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This paper presents an introduction to independent component analysis (ICA). Unlike 

principal component analysis, which is based on the assumptions of uncorrelatedness 

and normality, ICA is rooted in the assumption of statistical independence. 

Foundations and basic knowledge necessary to understand the technique are provided 

hereafter. Also included is a short tutorial illustrating the implementation of two ICA 

algorithms (FastICA and InfoMax) with the use of the Mathematica software. 

 

 
 Nowadays, performing statistical analysis is only a few 

clicks away. However, before anyone carries out the desired 

analysis, some assumptions must be met. Of all the 

assumptions required, one of the most frequently 

encountered is about the normality of the distribution 

(Gaussianity). However, there are many situations in which 

Gaussianity does not hold. Human speech (amplitude by 

time), electrical signals from different brain areas and 

natural images are all examples not normally distributed. 

The well-known "cocktail party effect" illustrates this 

concept well. Let us imagine two people standing in a room 

and speaking simultaneously. If two microphones are 

placed in two different places in the room, they will each 

record a particular linear combination of the two voices. 

Using only the recordings, would it then be possible to 

identify the voice of each speaker (Figure 1a)? If Gaussianity 

was assumed, we could perform a Principal Component 

Analysis (PCA) or a Factorial Analysis (FA). The resulting 

components would be two new orderly voice combinations 

(Figure 1a). Therefore, such a technique fails to isolate each 

speaker’s voice.  

On the other hand, if non-Gaussianity is assumed, then 
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Independent Component Analysis (ICA) could be applied to 

the same problem and the result would be quite different. 

ICA is able to distinguish the voice of each speaker from the 

linear combination of their voices (Figure 1b). This reasoning 

can be applied to many biological recording involving 

multiple source signals (e.g. EEG). However, the readers 

must bear in mind that there are two main differences in the 

interpretation of extracted components using ICA instead of 

PCA. First, in ICA, there is no order of magnitude associated 

with each component. In other words, there is no better or 

worst components (unless the user decides to order them 

following his own criteria). Second, the extracted 

components are invariant to the sign of the sources. For 

example, in image processing, a white letter on a black 

background is the same as a black letter on a white 

background.  

The remainder of the paper is comprised of a first section 

that briefly exposes the theoretical foundations of ICA1, and 

of a second section that gives an example of its application 

using two different implemented algorithms (supplemental 

material). The second section also presents a short 

discussion on future tracks of research. 

Theoretical foundations of ICA 

Let us denote the random observed vector 

 whose m elements are mixtures of m 

independent elements of a random vector 

 given by  

  (1) 
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Where  represents an  mixing matrix, the sample 

value of Xj is denoted by xj and j=1, 2, ..., m. The goal of ICA 

is to find the unmixing matrix W (i.e. the inverse of A) that 

will give Y, the best possible approximation of S: 

  (2) 
In order to use ICA, five assumptions must be met. First, 

statistical independence between each of the sources Si from 

the sources vector S is assumed (independence is at the core 

of ICA and will be discussed further in the next subsection). 

Second, the mixing matrix must be square and full rank. In 

other words, the number of mixtures must be equal to the 

number of sources and the mixtures must be linearly 

independent from each other.2 Third, the only source of 

stochasticity in the model is the source vector S (i.e. there is 

no external noise). The model must thus be noise free. 

Fourth, it is assumed that the data are centered (zero mean). 

Also, for some algorithms, the data must be pre-processed 

further; sometimes, the observation vector X must be 

whitened.3 Fifth, the source signals must not have a 

Gaussian probability density function (pdf) except for one 

single source that can be Gaussian. 

Statistical independence 

Let  be random variables with pdf 

, then the variables  are mutually 

independent if:  

  (3) 

that is, if the pdf of the  is equal to the multiplication of 

each marginal pdf of the . Statistical independence is a 

more severe criterion than uncorrelatedness between two 

variables. If we take random centered variables, 

uncorrelatedness is expressed by the following equation: 

Figure 1. Comparison between PCA (a) and ICA (b) in the context of the "cocktail party effect". 

a) 

 

 

b) 
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  (4) 

where E[.] is the expectation. On the other hand, 

independence can be defined using the expectation by the 

following: 

  (5) 

for all functions  and . In the particular case where the 

joint pdf of the variables is Gaussian, uncorrelatedness is 

equivalent to independence (Hyvärinen, Karhunen & Oja, 

2000, 2001). 

There are several ways to measure independence and 

each of them involves the use of different algorithms when it 

comes to performing an ICA, which results in slightly 

different unmixing matrices. There are two main families of 

ICA algorithms (Haykin, 2009). While some algorithms are 

rooted in the minimization of mutual information, others 

take root in the maximization of non-Gaussianity.  

Minimization of mutual information 

Mutual information is defined for a pair of random variables 

as: 

  (6) 

where  is the conditional entropy (the entropy of X 

conditional on Y taking a certain value y) and  is the 

entropy of X. Conditional entropy is given by: 

  (7) 

where  is the joint entropy of X and Y and  is 

the entropy of Y.  Formally, entropy for a given variable is 

defined by Shannon (1948) as:  

  (8a) 

  (8b) 

  (8c) 

where P(x) is the probability that X is in the state x. Entropy 

can be seen as a measure of uncertainty. The lower the value 

the more information we have about a given system. 

Therefore, going back to Equation 6, mutual information can 

be seen as the reduction of uncertainty regarding variable X 

after the observation of Y. Therefore by having an algorithm 

that seeks to minimize mutual information, we are searching 

for components (latent variables) that are maximally 

independent. Examples of algorithms that use minimization 

of mutual information can be found in Amari, Cichocki & 

Yang (1996); Bell & Sejnowski (1995a); Cardoso (1997); 

Pham, Garrat & Jutten (1992). 

Using Equation 6 and after some manipulation, Amari et 

al. (1996) proposed the following algorithm to compute the 

unmixing matrix W (called InfoMax): 

1. Initialize W(0) (e.g. random) 

2.  (9) 

3. If not converged, go back to step 2. 

where t represents a given approximation step,  a 

general function that specifies the size of the steps for the 

unmixing matrix updates (usually an exponential function 

or a constant),  a nonlinear function usually chosen 

according to the type of distribution (super or sub-

Gaussian), I the identity matrix of dimensions m × m and T 

the transpose operator. In the case of super-Gaussian 

distributions,  is usually set to: 

  (10a) 

and for sub-Gaussian distributions,  is set to: 

  (10b) 

The package InfoMax.nb is an implementation of this 

algorithm. 

Maximization of non-Gaussianity 

Another way to estimate the independent components is 

by focusing on non-Gaussianity. Since it is assumed that 

each underlying source is not normally distributed, one way 

to extract the components is by forcing each of them to be as 

far from the normal distribution as possible. Negentropy can 

be used to estimate non-Gaussianity. In short, negentropy is 

a measure of distance from normality defined by: 

  (11) 

where X is a random vector known to be non-Gaussian, 

H(X) is the entropy (see Equation 8a), and H(XGaussian) is the 

entropy of a Gaussian random vector whose covariance 

matrix is equal to that of X. For a given covariance matrix, 

the distribution that has the highest entropy is the Gaussian 

distribution. Negentropy is thus a strictly positive measure 

of non-Gaussianity. However, it is difficult to compute 

negentropy using Equation 11, which is why 

approximations are used. For example, Hyvärinen & Oja 

(2000) have proposed the following approximation:  

  (12) 

where V is a standardized non-Gaussian random variable 

(zero mean and unit variance),  a standardized Gaussian 

random variable and  a non-quadratic function (usually 

Tanh(.)). After some manipulation, they proposed the 

following algorithm (named FastICA):  

1. Initialize wi (e.g. random) 

2.  (13a) 

3.  (13b) 

4. For i = 1, go to step 7. Else, continue with step 5. 

5.  (13c) 
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6.  (13d) 

7. If not converged, go back to step 2. Else go back to step 1 

with i = i + 1 until all components are extracted. 

where wi is a column-vector of the unmixing matrix W,  

is a temporary variable used to calculate wi  (it is the new wi 

before normalization),  is the derivative of  and E(.) 

is the expected value (mean). Once a given wi has 

converged, the next one (wi+1) must be made orthogonal to it 

(and all those previously extracted) with Equations 13c and 

13d in order for the new component to be different from it 

(them). This algorithm has been implemented in the package 

FastICA.nb. 

How to use the ICA packages 

This section provides a quick overview of the InfoMax 

ICA package based on the maximum information 

perspective (InfoMax.nb; Amari et al., 1996), and on the 

FastICA package, based on the non-Gausianity perspective 

(FastICA.nb; Hyvärinen & Oja, 2000). Both packages have 

been implemented using Mathematica 7.0 and contain the 

same options with the exception of some parameters that are 

unique to a given algorithm. Each package consists of two 

main sections: Functions and Main. The Functions section 

contains the implementation of the algorithm and the 

necessary accompanying auxiliary functions. This section 

must be activated before ICA can be performed using the 

Main section. The Main section is divided into three cells: 

parameters, sources and ICA. The Parameters cell contains 

the information about the various parameters that need to 

be set prior to the analyses.  

Parameters 

First, the type of data must be specified in order to 

display the results properly (Figure 2). For example, if the 

data are in a sound file format (.wav), type must equal 

“sound” and sampleRate must be set to the correct desired 

frequency for the software to play the file correctly. Setting 

type to "image" allows for the use of usual image file 

formats (e.g., .jpg and .bmp). Since the analysis is only 

performed on greyscale images, any colour images will be 

automatically converted. If the data are time series, but not 

sound, then type must be set to "temporal" and a graph will 

depict the data using time as the independent variable. 

Finally, setting type to "other" is used for any data in a text 

format (e.g., .dat or .txt) (Each mix must be in a different file 

and arranged in a column). The next two options are about 

the convergence of the algorithm. First, minDeltaW controls 

the minimum difference between a given approximation 

W(t) and the next one W(t + 1). The lower the value, the 

better the estimation of the source will be. However, in some 

cases, the algorithm may not find a proper solution and, as a 

precaution, maxStep will control the maximum number of 

allowed steps before it stops searching. Finally, for the 

InfoMax notebook only, the type of distribution of the 

sources (typeOfDist) must be given in advance for the 

algorithm to be able to find the correct solution. To this end, 

there are two possible distributions: sub-Gaussian ("Sub") 

and super-Gaussian ("Super"). 

Figure 2. Screen capture featuring an example of the various parameters to be set before performing the analysis. 

 

 

Figure 3. Example of five mixed signals to be loaded. 

 

 

Figure 4. Examples of "infoMaxICA" and "fastICA" functions to perform ICA. 
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Sources 

The second cell must be activated to load the mixes. Two 

options are offered: mixed or unmixed sources. Mixed 

sources are obviously the ones that are most commonly 

encountered. In this case, the function mixingSign[ ] will 

need IdentiyMatrix[m] as an argument; where m is the 

number of sources (Figure 3). 

If the sources are not mixes (e.g. to use the packages for 

illustration purposes), then the notebook will generate a 

random mixing matrix or alternatively the user can provide 

one. Finally, once activated, a window will appear 

requesting the location of each file. Once loaded, the sources 

will be displayed accompanied by correlation matrices. 

Performing ICA  

Finally, to perform the ICA, the function infoMaxICA[ ] 

or fastICA[ ] must be activated (Figure 4). Once the analysis 

is completed, the notebook will display the extracted sources 

as well as the correlation matrix of the extracted sources. 

Example 

In this example, Infomax and FastICA algorithms are 

used to extract the components from three mixes of images 

(provided in the supplemental materials). Also, for 

comparison, Principal Component Analysis (PCA) will be 

performed on the same mixes. 

Infomax and FastICA 

After the “Functions” section has been activated, the 

parameters were set as follows: 

- type = “image” 

- sampRate non-applicable in this case 

- minDeltaW = 10^-5 

- maxStep = 2500 for Infomax 

- maxStep = 100 for FastICA (i.e. 100 for each component) 

- For InfoMax, typeOfDist = “Sub” and “Super”. Since no 

information about the underlying distribution was available, 

both types were tried. 

Once the parameters are set, three “image” mixed 

sources were loaded. To that end, IdentityMatrix[3] was 

used as an argument for the function mixingSign[ ] (Figure 

5). 

Once the images are loaded, the notebook illustrates the 

loaded data (Figure 6). In this example, since the signals are 

already mixes, both the original and mixed signals are the 

same.  

The ICA is then performed (Figure 7). The output of the 

Figure 5. Syntax used to load three mixed sources (a) from a file selection window (b). 

a)  

b)  
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analysis shows the extracted components (in this case, 

images) and the correlation matrix of those components.  

Since ICA is invariant to the sign of the sources, 

extracted components are illustrated using the two possible 

signs (background). Finally, a correlation matrix 

accompanies the outputs to verify that they are not 

correlated.  

PCA vs Infomax vs FastICA 

The same mixes were used to compare PCA, InfoMax 

super (typeOfDist set to super-Gaussian), InfoMax sub 

(typeOfDist set to sub-Gaussian), and FastICA. As expected, 

PCA and one of the InfoMax analyses (Infomax super) were 

unable to find the independent components, since the source 

signals used in the example are sub-Gaussian. On the other 

hand, InfoMax sub and FastICA performed particularly well 

(Figure 8). 

Discussion 

Readers are encourages to use special softwares that 

allow various situations to be taken into account. For 

example, FastICA implementations in Matlab, C++, R and 

Python can be accessed through the Laboratory of Computer 

and Information Science: Adaptive Informatics Research 

Center website (http://www.cis.hut.fi/projects/ica/fastica/). 

There are also many practical considerations that must be 

taken into account that goes beyond the scope of this paper. 

For example, it is common practice to pre-whiten the data, 

which was done for the FastICA notebook.  

Furthermore, many theoretical links can be made 

between the different ICA algorithms. For examples, 

algorithms that minimize mutual information are linked 

together whether they use the Kullback-Leibler divergence 

(Amari et al., 1996), maximum likelihood (Pham et al., 1992) 

or maximum entropy (Bell & Sejnowski, 1995a; Cardoso, 

1997) to do so. Usually, to perform ICA and other blind 

source separation problems, five conditions must be met: 1 - 

The source signals must be statistically independent; 2 - The 

number of source signals must equal the number of mixed 

observed signals and mixtures must be linearly independent 

from each other; 3 - The model must be noise free; 4 - Data 

must be centered and; 5 - The source signals must not have a 

Gaussian pdf, except for one single source that can be 

Gaussian. 

Figure 6. Original signals, mixed signals and mixes correlation matrix for the loaded data.  
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The main advantages of algorithms based on the 

minimization of mutual information are their ability to 

adapt to variations in the environment and the fact that they 

are robust if the right type of distribution is provided 

(super- or sub-Gaussian). On the other hand, algorithms 

based on negentropy, e.g. FastICA, also have interesting 

features (Haykin, 2009). FasICA is able to find a solution 

quickly and is robust to the type of distribution (Haykin, 

2009). ICA is presently an expanding field and many 

interesting possibilities are currently on our doorstep. Such 

possibilities include ICA for nonlinear mixing process, ICA 

for source signals that are noisy, ICA for a number of source 

signals greater than the number of observables (like our 

brain does with only two ears!) and blind source separation 

techniques based on temporal dependencies (Haykin, 2009). 

In short, ICA is a technique that will be impossible to avoid 

in a near future for any researcher involved in source signals 

extraction. 
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1 Independent component analysis (ICA) was introduced in 

the 80s by J. Hérault, C. Jutten and B. Ans, (Hérault & Ans, 

1984; Hérault, Jutten, & Ans, 1985) in the context of studies 

on a simplified model of the encoding of movement in 

muscle contraction. During that decade, ICA remained 

mostly unknown at the international level. In 1994, the name 

“independent component analysis” appeared for the first 

time in the paper “Independent component analysis, a new 

concept?” written by Comon. The technique finally received 

attention from a wider portion of the scientific community 

with the publication of an ICA algorithm based on the 

InfoMax principle (Bell & Sejnowski, 1995a, 1995b). Since 

                                                                                                            

then, ICA has become a well establish area of research in 

which many papers, conferences and seminars are now 

commonly available. 
2 However, this requirement can be relaxed (see for example 

Hyvärinen & Oja, 2000). 
3 The observation vector must be linearly transformed so 

that the correlation matrix gives: . 

Figure 8. Outputs from PCA, ICA (InfoMax super), ICA (InfoMax sub) and FastICA. 

 PCA InfoMax super InfoMax sub FastICA 

Extracted component 1 

    

Extracted component 2 

    

Extracted component 3 

    

 


