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In this paper, a few basic notions stemming from information theory are presented 

with the intention of modeling the abstraction of relevant information in categorization 

tasks. In a categorization task, a single output variable is the basis for performing a 

dichotomic classification of objects that can be distinguished by a set of input variables 

which are more or less informative about the category to which the objects belong. At 

the beginning of the experiment, the target classification is unknown to learners who 

must select the most informative variables relative to the class in order to succeed in 

classifying the objects efficiently. I first show how the notion of entropy can be used to 

characterize basic psychological processes in learning. Then, I indicate how a learner 

might use information gain and mutual information –both based on entropy– to 

efficiently induce the shortest rule for categorizing a set of objects. Several basic 

classification tasks are studied in succession with the aim of showing that learning can 

improve as long as subjects are able to compress information. Referring to recent 

experimental results, I indicate in the Conclusion that these notions can account for 

both strategies and performance in subjects trying to simplify a learning process. 

 

 
 Information theory is aimed at quantifying data that 

needs to be stored or communicated (Shannon, 1948). It was 

extensively used in psychology in the 1950s and 1960s, 

especially for measuring the maximal amount of 

information that can be transmitted by subjects without 

error (the reader will find historical presentations of this 

approach in Attneave, 1959; Coombs, Dawes, & Tversky, 

1970). In one of Psychological Review’s most cited articles, 

Miller (1956) presented absolute-judgment experiments with 

a large variety of tasks and showed that human subjects 

performing unidimensional categorizations could not 

discriminate a set of stimuli using more than about seven 
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categories. For instance, subjects could correctly match a set 

of audible sounds (varying continuously from 11 dB to 60 

dB) to a set of five predefined categories (11-20 dB, 21-30 dB, 

31-40 dB, 41-50 dB, and 51-60 dB). However, if the number 

of categories increased beyond seven, subjects were no 

longer able to perfectly match the stimuli to the categories. 

In the terms used in information theory, transmitters 

(subjects) are not able to perfectly communicate the original 

message (the correct category, theoretically associated to a 

sound they receive) to a destination (experimenter) when 

the number of possible categories is too high. Any amount 

of transmitted information can be measured by computing a 

correlation between the correct categories and the subjects’ 

responses. When there is no loss of information in the 

transmitted message, the correlation between the input 

message and the output message is equal to one; when a 

task is too difficult for a subject, the loss of information 

shows up as an imperfect correlation between the input and 

the output. However, the amount of information transmitted 

is more commonly measured in bits. This amount can be as 

Tous
Stamp

http://dx.doi.org/10.20982/tqmp.06.1.p016


 17 

 

 

high as the amount of information present in the original 

message when there is no noise in the message transmitted. 

The following sections show that information theory can 

be used as a broader perspective to shed light on learning 

processes. Some aspects of the theory have been used 

implicitly in the past to develop decision-tree models in 

psychology, but other aspects, such as mutual information, 

have received less attention but can be effectively brought to 

bear in accounting for some experimental results. 

Entropy 

Information theory computes basic probabilities to 

determine the quantity of data a set of messages contains. 

This quantity, called entropy (or information content), 

corresponds to the amount of uncertainty there is in a set of 

messages. For instance, let us imagine that someone wants 

to guess the color of the suit of a playing card picked from a 

regular deck (the suit is either black or red). Because the 

probability of guessing the color is ½ (half of the cards have 

a black suit), the communication of a single piece of 

information (e.g., black) is equal to −log2(½) = 1 bit, a 

measure which is also called the surprisal. A single message 

(“black” or “red”) corresponds to 1 bit of information in the 

sense that one needs 1 yes-no question to retrieve the color 

(Is the suit red or black?). Corollarily, this means that coding 

the suit color of the cards only requires one binary digit 

(e.g., 0 if black, 1 if red). A system limited to communicating 

the suit color of a card needs a capacity of 1 bit. If a system 

does not properly communicate the suit color of a card, it 

either may have a capacity of less than 1 bit or be subject to 

unwanted perturbation. The general formula of the surprisal 

is therefore simply −log2(p), where p is the probability of 

obtaining a given response by chance. The surprisal is 

maximal when p = .5, because for any other situation where 

the probability of an event approaches 1 or 0, the receiver is 

less surprised by the information transmitted by the sender 

(if a box is filled with 100 red balls and 0 blue balls, nobody 

would be surprised to hear that the ball just randomly 

drawn from the box is red). 

In the preceding example on absolute judgments about 

sounds, the channel-capacity limit is thought to be about 2.8 

bits because no messages of more than −log2( ) = 2.8 bits can 

be perfectly transmitted (  is the probability of transmitting 

the right category by chance). Because guessing the sound 

category is more difficult than guessing the color of a card, 

the surprisal is higher for sounds (2.8) than for cards (1). By 

describing human abilities in terms of channel capacity, 

Miller (1956) implied that overly demanding tasks 

(requiring the encoding of more than 2.8 bits) will not be 

handled by subjects. Simultaneously, Miller began 

contributing to the decline of information theory by making 

a distinction between bits of information and chunks of 

information.1 

The formula for entropy is a little more general than the one 

proposed above, because some messages can be more 

probable than others. The uncertainty one has about a set of 

possible messages (e.g., black or red, or one of seven 

categories) is called entropy or H. It is determined by 

computing the expected value2 of the surprisal of all possible 

pieces of information a message might contain:

  (1) 

In this formula, i indexes all possible messages. For 

instance, the entropy for colors in a deck of 52 cards is: 

H(color) = −p(red)log2(p(red)) − p(black)log2(p(black)) = 

−( )(−1) − ( )(−1) = .5 + .5 = 1. 

For 7 categories, we have: 

H(category) = −p(cat1)log2(p(cat1)) − p(cat2)log2(p(cat2)) − 

... −p(cat7)log2(p(cat7)) = −( )(−2.8) − ( )(−2.8) − ... − ( )(−2.8)− = 

.4 + .4 + ... + .4 = 2.8. 

In the above two examples, note that the entropy is equal 

to the surprisal of a single message because all messages 

have the same outcomes.3 In what follows, I show how 

information entropy can be used to model concept learning. 

Generalities on Concept Learning  

Concepts are abstract ideas that can be used to classify 

objects on the basis of their functions, shapes, taste, 

composition, etc. Once acquired, concepts can be used to 

generalize from prior experience. The formation of concepts 

can be approached by studying child development, or by 

studying the history of ideas over longer periods of time.4 

Another way of obtaining data on concept formation is to 

carry out microgenetic studies to get a finer grained picture 

of developmental change. By further reducing the time 

window, concept formation can also be scrutinized during a 

single learning session. In this case, which is of primary 

interest here, the cognitive processes involved in learning 

are inferred from measures such as failure vs success, 

number of trials to criterion, number of errors during task 

execution, learning time, response time per trial, etc. Even 

more interesting is the subjective complexity of a given task, 

which can be inferred from the above-mentioned variables, 

with high values most often denoting difficulty acquiring a 

concept. 

Concepts can be viewed as categorization situations 

confined to two categories only (the category of positive 

examples versus the category of negative examples), no 

matter how many input dimensions (features) there are. For 

instance, the concept of zebra helps separate the positive 

examples (zebras = Equidae with black and white stripes all 

over the body) from the negative examples (all other 



 18 

 

 

animals); the number of legs is not a critical feature in this 

case, whereas being a horse-like animal and having stripes 

are two relevant dimensions. A good definition of a concept 

(also called the intension) prevents one from having to 

memorize the list of all positive examples (called the 

extension). 

This article deals with rule learning and artificial 

concepts, first studied in the 1950’s by Bruner, Goodnow, 

and Austin (1956). Artificial concepts are built by 

experimenters who arbitrarily assign membership to a list of 

stimuli. Learning artificial categories imply quite different 

processes from learning natural categories. In artificial 

settings, the informativeness of the dimensions is expected 

to be nearly equivalent (and existing differences can be 

controlled by randomizing the relevant dimensions), 

whereas in natural categories, the dimensions are not 

equally informative. Subjects tend to assign different values 

to dimensions in their natural conceptualizations. For 

instance, in the twenty-questions game, a clever strategy is 

to start by asking whether the unknown thing is living, since 

the answer to this question eliminates lots of possibilities 

(when young children ask questions that are too specific, for 

instance, “Is it Mommy?”, a “No” response leaves them with 

very many possibilities). Another difference is that evidence 

for peculiar perception can be shown in natural category-

learning situations, provided the features are sufficiently 

continuous. For instance, categorical-perception behavior 

might indicate increased sensitivity to items of different 

categories (Goldstone, 1994) as well as decreased sensitivity 

to items of a similar category. In this vein, Wood (1976) 

showed that adults do not perceive continuously changing 

series of artificial sounds from b to p but they hear an abrupt 

switch from b to p. In contrast, artificial category learning 

can be linked to a reasoning process involving the inductive 

formation and deductive testing of logical rules (e.g., if the 

positive examples are big and red and a big red object is 

displayed, then that object is positive). This is especially true 

when the number of features is small, when features are 

discrete, and when categories are not fuzzy. For instance, J. 

D. Smith, Minda, and Washburn (2004) showed that humans 

transcend slow association-based learning whenever 

possible and exhibit very sudden learning through rule 

discovery and insight, in comparison to monkeys who learn 

the same tasks via conditioning. 

However, even natural conceptualizations invoke some 

forms of abstraction akin to rule learning: it has been shown 

that children do not conceptualize the world simply by 

considering the physical characteristics of objects but also by 

abstracting theories, such as ”essentialism” which they 

incorporate in their biological beliefs. Also, if-then rules can 

be used to form first-order logic in order to reason about 

predicates (if parent(z, y) and parent(y, x), then 

grandparent(z, x)). This is why rule-based models have a 

long history (Murphy, 2002). However, other theories refrain 

from assuming such deliberate high-level processing and 

model category learning as an implicit associative learning 

process based on perceived similarities between objects that 

can result from the homogeneity of the categories. There is a 

bulk of evidence for each of these two forms of reasoning 

(that can sometimes work dually, in line with many hybrid 

models), depending on the design of the categorization 

experiment (Sloman, 1996). Note that the experimental 

conditions related in this paper are likely to produce data 

that appear to support deterministic rules, but similarity-

based models are known to perfectly account for many 

results that would be obtained in such conditions in terms of 

pure exemplar-storage schemes (Nosofsky, Gluck, Palmeri, 

McKinley, & Gauthier, 1994). 

Here, for the sake of simplicity, I focus on (1) stimuli 

built from Boolean dimensions (each taking on two different 

values only, like squares versus triangles for a shape 

dimension) and (2) separable dimensions (such dimensions 

can be consciously identified and separated by subjects, 

contrary to integral dimensions such as hue and brightness 

in colors, see Garner, 1974; for instance, shapes and colors 

are simple separable dimensions). When merging two 

separable binary-valued dimensions to build a set of simple 

stimuli, one can create four stimuli, that is, a blue square, a 

blue triangle, a red square, and a red triangle, forming what 

is called a training sample (also called a block of stimuli 

when the stimuli are displayed sequentially). Such canonical 

stimulus sets have been studied extensively since the 

pioneering work by Shepard, Hovland, and Jenkins (1961). 

Also, and again, for the sake of simplicity, I only focus here 

on supervised learning: the category label is provided to the 

learner whenever they are wrong, and participants 

gradually learn the appropriate classification by an error-

driven process through which they adapt their responses to 

the feedback. Note that supervision necessarily takes place 

during a training phase (as opposed to a test phase, in which 

a new set of stimuli is given to subjects in order to test the 

generalizability of their concepts; in test phases, supervision 

is not mandatory). The model presented here aims to 

account for how subjects learn and use a concept during a 

training phase. In classical experimental settings, subjects 

are required to classify a set of stimuli displayed 

sequentially. The learner is presented with blocks of stimuli 

in random order, with each stimulus appearing once. 

Because learning is supervised, subjects progressively 

become able to correctly categorize the objects. In theory, 

computer simulations imply the same stimulus sets as in the 

experiments run on subjects, but in reality the modeling is 
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based on basic formalizations and alleviate the need to do 

simulations. 

There are potentially many different Boolean concepts to 

be learned, depending on the number of dimensions, the 

number of positive examples, and the structure of the 

categories (Feldman, 2003). Our goal is to account for 

subjective complexity by investigating the learning 

mechanisms involved in such tasks. Most empirical studies 

evaluate the subjective complexity of tasks by measuring the 

number of trials to criterion or the proportion of correct 

responses for each block of stimuli in the task, and then 

using these measures to compare concepts with each other. 

However, more refined analyses of fit can be based on 

typicality judgments, response times, and proportion correct 

for each stimulus within a given concept (Lafond, 

Lacouture, & Cohen, 2009). All of these measures can be 

predicted from the model I develop here. 

Some Examples of Boolean-Concept Learning Tasks 

Let us begin with the example of the exclusive OR 

(called XOR) structure shown in Figure 1, first studied by 

Neisser and Weene (1962), and then used as a canonical 

example in how neural networks perform (Minsky & Papert, 

1969; Rumelhart, Hinton, & Williams, 1986). XOR is 

presented below: 

  

Each column is a variable that can take on the value 0 or 1 

(in such cases, the concepts are called Boolean). The columns 

are labelled X, Y, and Z. The last column represents the 

category variable and the other columns the input variables. 

This kind of truth table is convenient for describing the 

partitioning of objects (the positive examples are denoted by 

the 1’s in column Z, and the negative examples are denoted 

by 0’s in column Z). The input variables could describe color 

options or size options such as small vs big, blue vs red, etc. 

For instance, the first line of the table would indicate that the 

small (coded 0) blue (coded 0) object is not part of the 

positive category (coded 0). The entropy H of each of the 

variables is 1 bit because 1 bit of information is needed to 

store or communicate one of the two equally probable 

values (0 or 1) that can be taken on by each variable. More 

formally, we have: 

  

The question here is how can subjects make use of 

information in the input variables to categorize the examples 

in the most efficient manner? I will focus here on strategies 

consistent with Occam’s razor (1324). The idea is that 

formulating simpler hypotheses is preferable because such 

hypotheses generalize better (Blumer, Ehrenfeucht, 

Haussler, & Warmuth, 1987), not mentioning that simpler 

hypotheses are less memory-demanding.5 One strategy is to 

start by searching for the most diagnostic variable (if there is 

no totally diagnostic one). Then, the learner moves on to 

choose a second variable to complete the first one, and so on, 

until a minimal set of variables are ordered in the most 

efficient manner to categorize the objects. This gradual 

strategy is consistent with the idea of abstracting a rule and 

searching for exceptions. A second strategy consists of 

simultaneously considering the set of input variables in an 

attempt to discover some relationships that might be helpful 

for the categorization process. These two strategies can be 

modeled respectively using two notions developed in 

information theory: information gain and mutual 

information. I will show how these notions can account for 

complexity in terms of compressibility (I refer here to 

lossless compression rather than lossy compression of 

information). We will see that in that respect, XOR is a 

difficult concept according to information gain measures but 

a simple concept according to mutual information measures. 

Information gain 

Before describing information gain, a concept simpler 

than XOR should be examined: 

  

In the SIMPLE concept, the variable X is clearly correlated to 

the class Z (contrary to Y, and contrary to both X and Y in 

XOR). Therefore, subjects can use a basic rule such as “IF X = 

1 THEN Z = 1; ELSE Z = 0”. The only difficulty for subjects is 

to induce such a rule from the training sample. However, it 

should be pretty obvious for subjects that the two values of 

X are perfectly correlated to the category values, contrary to 

Y. In other terms, the probability of getting the right answers 

by focusing on X is maximal. Subjects only need to turn their 

attention to X to notice its relevance to the task. 

Third example: 
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Here, when W = 0, the situation is similar to the SIMPLE 

concept, that is, “IF X = 1 THEN Z = 1; ELSE Z = 0”. 

However, when W = 1, we simply have Z = 1. Intuitively, the 

simplest rule is “IF W = 1 THEN Z = 1; ELSE [IF X = 1 THEN 

Z = 1; ELSE Z = 0]”. This embedded rule corresponds to a 

decision-tree structure in which the value of W is tested first, 

and then X is tested whenever W = 0. We can then predict 

the following for stimuli for which W = 1: (1) They will be 

quickly and correctly categorized by subjects, given that 

subjects focus first on the most diagnostic features and 

postpone learning exceptions, (2) they will need only one 

step to be identified as positive examples (so response times 

should be short), (3) they should benefit from 

automatization as the task progresses, until the subject 

manages to learn the other stimuli in which W = 0 (so 

response times should improve over time), and (4) they 

should be perceived as more typical of the positive category. 

The question is how can we model the induction of such 

efficient rules? First, note that simple statistical associations 

can help the learner select the most diagnostic dimension. 

For instance, by using the Y feature, the subject would get  

correct responses. However, using the W feature, the 

subject’s score would be better (  correct). Indeed, Z and W 

do not match only for the third and fourth stimuli. The 

subjects might pick this dimension to start with, and then try 

to obtain more information about objects that are not 

correctly categorized when W = 0. The subjects might 

quickly notice that X can help identifying the correct 

category when W = 0. 

Using information theory, this strategy might be 

modeled as follows (I refer here to ID3 developed by 

Quinlan, 1986, and summarized in Mitchell, 1997; Boden, 

1996; Luger, 1994). For the UNSPECIFIED concept, the 

information content is: 

  

Note that the information content is less than one because 

1’s and 0’s are not equiprobable, which gives the subjects a 

greater chance of guessing the right category of an object 

(more often equal to 1). The effectiveness of an attribute in 

classifying the objects can be measured by the information 

gain that this attribute provides. To obtain the information 

gain associated with using one variable, we compute the 

entropy for each attribute of that variable. Let’s begin with 

W. Given W = 0, the entropy is: HW=0 = −( )(−1) − ( )(−1) = 1 

(because half of the objects are positive when W = 0). Given 

W = 1, HW=1 = −( )(−0) = 0 (because all objects are positive 

when W = 1). This means that when using W, there is 1 bit of 

uncertainty left when W = 0 whereas there is no uncertainty 

left when W = 1. Next we compute the mean entropy of the 

above two measures: HW = (HW=0+HW=1) / 2 = (1+0) / 2 = .5, 

which indicates that on average, the learner is left with .5 

bits of uncertainly when using W. 

The information gain for W is: H − HW = .81 − .5 = .31, 

which is larger than H − HY, but equal to H − HX. Let us 

arbitrarily pick W instead of X (since W and X involve a 

similar gain in information) and let us focus on the objects 

for which some uncertainty is left (there is 1 bit of 

uncertainty left when W = 0). The learner might want to try 

other dimensions to fill in this amount of remaining 

uncertainty. The information gain can be computed in a 

similar fashion for the four objects left when W = 0. If HX/W=0 

is the entropy left by knowing X when W = 0, the 

information gain provided by X is HW=0 − HX/W=0 = 1 − 0 = 1, 

meaning that the information gain provided by X reduces 

the uncertainty to zero when W = 0. To sum up, ID3 first 

selects W as the best attribute for having the greatest 

number of correct answers and then uses X to make all 

answers correct. In psychological terms, this means that 

subjects must always pay attention to W’s features and that 

they must focus in particular on X whenever W = 0. 

Note that ID3 does not learn the list of examples and 

their categories by rote, but rather induces a short definition 

of the concept. The list of examples in the UNSPECIFIED 

concept could be represented by a tree made with 8 paths 

(“IF W = 0 and X = 0 and Y = 0, THEN Z = 0”, for the first 

path, and so forth). However, the rule abstracted by ID3 

only has three paths: “IF W = 1 THEN Z = 1 (path 1); IF W = 0 

THEN [IF X = 1 THEN Z = 1 (path 2); IF X = 0, THEN Z = 0 

(path 3)]”. This is exactly the same as inducing a short 

definition of a zebra from a full description of a list of 

zebras. 

When trying to learn a rule for XOR classification, 

computing the information gain is possible but of no help. 

XOR is not compressible with such a technique. Every time 

a value of a variable is kept constant, there is 1 bit of 

uncertainty left. The minimal rule for XOR is “IF X = 1 

THEN [IF Y = 1 THEN Z = 0; ELSE IF Y = 0 THEN Z = 1]; 

ELSE IF X = 0 THEN [...]”. Table 1 shows the decision tree 

for this rule. The decision tree being made of four paths, this 

is not really more parsimonious than rote learning of the list 

of examples and their categories. Dropping the tests for 

negative examples would simplify the tree, but would not 

change the complexity ranking of such a concept. This 

impossibility of compressing XOR tends to argue in favor of 

its high degree of complexity. Nevertheless, I will later show 

that computing mutual information still allows some 

simplification in XOR. 

Likewise, the Type-VI concept –originally studied by 

Shepard et al. (1961)– is not compressible, because it is an 
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extension of XOR. 

  

Type-VI is made up of two inverted XOR structures (one 

when W = 0; the other when W = 1). In human learning, 

Type-VI is most often judged to be the most complex of the 

six 3D Boolean concepts that have an equal number of 

positive and negative examples (Feldman, 2000; Shepard et 

al., 1961; Nosofsky, Gluck, et al., 1994). Its complexity has 

also been observed in animal learning (J. D. Smith et al., 

2004). The difficulty people encounter in learning this 

concept can be explained by the complete heterogeneity of 

the categories. For this concept, ID3 produces a decision tree 

of 8 paths, which is shown in Table 1 along with other 

simpler decision trees. Consistent with XOR, each time a 

variable is kept constant, there is 1 bit of uncertainty left. 

This is also true when two variables are held constant: for 

instance, when W = 0 and X = 0, Z is either 1 or 0, so Y is 

necessary to reduce the remaining bit of uncertainty. 

To conclude, learning in ID3 amounts to compressing a 

training sample into a short formula. Following this idea, it 

has sometimes been hypothesized that the compressibility of 

a concept is a measure of its subjective complexity (Feldman, 

2000; Mathy & Bradmetz, 2004; Lafond, Lacouture, & 

Mineau, 2007; Vigo, 2006). Note, however that reduction 

technique has many options that have been investigated in 

psychology and in artificial intelligence. In artificial 

intelligence, the debate most often concerns the optimality of 

compression algorithms, but debates in psychology focus on 

the reason for the non-optimality of the rules induced by 

individuals (Bradmetz & Mathy, 2008; Lafond et al., 2007). 

In a previous study, we developed a model that accounts for 

the fact that the compression of information in individuals 

results from strictly serial verbal rules (Mathy & Bradmetz, 

2004; Bradmetz & Mathy, 2008) and the limited capacities in 

working memory, options that would certainly not be 

chosen in artificial intelligence. 

The next section shows that when considering the 

various dimensions simultaneously, the learner might find 

some relationships that can considerably simplify the 

categorization process for these apparently difficult 

concepts. 

Mutual information 

Mutual information is a measure of the amount of 

information one can obtain from a given set of variables by 

observing another variable or by observing the relationships 

between other variables. Before describing the main 

formula, note that it is possible to compute the joint entropy 

and the conditional entropy of variables. Joint entropy is 

simply the entropy of the set of messages that can be created 

using several variables. For instance, using two binary 

variables X and Y, it is possible to generate four different 

messages {00, 01, 10, 11}. The messages being equiprobable 

here, there is entropy of 2 bits in this set of messages. In this 

case, where the variables are independent,6 the joint entropy 

is simply the sum of the individual entropies: H(X, Y) = H(X) 

+ H(Y) = 2. The conditional entropy H(X/Y) (the slash 

indicates the conditional statement “given”) is a measure of 

the amount of information in one variable when another is 

held constant. For instance, we have H(X/Y) = 1 in the 

preceding set, because there is 1 bit of uncertainty left on X 

for any value of Y. These notions were implicit when we 

computed the information gain above (mainly to make the 

equations more readable). 

Mutual information simply quantifies the relatedness of 

two or more variables. Mutual information corresponds to 

the reduction in the uncertainty about one variable due to 

the knowledge of another variable (see Fass, 2006; Garner, 

1962; and Duda, Hart, & Stork, 2001, pp. 630-632). The 

mutual information of the two variables is: 

  (2) 

where: 

 . (3) 

The variables used to denote the mutual information are 

separated by semicolons (e.g., I(X; Y)) to avoid confusion 

with the variables put in conjunction in the joint-entropy 

formula (e.g., H(X, Y)). For any pair of variables in the XOR 

truth table (e.g., X and Y), we get null mutual information. 

For instance: I(X; Y) = H(X) − H(X|Y) = H(X) − (H(X, Y) − 

H(Y)) = 1 − (2 − 1) = 0, meaning that these two variables are 

independent. By applying the same formula to any pair of 

variables, it can be shown that X, Y, and Z are independent. 

Even if it looks much more complicated, the 

computation of mutual information is easily extendable to 

an arbitrary number of dimensions using alternating plus 

and minus signs over all subsets of variables. For three 

variables: 

  (4) 

Computed for the three variables in the XOR truth table, 

we have: I(X; Y; Z) = −1 − 1 − 1 + 2 + 2 + 2 − 2 = 1, which 

corresponds to the maximal amount of mutual information 

with three Boolean variables. This means that it is possible 

to get the value of a third variable by knowing the 
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relationship between the other two (or vice versa). 

Therefore, the category can be found by knowing the 

relationships between the two input values. 

In Table 1, a set of stimuli was generated using 

combinations of black and white balls. Here, each group of 

horizontally aligned balls represents a single stimulus. I 

showed earlier that because no feature is characteristic of the 

class in this kind of concept, the learner must either learn a 

complex rule (computed, for instance, using information 

gain) or learn the examples and their respective categories 

by rote memory. However, by using mutual information, we 

can see that the stimuli are positive simply if the balls are of 

different colors, which is clearly more parsimonious. Here, 

the features of one or the other ball are no longer important 

once one notices that the relation “different” between the 

two balls overrides the particular feature values. 

This relational complexity can be demonstrated in a 

Bayesian network (Fig. 1), which indicates that variables 1 

and 2 are two independent causes of the variable “Class” 

(see Glymour, 2001; Pearl, 2000).7 However, as specified in 

the network, the two variables are not independent, given 

the class. Clearly, knowing that the class is positive, it 

follows that variables 1 and 2 necessarily have different 

values. This is a case of a rather complex notion called 

conditional nonindependence. 

Similarly, for the Type-VI concept, mutual information is 

Table 1. XOR and TYPE-VI concepts 

 

 
 

Note. Each group of horizontally aligned balls represents a single stimulus. Column C indicates the category membership. 

Mutual Info., mutual information. Num. Info, numerical information. Decision tree 1: “IF first ball is white, THEN -; IF first

ball is black, THEN +”. Decision tree 2: “IF first ball is white, THEN [IF second ball is white, THEN -; IF second ball is black, 

THEN +]; IF first ball is black, THEN [IF second ball is black, THEN -; IF second ball is white, THEN +]”. Decision tree 3: 

similar to decision tree 2, except that the third level indicates the color of the third ball. Decision tree 4: “IF the color of the 

two balls is Same, THEN -; IF the color of the balls is Different, THEN +”. Decision tree 5: “IF first ball is white, THEN [IF the 

color of the other balls is Same, THEN -; IF the color of the other balls is Different, then +]; IF first ball is black, THEN [IF the 

color of the other balls is Different, THEN -; IF the color of the other balls is Same, then +]”. Decision tree 6: “IF the number of 

black balls is even, THEN -; ELSE +”. 
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also equal to 1. This means that it is possible to know the 

value of a given variable, given the relationship between the 

other three (or vice versa). Mutual information is maximal in 

Type-VI because there is an XOR structure with three 

variables for any value of the fourth variable. Therefore, the 

category can be determined by knowing the relationships 

between the three input values. Consistent with XOR, Type-

VI apparently has no critical feature, thereby imposing rote 

memorization of the four positive examples. However, using 

mutual information, one can see that whenever the second 

and third balls are of different colors –when the first is 

white– or whenever they are of the same color –when the 

first is black– the example is positive. Such higher-order 

rules might facilitate learning of the Type-VI classification. 

The structure of information is even more intriguing in Type-

VI: what was true for the first ball is also true for the second 

and third (for instance, if the third ball is white, the stimulus 

is positive whenever the other two balls are of different 

colors, and so on). 

In sum, mutual information allows subjects to reduce the 

complexity of the decision rules as follows: In XOR, subjects 

can use a two-path decision tree (IF balls are of different 

colors, THEN +; ELSE IF balls are the same color THEN -”. 

In Type-VI, subjects can use a four-path decision tree (tree 

number 4 in Table 1: “IF first ball is white THEN [IF other 

balls are of different colors, THEN +; ELSE IF other balls are 

the same color THEN -]; ELSE IF first ball is black THEN [IF 

other balls are of different colors, THEN -; ELSE IF other 

balls are the same color THEN +”. This rule can be reduced 

to “If first is white and other balls are of different colors, or if 

first is black and other balls are the same color” for positive 

examples. The diagonal arrows in Table 1 show that more 

compressed rules correspond to rules of a lower level. 

It has been shown that correlations between features can 

be learned during classification tasks, even incidentally 

(Giguère, Lacroix, & Larochelle, 2007, although the subjects 

in this study only learned attributes that were perfectly 

correlated), but mutual information may be less apparent 

(Fass, 2006). For instance, when stimuli are more complex 

and have incommensurate dimensions (e.g., compound 

Figure 1. The exclusive disjunction and three possible corresponding Bayesian networks. Note. The truth table includes two 

input variables and one output variable. The output variable is called the class or the category in the categorization 

literature. The top right Bayesian network shows that input 1 and input 2 are independent. However, in this network, input 

1 is NOT conditionally independent of input 2, GIVEN the class. Indeed, the value of input 2 is equal to the value of input 1 

if the class is 0, whereas input 1 and input 2 are inversely correlated if the class is 1. Therefore, one can correctly classify the 

examples of an XOR by considering the relationships between the two input values. The same properties would follow if we 

permuted the variables in the network. In other words, if any two variables are the same, the third is equal to zero, whereas 

if any two variables are different, the third is equal to one. 
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stimuli such as big blue triangles, small red squares, etc.), 

mutual information can be available but needs to be used by 

subjects in a more complex manner than when the stimuli 

are like those shown in Table 1, where the relationships are 

obvious. For compound stimuli, mutual information can be 

used by reversing a subrule from one condition to another. 

For instance, a Type-VI concept can be simplified as follows: 

when the objects are small, the red squares and the blue 

triangles are positive, whereas when the objects are large, 

these objects are negative. The subject then has to memorize 

half of the decision paths and switch the leaves, given the 

size of the objects. 

Necessarily, this assumes that the subject has already 

built a correct decision tree before noticing the symmetries, 

which explains why it has been shown that the utilization of 

mutual information in categorization tasks can only operate 

in the long run (see Mathy, In press). Finally, note that in 

Table 1, the stimuli are so peculiar that subjects can devise a 

much more abstract and efficient strategy using numerical 

information. For instance, by noticing that the stimuli are 

positive whenever the number of balls in the stimulus is 

odd, the subject can formulate a highly compressed two-

path decision for both XOR and Type-VI concepts (trees 4 

and 6 in Table 1). This strategy is also available when the 

stimuli are compound: knowing that the little blue triangle 

is a positive stimulus in a Type-VI structure, another 

stimulus is positive whenever a stimulus has only one 

feature in common with the little blue triangle. Again, 

subjects can reduce their decision rule to two paths (if there 

is one feature in common with the little blue triangle, then 

positive, else negative). 

Conclusion 

Decision-trees in concept learning 

Entropy, information gain, and mutual information are 

basic notions in information theory. They can be used to 

model rule formation in concept-learning tasks, and to 

assess the subjective complexity of a given task and 

difficulty in classifying instances. The idea that learning 

involves the extraction of relevant information followed by 

gradual testing of hypotheses has considerable intuitive 

appeal. I suggest here that because rule formation in 

individuals functions by an information compression 

process (by starting small and seeking parsimony), 

individual performance can be measured by the 

compressibility of the information inherent in the conceptual 

structures, and compressibility itself can be expressed in 

terms of the minimal, ordered decision tree for a given 

concept. Similar modeling based on information reduction 

has been helpful in other domains, for instance, to explain 

automatization in visual-memory search tasks via a process 

of information reduction achieved by ignoring features that 

are not diagnostic to the search (Cousineau & Larochelle, 

2004). 

Many hybrid models recognize the importance of 

specifying a mechanism for combining rule- and exemplar-

based representations (Anderson & Betz, 2001; Erickson & 

Kruschke, 1998; Goodman, Tenenbaum, Feldman, & 

Griffiths, 2008; Rosseel, 2002; Pothos, 2005; E. E. Smith & 

Sloman, 1994). Indeed, the use of both processes is 

supported by recent advances in cognitive neuroscience 

(Ashby & Ell, 2001). There are also numerous other 

concurrent models of categorization –based on other 

paradigms– which also deserve serious consideration 

(Ashby & Maddox, 1993; Ashby, Alfonso-Reese, Turken, & 

Waldron, 1998; Kruschke, 1992; Lamberts, 2000; Nosofsky, 

1984; Nosofsky, Gluck, et al., 1994). In this paper, I advocate 

the development of rule-based models by focusing on 

putative relationships between subjective complexity and 

decision-tree complexity. This view is supported by recent 

experimental research in which learning times, error rates, 

and response times were used to assess subjective 

complexity. One possibility is that subjects need more time 

to discover and to form correct decision rules when the 

structure of the task-related information is more complex 

(Mathy & Bradmetz, 2004; Feldman, 2000; Lafond et al., 

2007; Nosofsky, Palmeri, & McKinley, 1994). Another 

possibility is that the smallest number of steps required to 

reach a given leaf in a decision tree for a given stimulus is 

directly proportional to response time (Bradmetz & Mathy, 

2008; Lafond et al., 2009; Trabasso, Rollins, & Shaughnessy, 

1971). The principal difference between these recent studies 

and those of the last century is that (1) better 

characterization of reduction techniques has been sought to 

account for how subjects manage to learn8 (2) the 

plausibility of the information-reducing mechanisms and 

the tractability of the computations required during the 

reduction process have been better discussed, and (3) better 

measures of fit and broader experimental studies have been 

used to assess these different rule-based models. 

Psychological plausibility 

There are several classical methods of concept learning 

using rules based on information reduction. One might be 

reluctant to bring back to life an old-fashioned class of 

models based on simple decision trees (e.g., Hunt, Marin, & 

Stone, 1966) which have encountered many obstacles since 

their development. Firstly, such models often subsume 

verbal or consciously penetrable strategies, whereas recent 

research provides evidence of less-verbal, implicit processes 

in categorization in some cases. Secondly, these models may 
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appear quite crude in that they do not allow for fine tuning 

of parameters to achieve greater precision in modeling (a 

counter example is RULEX, which is presented below). A 

third reason is that certain predictions in rule-based models 

(e.g., assessing task complexity) can be easily mimicked by 

other models such as exemplar models, which are also very 

powerful in many other respects (Nosofsky, Gluck, et al., 

1994). However, my goal was to show that perhaps more 

elaborate, rule-based models are worthy of serious 

consideration in psychology. 

I will now discuss the plausibility of the notions 

presented in this paper and the optimality with which 

subjects abstract relevant information. I posit that subjects 

can compute relevant information and build a minimal 

decision rule using simple strategies, and that these 

strategies can be accounted for by computing information 

gain and mutual information. For subjects, computing 

information gain is equivalent to holding one dimension 

constant while globally assessing the number of correct 

responses obtained during the classification. Once subjects 

notice that they –statistically– get most responses if they 

hold a particular dimension constant (rather than some 

other dimension), they can start using this dimension 

systematically in order to separate the stimuli into two 

broad clusters. This process does not require much mental 

effort. The subject can simply try, for instance, to put all red 

pictures in Category A, and all blue ones in Category B. 

Assuming that most of their responses are correct, subjects 

select the dimension and then repeat the same strategy for 

the remaining incorrect classified instances. The dimensions 

are simply embedded by subjects until no uncertainly 

remains. It follows that the absence of trial-by-trial 

information for computing information gain is not 

necessarily a drawback for modeling subject strategies. 

Sayeki (1969) found, for instance, that subjects performed 

nearly optimally when required to ask as few questions as 

possible in order to identify one of the six classes assigned to 

100 cards with classes and features that have different 

frequencies. All subjects used highly ordered efficient trees 

corresponding to optimal decision rules.9 

Difficulty elaborating complex decisions about 

exceptions might explain why subjects struggle when trying 

to classify exceptions.10 Their difficulty may be caused by 

working memory limitations, which could prevent them 

from building or using an overly complex decision 

structure. In a previous paper, we argued that a decision-

tree building process clearly depends on working memory 

capacity (Mathy & Bradmetz, 2004) (see also Lewandowsky, 

in press, who showed that working memory capacity is 

crucial to categorization). In the multi-agent model of 

working memory that we developed, there is no need for a 

conductor (a central executive). Agents have very limited 

capacities for retaining information or organizing it, but they 

can nevertheless use basic communication processes to 

exchange information. A minimal decision tree can be built 

via an inter-agent communication process that promotes the 

elaboration of common knowledge (knowledge about 

stimuli and categories) from distributed knowledge 

(knowledge about features). The communication priorities 

simply depend on the information gain provided by the 

different agents. Our hypothesis was that the complexity of 

a decision tree can be determined by that of the multi-agent 

communication protocol. The number of agents that have to 

be held in working memory is limited simply because of the 

complexity of their interactions, which grows intractably 

with their number. This kind of gradual adaptation (i.e., 

agents, features are recruited one by one) captures the 

notions of learnability and the importance of starting small 

(Elman, 1993), in line with Gold’s (1967) procedure of 

identication in the limit, the cascade-correlation algorithm 

for neural networks (Fahlman & Lebiere, 1990), the RULEX 

model (Nosofsky, Gluck, et al., 1994) and the SUSTAIN 

model of category learning (in which clusters are recruited 

gradually, Love, Medin, & Gureckis, 2004). These models 

are opposed to those involving pruning, which posit that 

learning progresses from the most specific and complex 

decisions to the simplest ones. 

Extracting mutual information is also psychologically 

plausible, although it has been shown that subject’s 

sensitivity to mutual information can be very limited (Fass, 

2006). Mutual information, also called transinformation, 

measures the amount of information that can be obtained 

about one variable by observing other variables or relations 

between them. Other studies have shown that categorization 

learning can be guided by knowledge drawn from people’s 

tacit understanding of causal relations, which explains why 

people can learn categories on the basis of feature 

correlations (Rehder & Hastie, 2001; Waldmann, Holyoak, & 

Fratianne, 1995; Waldmann, Meder, Sydow, & Hagmayer, in 

press). In some of the situations described in this paper, 

there are symmetries in two, apparently complex sets of 

decisions that can be used to form simpler rules. This can 

considerably simplify the learning process by halving the 

decision structure and resulting in performance gains. 

Mutual information is a non-metric tool enabling one to 

measure the complexity of relationships between features. 

Mutual information simply quantifies how certain features 

relate to each other. In various categorization models, Type-

VI concepts are unanimously judged to be the most complex 

kind of 3D Boolean concepts. This has been largely 

confirmed by empirical data, but it is apparently 

inconsistent with the fact that this concept entails more 
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mutual information than any other 3D Boolean concept. 

Confirming this apparent paradox, I showed that subjects 

are able to gradually learn Type-VI concepts faster than 

other Shepardian concepts such as Type IV, which are 

supposedly less difficult than Type VI (Mathy, In press). 

Type-IV concepts have consistently been found to be easier 

than Type-VI ones (when the concepts are learned once). 

Using repeated measures, I pointed out that learning several 

classifications of the same type in succession has a 

substantial impact on how concepts are learned. By 

comparing Type-VI concepts (entailing a maximal amount 

of positive mutual information) with Type-IV concepts 

(entailing a minimal amount of positive mutual 

information), the results showed that Type-VI concepts 

gradually became more learnable than Type-IV ones 

(Shepard et al., 1961, made the same observation, but in a 

less controlled experimental setting). Mutual information 

hence emphasizes the peculiar status of Type VI and might 

also account for other Type-VI effects that have been noted 

in studies on inductive biases and cultural evolution 

(Griffiths, Christian, & Kalish, 2008). Another study showed 

that when initial learning pertains to a Type-II structure 

(XOR with a third irrelevant dimension, which also entails 

some mutual information in the two relevant dimensions), a 

reversal shift is easier than shifts based on a single, 

previously relevant dimension, or shifts based on a single, 

previously irrelevant dimension (Kruschke, 1996). Such an 

effect also tends to support the hypothesis that individuals 

can easily derive new rules based on reversed decisions. 

Because individuals can effectively use mutual information 

in the long run to devise easier strategies for category 

learning, categorization models should include every 

possible way for subjects to simplify a categorization task. 

Another example of cases where people easily reverse rules 

has been studied using the intra-extra dimensional set shift 

paradigm. When children have to switch from one sorting 

rule to another, they have more trouble when they need to 

change the relevant dimension (the classification is based on 

shape, then on color) than when they have to change the 

value of the relevant dimension (the classification is based 

on shape only, first with rabbits in category A and cars in 

category B, and then with rabbits in category B and cars in 

category A) (Perner & Lang, 2002). 

A comparison with RULEX 

There are always alternative ways of describing any 

category structure in terms of rules, logic formulae, or 

decision trees, and controversy certainly exists about exactly 

what form of abstraction is the one subjects are most likely 

to adopt (Mathy & Bradmetz, 2004; Feldman, 2000; Lafond 

et al., 2007). Still, there is agreement on the fact that subjects 

perform more or less optimally in reducing the total amount 

of information. Overall, subjects have less trouble learning 

homogeneous categories that can be covered by simple 

rules, which can be tracked by fast and accurate learning. 

Learning in RULEX (rule-plus-exception learning model, 

Nosofsky, Palmeri, & McKinley, 1994) differs in several 

ways from the notions introduced in the present paper. 

1. In RULEX, categorization decisions are made by 

sequentially verifying stored one-dimensional rules, 

conjunctive rules, and exceptions, whereas in a decision tree, 

there is a single verification process which tests the features 

ordered in a given decision tree. The distinction between 

rules and exceptions breaks down in a decision tree. Even 

though it is possible to consider that the difference between 

rules and exceptions merely depends on the number of 

feature tests, it is better to simply consider that one decision 

tree represents one rule, which can be simple or complex 

depending on its structure. 

2. A more radical difference in the classification decision 

process is that RULEX first checks for all exceptions stored 

in memory, and if no exceptions apply, a check is made on 

simpler rules (going from the most specific to the most 

general). However, the sequence of hypothesis-testing stages 

is reversed: first there is a search for perfect single-

dimension rules, imperfect single-dimension rules, and 

conjunctive rules, and then there is a search for exceptions if 

each of the other steps failed. In more classical decision 

trees, the classification decisions follow the tree-building 

process. First, simple dimensions are tested to induce a 

simple rule. If one dimension is not sufficient, other 

dimensions can be added to gain precision. Similarly, when 

a stimulus is presented, the decision process follows the 

same order, testing for the first dimension, then the second if 

the first dimension leads to uncertainty. 

3. RULEX is quite ad hoc, since it is intended to be 

psychologically plausible. Because it allows for the tuning of 

numerous parameters, the space of predictions can contain a 

substantial number of possibilities, and predictions can only 

be found through time-consuming simulations. Navarro 

(2005) outlined a formalization of RULEX using basic 

probability theory and simple combinatorics to calculate its 

predictions faster. Still, he showed, for instance, that there 

can be 12 different patterns of results for ranking the six 

Shepardian concepts from Type I to Type VI. In contrast, a 

given decision-tree model predicts analytic expressions most 

often resulting in single patterns for ranking a given set of 

concepts. It is only by considering different decision-tree 

models that it is possible to obtain different patterns for 

ranking a given set of concepts. These patterns can then be 

compared to subjects’ performance to gain insight into the 

mechanisms that underpin the categorization process. The 
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one-to-one function facilitates the rejection of a model, 

whereas in RULEX, the probability of accepting the model is 

greater. For instance, in two previous studies (Mathy & 

Bradmetz, 2004; Bradmetz & Mathy, 2008), we tried to show 

that the computation of entropy combined to a multi-agent 

model of categorization (which can be parameterized more 

or less in a sequential versus parallel way) can help 

determines the degree of optimality reached by individuals 

in learning decision rules. Given that the different 

parameterizations of the multi-agent model led to different 

rankings of complexity, we were able to determine that 

subjects tended to use information in an overly strict 

sequential manner, a process which slows down the decision 

process and sometimes make subjects form longer rules than 

necessary. 

However, RULEX shares one interesting property with 

the decision-tree model presented in Bradmetz and Mathy 

(2008), also designed to be psychologically plausible. Both 

models predict that individuals vary in the particular rules 

they form and that averaged classification data are 

presumed to represent a mixture of idiosyncratic rules. For 

instance, let us imagine that blue triangles, blue squares, and 

red triangles are positive, whereas red squares are negative. 

The minimal formula is known to be blue OR triangle, which 

is isomorphic to a decision tree such as ”IF blue then 

positive; IF triangle THEN positive” (Feldman, 2000; Lafond 

et al., 2007). The corresponding decision tree is polythetic, in 

that multiple attribute values can label each tree branch. In 

this case, the branch for categorizing the positive instances 

can be labelled blue or triangle. This minimal formula implies 

that the three positive objects require the same amount of 

computation to be categorized, so the response times are 

expected to be similar for those objects. The reason why 

most psychological models are not worried about polythetic 

decisions is certainly because psychological experiments do 

not use a large number of dimensions, but such trees are 

almost never used in artificial intelligence, for complexity 

reasons (Duda et al., 2001). In one of the multi-agent models 

we developed, which is based on the computation of 

information gain, the decision trees are monothetic because it 

is hypothesized that the order in which information is used 

in working memory is constant. In this case, given that the 

shape dimension and the color dimension are equally 

informative about the class, subjects could either induce the 

rule “IF blue THEN positive; IF red THEN [IF triangle THEN 

positive]”, or the rule “IF triangle THEN positive; IF square 

THEN [IF blue THEN positive]”. Again these decision trees 

are less optimal than polythetic ones because subjects are 

thought to use information in an overly strict sequential 

manner. Here, the blue triangles could be categorized using 

one piece of information by all the subjects, whereas the 

other two positive instances were categorized by some 

subjects using a single piece of information and categorized 

by the rest of the subjects using two pieces of information 

(the mean response time for these two instances was 

therefore predicted to depend on 1.5 pieces of information). 

Our results showed that the time of access to the categories 

was related to these numbers of pieces of information. The 

blue triangle therefore acquired a prototype-like status, and 

overall, the mean classification pattern of the positive and 

negative instances was typical of the one predicted by the 

exemplar model. However, the prediction was made 

without relying on similarity as an explanatory principle. 

Directions for future research 

The present model proved useful both for accounting for 

subjective complexity across concept learning-tasks and for 

modeling response-time variability within concept-learning 

tasks. A couple of unsolved problems should be addressed 

in future research. Although attention allocation to 

dimensions can be inferred from the rules induced by 

subjects (since the most attractive dimension is generally 

chosen as the first dimension to test in a tree, whenever 

several dimensions are equally informative), decision-tree 

models would benefit from incorporating a typical form of 

dimension weighting to indicate the importance of the 

features. In addition, the absence of trial-by-trial information 

in the notions I presented poses a problem. Information gain 

and mutual information were computed here on whole sets 

of stimuli. Because the testing phase in concept-formation 

tasks appears to involve trial-by-trial tests (subjects seek 

evidence to test their hypothesis for every single 

presentation of a stimulus), a better approximation of 

subjects’ performance could be targeted by defining how 

information is used trial by trial. 

A critical problem for future research is integrating all 

possible strategies that subjects might use to facilitate the 

categorization task. I have shown here that despite the fact 

that mutual information is available to subjects, it can 

mostly only be used in the long term, once subjects have 

acquired expertise in the task. As the categorization process 

progresses, similarity can certainly also be used by subjects 

to exhaust any available strategy or to make faster decisions. 

Pruning could also be used once subjects notice analogies in 

the decisions, provided non-optimal decisions have been 

reached at one point. Overly monolithic models must 

therefore be proscribed in order to incorporate all 

possibilities available to subjects for efficient learning. One 

cannot obtain a real measure of the complexity of a concept 

until every possible strategy for reducing redundant 

information has been taken into account, assuming that 

subjects are as versatile as they can be. 
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1 His argument was that the memory span is limited in the 

number of chunks (7) it can retain, but not in the number of 

bits, thus showing that short-term memory does not fit with 

a model of channel capacity. Luce (2003) gives an interesting 

historical account of the shift away from information theory 

in psychology after the 1960s. 
2 The expected value (i.e., the “mean”) for a random variable 

is E(X) = , where i stands for all values that can be 

taken on by the random variable. For instance, if someone 

flips a coin to either win 2 dollars or lose 2 dollars, the 

expected value for the variable is E(X) = (.5)(2) + (.5)(−2) = 0. 
3 Also, again, H corresponds to the number of binary 

questions one would need to ask to retrieve the content of a 

single message. For the categories, there would be three 

questions (rounding 2.8 to 3): Is the category less than or 

equal to 4? If so, Is the category less than or equal to 2? If so, 

Is the category equal to 1? 
4 The study of when and what concepts are formed, and via 

what process at the ontogenetic or sociogenetic levels is 

called epistemology 
5 Occam’s razor also applies to models (Hélie, 2006; Pitt & 

Myung, 2002; Roberts & Pashler, 2000), which should be as 

simple as possible, an argument that is often put forward by 

those who advocate rule-based models. 
6 I am referring here to the notion of independence of 

probabilities, such as p(X/Y) = p(X). 
7 A peculiar property of XOR is that relational complexity is 

maximal, which means that the three variables can be 

permuted, and any of them can act as the class, because as 

long as the other two are different, the third is equal to one. 

As a result, three Bayes nets could be drawn from the truth 

table depicted in Fig. 1. 
8 Different techniques such as C4.5, or C5 –also developed 

by Quinlan, for instance, to improve algorithms for 

continuous or missing data– or OBDDs have been 

developed in artificial intelligence, and some of them may 

have inspired psychologists (for an overview of such 

techniques, see Duda et al., 2001, Chap. 8, and Ruth & Ryan, 

2000, Chap. 6). However, such adjunctions to ID3 are not so 

useful for the simple tasks described in this paper. 

 

 

 

 

 

 

 

 

 

 

                                                                                                             
9 In Sayeki’s experiment, in which the categories were not 

equiprobable, the Shannon-Fano encoding theory was used 

to evaluate the optimality of the decision trees used by 

subjects. The Shannon-Fano encoding procedure is usually 

helpful when a set of symbols (e.g., the class labels) have 

different frequencies but no underlying defining features. 

However, the procedure may not be helpful when the 

objects are already encoded by a set of features. Sayeki 

experimented with objects whose features perfectly matched 

the codes produced by the Shannon-Fano algorithm. This 

gave the illusion that subjects could easily transpose the 

optimal set of codes to the set of features that characterized 

the objects. For instance, 68 objects labelled F could be 

recoded 0 while the other 32 objects could be recoded 1. 

Because all F objects were green and other objects were red 

(by construction), the decision tree for recoding the class 

labels according to frequency paralleled the feature codes 

(see Experiment 1, Deck 1, p. 272). However, this procedure 

is not helpful for the examples developed in this paper. For 

instance, in an XOR structure where a white square and a 

black circle are labelled A, and a black square and a white 

circle are labelled B, the Shannon-Fanno encoding procedure 

would code both As as 0 and both Bs as 1, since the labels 

are equiprobable. However, such encoding would not be of 

any help when the learner needs to identify the class of an 

object given its features. In the XOR case, the minimal 

encoding of objects requires an average bit number of 2 bits 

per object, not 1. Whenever objects are already encoded by 

features, the computation of information gain is required. 
10 Exemplar models simply state that exceptions are more 

difficult to handle because of their few similarities to the 

majority of objects belonging to the same category. 


