 
% Compute  and Output Standardized Coefficients 

cofx=sqrt(diag(XS'*XS)) 
cofy=sqrt(diag(YS'*YS)) 
for i = 1:p 

    for j = 1:p 
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        dx(j,i)=XS(j,i)/cofx(i); 
    end 
end 

for i = 1:q 
    for j = 1:q 
        dy(j,i)=YS(j,i)/cofy(i); 

    end 
end  
disp('X-side Standardized Canonical Coefficients') 

disp(dx) 
disp('Y-side Standardized Canonical Coefficients') 
disp(dy) 

%setup for Bartlett chi-square test 
% Next 15 lines computes lambda, chi-square, df and significance level 
% for each canonical correlation 

lam=diag(EI*EI'); 
oml=1-lam; 
k = p+2; 

pp = p; 
qq = q; 
for i = 1:p 

  alam(i)=prod(oml(i:p)); 
  chi(i)=-1*(n-k)*log(alam(i)); 
  k =k - 1; 

  % Correct for Large Chi-square overflow.; 
  if chi(i) >150. 
      chi(i) = 150.; 

  end 
  df(i)=pp*qq; 
  pp = pp -1;  qq = qq - 1; 

  pr(i)=1-chi2cdf(chi(i),df(i)); 
end 
%Output 

tablea(:,1)=cor; 
tablea(:,2)=alam; 
tablea(:,3)=chi; 

tablea(:,4)=df; 
tablea(:,5)=pr; 
disp(' Correlation  Lambda    chi-sq      df       prob') 

disp(tablea) 
 


