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Statistical properties of the ability level estimate ( ) in item response theory (IRT) were 

investigated through a Monte Carlo investigation, based on data generated with a four 

cases multifactor design. Dichotomous items and the logistic two-parameter IRT 

model in a one-dimensional setting have been chosen. The estimation procedure was 

the marginalized Bayesian item parameters estimation and EAP estimation for . The 

property of invariance is discussed. Results show that estimation of  is intrinsically 

biased, is constrained by the number of items and that it performs better when the 

number of items and the number of examinees increase. Furthermore, IRT parameters 

do not seem to perform better nor give more information than those used in classical 

test theory. 

 

 
 Classical test theory (Gulliksen, 1950; Lord & Novick, 

1968; Laveault & Grégoire, 2002) proposes an algebraic-

conceptual framework to explore the connection between an 

observed score measured by a test which evaluates a skill, 

knowledge or psychological aptitude, and the person’s 

unknown true score or ability level. Item response theory 

(IRT) (Hambleton, Swaminathan & Rogers, 1991; Bertrand & 

Blais, 2004), on the other hand, tackles the same problem on 

a molecular basis, i.e. item-wise, by trying to model the 

interaction between the respondent’s ability level and the 
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operational characteristics of each item. An attractive feature 

of IRT is its parametric setting, usually represented with a k-

item parameter logistic probability model (k = 1, 2, 3), and 

the property of invariance associated with it (McKinley, 

1989).  

The full 3-item parameter logistic model serves to 

illustrate the role and interpretation of each component: it 

describes the examinee’s probability of giving the correct 

response to an item: 

  (1) 

In equation (1), r denotes rth examinee’s ability level, bj is 

the item’s difficulty level, aj its coefficient of discrimination 

at the inflexion point, and cj the index of pseudo-guessing. 

Values for  and bj range currently from –3 to 3, aj is usually 

a small positive value, and cj, varying from 0 to 1, is used 

mostly for multiple-choice items where chance supplies a 

minimum probability of  guessing the correct answer or the 

probability of low level respondents to obtain the correct 

answer. The 2-parameter model does away with the cj 

parameter (i.e. cj ≡ 0) and the 1-parameter model (e.g. Rasch 
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model) uses only the bj coefficient (e.g. setting aj ≡ 1). 

Item response theory enhances and in some way 

supplants classical test theory (CTT) by implementing new 

concepts and a new vocabulary to describe tests (item 

characteristic curve, item/test information function, optimal 

testing, etc.) and by putting the focus on the estimation of 

items’ operational characteristics (e.g. assessment of test 

dimensionality, estimation of the a, b, c parameters, item bias 

and differential item functioning), although these issues are 

also addressed in CTT. Moreover, tenants of IRT put 

forward the property of invariance possessed by parameter 

estimates, advocating that such estimates, that of  for 

instance, are obtained free of context and can be deemed 

truly characteristic of their object, by opposition to the 

context-bound estimates in CTT. “Invariance” often means 

that values of IRT item parameters ought to be identical for 

separate groups of examinees and through different 

measurement conditions (Rupp & Zumbo, 2006). 

What is invariance? Like most authors on the same topic, 

Hambleton et al. (1991) stress the importance of this concept 

as a distinctive asset of IRT: 

The importance of the property of invariance of 

item and ability parameters cannot be overstated. 

This property is the cornerstone of item response 

theory and makes possible such important 

applications as equating, item banking, 

investigation of item bias, and adaptive testing. 

(p. 25) 

On the one hand, “invariance” means equality: “If 

invariance holds, the parameters obtained should be 

identical” (Hambleton et al., 1991, p. 20; Rupp & Zumbo, 

2006, p. 64). On the other hand, a less stringent form of 

correspondence, e.g. linear equivalence, is admitted as a 

demonstration of invariance: two sets of parameters are said 

mutually “invariant” if they may be linearly transformed 

one into the other (Hambleton et al., 1991; Rupp & Zumbo, 

2006; Stocking and Lord, 1983)
1
. This second meaning of 

“invariance”, also named “congruence”, is akin to the notion 

of (linear) correlation, to the point that values of Pearson’s 

correlation coefficients are taken as conclusive indications of 

invariance (Fan, 1998; Frenette, et al., 2007), with a threshold 

value of r = 0.90 being proposed.  

From another standpoint, that of estimation theory in 

mathematical statistics (Kendall & Stuart, 1977; Freund, 

1992), the concept of invariance must be translated into 

affine concepts, notably the concept of “bias”. An estimating 

function based on a random sample of a population is said 

to be unbiased if its expectancy (across samples) is equal to 

the target parametric value. For the ability parameter of 

respondent “r”, this simply means: 

  (2) 

concurring with the “identical” definition of invariance in 

Hambleton et al. (1991), the bias being measured by the 

difference between E{ } and r, here E{ } – r  = 0. 

As Mckinley (1989) pointed out, the first step before 

using an IRT model is to estimate its parameters; usually 

none of them are known a priori. Baker and Kim (2004) 

provide a broad coverage of the methods and procedures for 

estimating the parameters of test items and examinees’ 

ability levels. Pragmatically, the LOGISTTM program (Barton 

& Lord, 1982) was popular for a while; the method 

implemented in that program was called joint maximum 

likelihood estimation (JMLE) and was formulated by 

Birnbaum (1968): the  and item parameters were simul-

taneously estimated. 

Other popular programs such as BILOG-MG 3TM 

(Zimowski, Muraki, Mislevy & Bock, 2003) or MULTILOG 

V7TM (Thissen, Chen & Bock, 2003) use (optionally) the 

marginal maximum likelihood estimation (MMLE), and an 

expectation-maximization (EM) algorithm. This technique 

estimates the items’ and  parameters in consecutive steps. 

The advantage is that convergence can be reached with a 

fixed number of items without calling upon an arbitrary 

prior ability distribution. Baker and Kim (2004) recommend 

using the marginalized Bayesian item parameter estimation 

(BME). This estimation is quite similar to the MMLE, except 

that a prior distribution is added on the discrimination 

parameter (a). BME ensures that the procedure can be 

completed even in limit cases (e.g. when all items have been 

answered correctly or all incorrectly). Once the item 

parameters are “calibrated”, i.e. estimated, the  parameters 

are obtained by the largely used Bayes Expected A Posteriori 

(EAP) estimation procedure proposed by Bock and Mislevy 

(1982). 

The lack of invariance or the so called item parameter 

drift has been studied by others (e.g. Frenette, et al., 2007; 

Rupp & Zumbo, 2006; Si & Schumacher, 2004; Wainer & 

Thissen, 1987; Wells, Subkoviak & Serlin, 2002). Results 

show that there might be a slight lack of invariance or item 

parameter drift under particular conditions (e.g. test length, 

number of examinees, presence of other latent traits), but 

findings are not unequivocal for specific conditions which 

worsen those variations. As pointed out earlier, accuracy of 

measurements is important in order to help users choose the 

best model which fits their reality or need.  

The main purpose of this study was to shed more light 

on the invariance of estimation of , b and a parameters, in 

the context of a largely used two-phase estimation 

procedure. This paper presents a Monte Carlo investigation 

based on a four cases design which reproduces conditions 

that might be found in different testing contexts. Indeed, test 

reliability, test length, number of examinees and values of 
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item parameters vary widely from one context to another, so 

that we set up three main cases divided into four sub-cases 

to cover a large array of possibilities reflecting realistic 

conditions. To complete our investigation, a fourth case was 

designed based on a pioneering idea. This idea relates to the 

question of what might happen with regard to one’s ability 

estimation if some other group of individuals with very 

different ability levels are introduced in the estimation 

process : does one’s ability estimate keep invariant whatever 

group of individuals it is embedded in, or otherwise what 

are the effects of such a relocation? The salient questions that 

we wished answered were the following: How do the 

estimated abilities ( ) match their corresponding generated 

values ( )? What factors do influence the consistency, 

reliability and other indicators of ’s invariance? Do the 

estimated abilities ( ), and the more classical X scores (the 

sum of answers), behave equivalently across conditions, and 

what distinguishes ? In order to provide complete 

information to the reader, other questions and other answers 

will also be examined with regard to parameters a and b and 

their corresponding CTT indices. The parametric 

organization and details of the experiment together with the 

modalities of the Monte Carlo implementation are laid out 

in the next section. 

1. STUDY DESIGN 

This study is a Monte Carlo investigation. Dichotomous 

(0/1) items and the logistic two-parameter IRT model (a and 

b) in a one-dimensional setting have been chosen. First, item 

parameters a and b are generated, followed by  values, 

then, from these, random item response patterns for each 

examinee are generated twice, once at “pre-test” and again 

at “post-test”. Numbers of items and examinees are given in 

the Cases section below, together with their parametric 

conditions. The whole procedure is iterated 30 times within 

each condition. Means, standard deviations and Pearson 

correlation coefficients are computed for varying outcome 

indices across the 30 iterations: the relatively low noise of 

our simulated data coupled with the high efficacy (cf. F tests 

and ω2) of our independent variables obviated the need of 

unduly slowing down our experimentation with more 

replications. Data generation and compilation as well as the 

handling of experimental conditions were programmed in 

Borland’s Delphi 5TM language and run on a PC computer 

platform.  

Experimental conditions 

Cases 

Four basic cases have been designed. Cases 1, 2 and 3 

present the same crossed experimental conditions : number 

of examinees (N = 100, 500, 1000), number of items (k = 10, 

30, 50, 100) and source parameters b and  generated from 

populations each having μ = 0, 1 and 2. 

The main difference between cases 1, 2 and 3 is the 

reliability (ρXX) condition between the pre- and post-test X 

scores. There are reciprocal relations between the test-retest 

reliability (ρXX) of X scores, number of items (k) and the item 

discrimination coefficients (a) in the logistic two-parameter 

model, i.e. a set of k items having Gamma-generated a 

coefficients with mean μa will result in a specific mean value 

of ρXX
2
. Cases 1, 2 and 3 are explained below. In Case 4, we 

introduce “witness protocols”, i.e. sets of responses from a 

few respondents that are transferred unchanged from pre-

test to post-test and are then mingled with freshly generated 

data, the purpose being to measure the robustness of  

estimates when the estimation environment changes. 

Case 1: Reliability increasing with k (µa = 0.5) 

A single value of hyper-parameter μa was used, entailing 

rising values of test-retest reliability for increasing number 

(k) of items, i.e. ρXX = 0.350, 0.618, 0.729 and 0.843 for k =10, 

30, 50 and 100. All combinations of μb = 0, 1, 2, μθ = 0, 1, 2 

and N = 100, 500, 1000 were used. 

Case 2: Low reliability (ρXX ≈ 0.40) 

A common low value of test-retest reliability was 

imposed for all k through a lessening of μa, i.e. μa ≈ 0.564, 

0.308, 0.236 and 0.165 for k = 10, 30, 50 and 100 respectively. 

The same combinations of μb, μθ and N were applied as in 

case 1. 

Case 3: High reliability (ρXX ≈ 0.80) 

A common high value of test-retest reliability was 

imposed for all k through a variation of μa, i.e. μa ≈ 1.843, 

0.858, 0.628 and 0.423 for k = 10, 30, 50 and 100. The same 

combinations of μb, μθ and N were applied as in cases 1 and 

2. 

Case 4: Witness response protocols 

Ability ( ) estimation and the associated invariance 

principle of IRT being the main concerns of this study, we 

contrived a way of ascertaining the reliability and stability of 

 estimates by manipulating the sampling conditions of 

estimation. Thus, a “witness response protocol” is a protocol 

generated at pre-test which is identically reproduced at 

post-test, while “companion protocols” are allowed to vary, 

i.e. are generated afresh at post-test from their original  

parameter. In all sub-cases of case 4, only conditions with N 

= 500 examinees and k = 30 items were studied, together μa = 

0.5, μb = 0 and (except case 4d) μθ = 0; note that the μa = 0.5, k 

= 30 couple entails a moderate reliability of ρXX ≈ 0.618. As 

for every combination of conditions in cases 1, 2 and 3, each 
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sub-case of case 4 was iterated 30 times. At each iteration, 

ten (10) Monte Carlo runs were effected, and the outcomes 

and estimates for the 10 first examinees (the “witnesses”) 

were extracted and stored, so that 100 (= 10 × 10) witness 

sets of data were produced per iteration and submitted to 

analysis. Specific conditions for each sub-case are described 

below. 

Sub-case 4a. For this sub-case, used as a standard for 

comparison, the 10 witness protocols of a Monte Carlo run 

are in fact generated at each of pre- and post-test times. 

Explicitly, 500 -values (with μθ = 0) are generated once, and 

response protocols are generated anew at pre- and then at 

post-test for all examinees (control condition). 

Sub-case 4b. In each run, 500 -values (with μθ = 0) are 

generated, along with  500 response protocols at pre-test. At 

post-test, the first 10 protocols of pre-test are reproduced 

identically as witnesses, and the remaining 490 (= 500 – 10) 

protocols are generated afresh (“same companions” 

condition).  

Sub-case 4c. In each run, 500 -values (with μθ = 0) are 

generated, together with the 500 response protocols for pre-

test. At post-test, the first 10 protocols of pre-test are 

reproduced identically as witnesses; for the remaining part 

of the sample, 490 (= 500 – 10) new -values (still with μθ = 0) 

are generated along with their random response protocols 

(“equal new companions” condition).  

Sub-case 4d. In each run, 500 -values (with μθ = 0) are 

generated, together with the 500 response protocols for pre-

test. At post-test, the first 10 protocols of pre-test are 

reproduced identically as witnesses ; for the remaining part 

of the sample, 490 (= 500 – 10) new -values, under hyper-

parameter μθ = 1 and generally higher, are produced, and 

their corresponding random response protocols are obtained 

(“better new companions” condition).  

Parameters generation 

Generation of  

The one-dimensional ability level ( ) was generated as a 

random normal deviate, with μθ as specified (e.g. 0, 1 or 2) 

and σθ
2 = 1. 

Generation of b  

The parameter embodying item difficulty level was 

likewise generated as a random normal deviate, with μb as 

specified (e.g. 0, 1 or 2) and σb2=1. 

Generation of a 

The item discrimination parameter (a), in a one-

dimensional psychometric model, is typically positive and 

positively skewed (Baker & Kim, 2004). From practical as 

well as realistic considerations, we chose the χ2-family 

distribution (member of the Gamma family) with index 

parameter (degrees of freedom) 20, whose parametric 

moments are μ = 20, σ2 = 40, γ1 ≈ 0.632 and γ2 ≈ 0.600. Thus, 

each sampled χ202 variate was transformed to a random a 

coefficient through “χ2 / 20 × μa”, with resulting parametric 

moments μ = 1, σ2 = μa2 / 10, γ1 ≈ 0.632 and γ2 ≈ 0.600. The 

values attributed for μa were discussed above. 

Item parameters and ability estimation 

In BILOG-MG 3TM or MULTILOGTM, the default 

estimation procedures are the marginalized Bayesian item 

parameter estimation (Bayesian Modal Estimation – BME) 

via an EM algorithm (Dempster, Laird, & Rubin, 1977) for 

item parameters and the Bayes Expected A Posteriori (EAP) 

estimation for . In this study, the same procedures were 

used through computer freeware called Libirt (Item 

Response Theory Library, version 0.8.4)
3
 (Germain, Valois, 

& Abdous, 2008). Although it was already validated, we 

submitted the Libirt procedure to independent checks, the 

EIRT estimates coinciding satisfactorily
4
 with those from 

BILOG-MG 3TM. 

The default values and prior distribution needed for the 

a and b parameters as well as the reference distribution for  

are the same that in BILOG-MG 3TM. After being generated 

as explained in the previous section, the response protocols 

were processed through the two-phase Libirt program in 

order to obtain item parameters and ability estimates. 

For the BME/EM process, a normal prior distribution 

was used for the item difficulty parameter b, and a prior 

lognormal distribution was used for the discrimination 

parameter a (with μa = 1.70 and σ = 2.81). Considering 

numbers of items and subjects under some conditions, for 

the EM algorithm, we chose to run a maximum of 100 

iterations, and precociously ended when the desired 

precision (i.e. 10–5) was achieved. In the context of the 

marginalization, the -values were assumed to follow a 

standard normal distribution. 

In the EAP procedure, a non-iterative algorithm, each  

is individually estimated as a weighted average across the -

domain (uniformly distributed from –4 to 4); the weighting 

factor is the joint probability  for the k items using 

equation (1), with cj ≡ 0. 

Other considerations on the estimation procedures will 

be brought up later, in the discussion section.   

2. RESULTS 

In this section, we first identify the various quantities 

produced and recorded for this Monte Carlo investigation; 

statistical treatment methods are also outlined. Results 

pertaining to ability estimates are then examined, and finally 

complementary results about the estimation of item 
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parameters are reviewed. 

Statistical data and methods 

Effectuated under the experimental design, each Monte 

Carlo run handled a few sets of variables : 

X : classical raw score of examinee (= sum of items) ; 

P : classical index of difficulty of item (= proportion of 

examinees giving correct response) ; 

,  : examinee’s ability generated or estimated from IRT 

procedures ; 

: examinee’s estimated “true score” computed from other 

IRT estimates ; 

a, b, , : item’s discrimination and difficulty index 

respectively, generated or estimated from IRT procedures. 

For each of the required 30 iterations, each Monte Carlo 

produced the following statistics : 

- test-retest reliability coefficient (measured with Pearson’s r 

correlation coefficient on same variable at pre-test vs. post-

test), for variables X, P, , , ; 

- Pearson’s r correlation on different quantities at pre-test, 

for pairs of variables ( , X), ( , ), ( , ), ( , X), ( , X), (a, ), 

(b, ), ( , P); 

- mean and standard deviation at pre-test for variables a, b, 

, , , , X; 

- mean absolute error for , i.e. mean of |  – |; 

- maximum absolute error for , i.e. max of |  – |. 

Parametric data generated by our programs to simulate 

the random response protocols, i.e. the “true” , a and b 

values used for each Monte Carlo run, were tested for 

consistency with our sets of corresponding hyper-

parameters (μ and σ2) and proved unbiased and adequate 

(with no significant departure from due values). 

Statistical analyses presented hereafter use either crossed 

ANOVA designs, Student’s t tests or Pearson’s correlation 

coefficients. Unless stated otherwise, statistical significance 

is at the 0.01 level or better. Finally, in order to give the 

reader some appreciation of effect size, Hays’ (1981) omega 

squared (ω2) index of experimental efficacy is occasionally 

produced ; the index is derived in the usual way from 

ANOVA’s expectancy formula for mean square, under a 

fixed effects model. 

Statistical analysis 

In a first section, we present results on the test-retest 

reliabilities of  and X, “pertinence  measures” for , the 

spread of  distributions and their accuracy in order to 

answer our main questions about the matching of the 

estimated abilities ( ) with their corresponding generated 

values (θ). We shall also examine the factors that influence 

the consistency, reliability and other statistical 

characteristics of , and the correspondence between  and 

the classical raw scores X across conditions. The second 

section will bear on item parameters’ estimation, namely the 

test-retest reliability, pertinence and accuracy of  and  

estimates. 

Around the ability level estimate ( ) 

Test-retest reliability of  and X 

Globally, across conditions, the levels of test-retest 

reliability for  and raw score X are equivalent (F < 1). Data 

in Table 1 were taken from Case 1 under standard (μθ = 0, μb 

= 0) conditions. Both reliabilities increase as a function of the 

number of items (k) (F = 1579.27 and 1756.36, df = 3, 348, ω2 = 

0.929 and 0.936, for  and X respectively), and they follow 

almost exactly the Spearman-Brown prediction formula 

(used to predict the reliability of a test whose number of 

items has been changed [Lord & Novick, 1968; Bertrand & 

Blais, 2004]) , an expected result for the X score but one that 

comes somewhat as a surprise for the  estimate. 

Furthermore, reliability of θ estimates increases with the 

number of examinees (F = 12.85, df = 2, 348, ω2 = 0.062) while 

this is not the case for scores X (F < 1). In fact,  estimates 

tend to be stabilized especially when N increases from 100 to 

500 subjects, which is not he case for X. 

This last result is interesting, because one of fundamental 

assumptions of CTT is that the reliability of scores X 

depends on k, the number of parallel items, via the 

accumulation of true variance, but it does not depend on N. 

Now, in order to estimate examinees’ θs, our IRT procedure 

first obtains estimates for item parameters a and b, estimates 

which appear to be stabilised by an increase of N, the 

number of protocols processed (see below). Thus, the 

observed gain in reliability of θ may be a corollary of the 

increase in item parameters’ reliability.  

Data from cases 2 and 3 of the experimental design 

confirm the above results. In case 2, raw score reliability was 

“imposed” at ρ(X, X) ≈ 0.40 across protocols with diverse 

number of items (k) by varying hyper-parameter μa, and at 

ρ(X, X) ≈ 0.80 in case 3. Both the observed test-retest 

Table 1. Test-retest reliability of  and X as a function of k and N 

 k N 

 10 30 50 100 100 500 1000 

r( , ) 0.342 0.613 0.729 0.846 0.621 0.642 0.642 

r(X1, X2) 0.345 0.615 0.721 0.842 0.626 0.635 0.633 
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reliability values for X and  were close to target values, 

respectively with RMS indices of 0.015 and 0.029 in case 2 

and 0.003 and 0.008 in case 3. The only noteworthy ANOVA 

results relate to the N × (X, ) interaction, for all k 

confounded : r( , ) increases consistently from N = 100 to 

N = 1000 (F = 275.40 and 200.26 for cases 2 and 3, df = 1, 348), 

whereas r(X1, X2) does not (F = 7.30 and 3.23). 

Pertinence of measures for  

In this Monte Carlo investigation, the true examinee’s 

ability level was defined by his  parameter, so that the 

pertinence of various estimating functions of ability can be 

directly assessed. Correlations of  with diverse ability 

estimates ( , X, ) will now be scrutinised. 

Correlations r( , X) and r( , ) behave similarly to 

corresponding reliability coefficients r(X1, X2) and r( , ), 

except that they are stronger and vary more slowly as a 

function of k. In fact, the ratio between the two sets of 

indices amounts to the ratio between r(T, X) and r(X, X) in 

test theory, i.e. r(T, X) = { r(X, X) }½. These correlations also 

increase with k as the square root of the Spearman-Brown 

formula, and they similarly interact with N, the number of 

examinees. Averaging over all combinations of case 1, it 

seems worthwhile reporting that the means of r( , X) and 

r( , ) are quasi equal, i.e. 0.785 and 0.786 respectively (F < 1), 

the more so if we consider that quantities  and  are 

generated / estimated on a standardised continuous scale 

about the normal probability model, and score X is a crude 

binomial-like count with its well-known ceiling and floor 

effects. The assumed specificity and advantage of  and IRT 

scaling do not stand out here. 

In order to enable us to delve into the inter-relations of , 

, X and , we ran a special Monte Carlo experiment with 

fixed conditions N = 500, k = 30, μθ = 0, μa = 0.5 and μb = 0. 

First, we obtain equivalent pertinence coefficients for  

(r( , ) = 0.799) as for X (r( , X) = 0.792). Now, if we correlate 

each observed score-value (X’) to the mean of all generated 

-values associated with it, we obtain r( , X’) = 0,980, a quasi 

perfect match. Also, the raw r( , X) = 0.9746 jumps to r( , X’) 

= 0.9974 when we regroup equal X scores and average the 

concomitant  values. Finally, considering r( , ) = 0.633, 

the r( , ) corrected for attenuation becomes 0.799 /  ≈ 

1.00, similarly to r(X1, X2) = 0.625 and corrected r( , X1) = 

0.792 /  ≈ 1.00 : this result seems to indicate that all 

the information (or portion of “true variance” ) contained in 

the true  values is equally in the  and the X estimates, 

hence that these estimates are linearly equivalent. 

We verified the correlation between  and X, our two 

estimates of subject’s ability level. Minimum, maximum and 

mean values across 360 various iterations were r = 0.873, 

0.994 and 0.974. Correlations grow as a function of k (F = 

142.53, df = 3, 348, ω2 = 0.541) and of N (F = 55.11, df = 2, 348, 

ω2 = 0.231), with a slight interaction (F = 4.22, df = 6, 348, ω2 = 

0.051) reflecting the fact that the effect of N diminishes as k 

increases. 

The preceding results suggest that the true variance 

available in the generated  sample is transferred to the X 

score distribution as well as in the estimated . Moreover, 

considering the forceful increase of correlation from 

individual values, i.e. r( , X) = 0.792, to regrouped values, 

i.e. r( , X’) = 0,980, the supernumerary  values produced by 

the IRT estimation procedure appear to convey no more 

information, except some noise. Computations done with 

estimated true scores ( ) lend the same results and point to 

the same conclusions. 

Spread of  distribution 

Ability parameters ( ) in case 1, under conditions μθ = μb 
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Figure 1. Range of estimated  distribution as a function of k

and N (case 1) 
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Figure 2. Range of theta values of N = 100 (+), 500 (') and 

1000 ()) for generated (broken line), estimated (dotted line) 

and asymptotic normal values (full line). 
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Table 2. Accuracy of  as a function of k and N 

 k N 

 10 30 50 100 100 500 1000 

ave | – | 0.648 0.493 0.415 0.321 0.485 0.462 0.461 

max | – | 2.545 1.945 1.673 1.281 1.697 1.878 2.008 

 

= 0, were generated from a normal distribution having mean 

0 and standard deviation 1, generated values being 

consistent with these characteristics, as mentioned earlier. 

As for estimated ability data ( ), their observed mean was 

consistently equal to 0, a result that is ascribable to the EAP 

estimation procedure and implementation. The spread of  

values was assessed by two statistics, range and standard 

deviation; the two bearing similar results, we report only the 

former. Figure 1 depicts the evolution of the range as a 

function of k (F = 311.66, df = 3, 348, ω2 = 0.721) and N (F = 

692.53, df = 2, 348, ω2 = 0.793), with an interaction effect (F = 

35.31, df = 6, 348, ω2 = 0.364), the increase of range getting 

slower as N goes from 1000 to 100. 

In order to get a more thorough understanding of the 

above results and establish them firmly, we ran another 

series of Monte Carlo experiments, this time using 100 repli-

cations under standard conditions of case 1 (μθ = 0, μa = 0.5, 

μb = 0) and measuring the range of generated ( ) and 

estimated ( ) ability levels : results appear in Figure 2. Data 

for estimated  in Figure 2 (dotted lines) match closely 

those shown in Figure 1, re-enacting the varying influence 

of k on the spread. On the other hand, generated  values 

seem to be unperturbed by k, and, for each level of N, they 

agree satisfyingly with their expected values under the 

normal distribution5. Since the spread of  increases as a 

function of k but only up to a certain maximum depending 

on N, two questions must be tackled : What mechanism can 

be invoked to explain the increase on k, and what blocks its 

effect at each N ? 

Accuracy of  estimates 

We now look into the accuracy of the ability estimate  

by examining different measures of the distance between the 

 value and its target . Data in Table 2 stem from case 1 

under standard conditions μθ = 0 and μb = 0 : one is the 

average of the absolute deviations between  and  across 

the N pseudo respondents, the other is the maximum 

absolute deviation. All variations are significant at more 

than 0.01 alpha level. Ave | – | decreases more rapidly as 

a function of k (ω2= 0.937) than of N (ω2= 0.115) ; note that 

quantity ave | – | follows closely  

 , 

which is the expected absolute deviation for a normal 

variate with standard deviation given by the standard 

error of . For max | – |, it decreases with k (ω2= 0.785) but 

increases with N (ω2= 0.216), as expected
6
. Considering that 

the true (i.e. generated)  distribution has a standard 

deviation of 1, the reported differences between true and 

estimated s appear somewhat large, i.e. near to 0.5 for the 

Ave measure and to 2.0 for the Max measure. 

Now, what does happen if we leave behind us the 

reassuring environment of « standard conditions » and 

explore new parametric conditions with various μθ and μb? 

For the sake of simplicity, the following analyses were 

limited to sub-conditions N = 500 and k = 30, and they are 

entirely representative of all our N and k combinations. 

Table 3, below, reports the means of , X and  in 

situations for which μb = 0 and μθ = 0, 1 and 2 respectively. 

Note that, here as everywhere, the mean values of the N 

estimated  are consistently 0, a likely corollary of the two-

phase and EAP estimation procedure put to work. Raw 

scores increase with μθ (F = 295.67, df = 2, 87, ω2 = 0.868), as 

expected. The  estimates vary also (F = 696.86, df = 2, 87, ω2 

= 0.939) but they do so contrary-wise and, in view of their 

values, compensate almost exactly the variation of μθ. 

The means in Table 4 represent situations with fixed μθ = 

0 and with varying μb (= 0, 1, 2). Here again, next to  = 0, 

which is expected though still astonishing
7
, we observe a 

decrease in X scores (F = 688.26, df = 2, 87, ω2 = 0.939) as item 

difficulty (μb) increases, which is also reflected in the means 

of  (F = 757.60, df = 2, 87, ω2 = 0.944). Here is thus a quasi 

plausible parametric outcome, stemming from a standard, 

centered population (with μθ = 0). 

Finally, Table 5 renders three situations wherein hyper-

Table 3. Means of parameter estimates under conditions N = 500, 

k = 30, µb = 0 as a function of µθ (30 replications) 

mean μθ = 0 μθ = 1 μθ = 2 

 0.000 0.000 0.000 

X 14.99 18.07 21.27 

 0.012 –0.950 –2.095 

 

Table 4. Means of parameter estimates under conditions N = 500, k 

= 30, µθ = 0 as a function of µb (30 replications) 

mean μb = 0 μb = 1 μb = 2 

  0.000 0.000 0.000 

X 14.99 11.53 8.85 

 0.012 1.073 1.989 
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parameters μθ = μb are compared. Here, the interaction 

between the  and b parameters occurs at generation time, 

i.e. the relocation of the distributions of  and b is 

annihilated by subtraction in the exponent part of equation 

(1), “( r – bj)”, so that all our observed means are at center. 

This consequence, even though it is evident, pinpoints the 

essential and mutual indeterminacy of the  and b scales, 

which affects all IRT models, from the 1-parameter model 

upward. 

Cases 4a-4d of our experimental design make use of 

witness pseudo respondents, i.e. respondents for whom the 

same pre-test protocol is used at post-test and whose ability 

level is then estimated among new companion protocols. 

Conditions for estimation were N = 500 respondents (among 

which 10 were retained as witnesses), k = 30 items, item 

discrimination and difficulty hyper-parameters μa = 0.5 and 

μb = 0. As usual, 30 Monte Carlo replications were 

performed; for each replication, 10 estimation samples were 

taken in order to accumulate 100 witnesses for purpose of 

statistical analyses. 

Test-retest reliability of witness data are reported in 

Table 6. Data from Case 4a were used to validate our 

sampling scheme, and they mimic the corresponding data 

from Case 1. As can be seen, the reliability coefficients per se 

are but slightly affected by their new estimation 

environment, whether 98% ( = 490 / 500) new protocols 

emanate from the same original companions (Case 4b), from 

new companions having the same ability level (Case 4c) or 

even from new and much more talented companions (Case 

4d). For all cases, the two  values estimated from the same 

protocol are highly correlated. The near-to-perfect reliability 

coefficient means that individual s keep a linear relation 

one to the other, in the guise of  = b1  + b0 : as we shall see, 

the accuracy problem resides in the “b0” component. 

To throw some light on the intricacies of our problem, 

we ran yet another series of estimation runs for Case 4d, 

again with 30 replications, thereby collecting new types 

measurement. The salient results follow. 

Firstly, the b parameter obtains a  = 0.000 at pre-test 

and  = –0.967 at post-test (t = 25.08 to 36.86
8
, df = 299). This 

negative shift of the difficulty parameter estimates 

(notwithstanding the constant μb = 0) reflects the positive 

shift of the population level (from μθ = 0 to μθ = 1), the two-

phase estimation procedure banking on a 0-centered normal 

population. 

Secondly, the  estimates glide from  = –0.013 to  = 

-0.629 (t = 30.83 to 43.57, df = 99), a negative shift ascribable 

to the mixing of our witnesses (coming from a μθ = 0 

population) with brighter companions (coming from a μθ = 1 

Table 5. Means of parameter estimates under conditions N = 500, 

k = 30, and µθ –µb = 0 (30 replications) 

mean μθ = 0, μb = 0 μθ = 1, μb = 1 μθ = 2, μb = 2 

 0.000 0.000 0.000 

X 14.99 15.00 15.01 

 0.012 –0.029 0.006 

 

Table 6. Test – retest reliability coefficients for 4 indices in Case 4 

 Description r(X1,X2) r( , ) r( , ) r(PR1 ,PR2)† 

Case 4a 
Same respondents (μθ = 0) at post-test,  

new protocols for all at post-test 
0.621 0.623 0.640 0.606 

Case 4b 

Same respondents (μθ = 0) at post-test, 

10 witness protocols + 490 new protocols 

at post-test 

-* 0.981 0.998 0.962 

Case 4c 

New respondents (μθ = 0) at post-test, 

10 witness protocols + 490 new protocols 

at post-test 

-* 0.980 0.982 0.996 

Case 4d 

New respondents (μθ = 1) at post-test, 

10 witness protocols + 490 new protocols 

at post-test 

-* 0.978 0.981 0.954 

† PR = percentile rank  * r(X1,X2) = 1 by definition for witness protocols. 

 

Table 7. Reliability and pertinence of difficulty indices  and P 

 N = 100 N = 500 N = 1000   N = 100 N = 500 N = 1000 

r( , ) 0,731 0,897 0,946  r(b, ) 0,848 0,949 0,972 

r(P1,P2) 0,850 0,962 0,983  r(b, P1) –0,897 –0,949 –0,964 
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population). The mechanism of this negative relocation of 

our witnesses is as follows. The better part of post-test 

protocols comes from a high-level (μθ = 1) true population : in 

order to maintain a centered (  = 0) estimated population, the 

estimation procedure is forced to assume easier items, thus 

producing lower b indices. Now, lower b indices, and easier 

items, applied to unchanged witness protocols entail a 

concomitant reduction in the estimated ability levels. 

Equivalently, the witness protocols at post-test are processed 

amidst higher-graded protocols, the set of which is to be 

matched with a 0-centered population. Consequently, the 

small batch of our 10 witnesses is thus downgraded along 

the ability axis. A phenomenon analogous to the above 

occurs for the percentile rank (PR) of witnesses, which we 

computed. At pre-test, we obtain  = 49.42, close to 50 as 

expected, and  = 28.79 at post-test (t = 20.18 to 27.74, df = 

99), a negative shift imposed by the fact that ranks are 

computed for all 500 respondents among which 490 have 

now enhanced response protocols. 

Thirdly, the true score estimates ( ), computed at each 

time from , â and  estimates, change from  = 14.95 at pre-

test (near to the ½k = 15 target) to  = 16.03 at post-test (t = 

-10.21 to –9.71, df = 99), a small but consistent and highly 

significant positive shift. Though paradoxical, this result may 

tentatively be explained by a differential effect of the change 

in μθ from 0 to 1. On the one hand, because our 10 (out of 

500) witnesses originate from all strata of the μθ = 0 

population, some may be better gifted and compatible with 

μθ = 1 subjects, and consequently their mean estimated 

ability decreases from about 0 (  = –0.013) to only  = –

0.629 instead of –1. On the other hand, because the proce-

dure for item-parameter estimation is confronted with 98% 

high-grade μθ = 1 protocols, it forces the  estimates at post-

test down to  = –0.967, quite near to –1. Hence, even if 

subjects’ ability levels have been lowered at post-test, they 

were administered items of an even lower difficulty level, 

resulting in a small rise of their predicted  value. 

Lastly, again for the accuracy of  estimates, we 

calculated the mean absolute difference (MAD) between 

true  and estimated  at the two estimation times. At pre-

test, we observed MAD1 = 0.492 (range 0.414 to 0.605), and at 

post-test, MAD2 = 1.090 (range 0.870 to 1.348), a significant 

increase (t = –27.12, df = 32), betraying an important loss of 

accuracy for our witness . 

Around the item parameters estimates 

Reliability, pertinence and accuracy of  estimates 

The classical item difficulty estimate P, which (oddly) 

designates the proportion of correct responses for the item, 

is the analogue of IRT’s  parameter, and their statistical 

behaviours can be securely compared. Such comparisons are 

effected in Table 7 : data originate from Case 1, with μθ = 0, 

μb = 0 and μa = 0.5. 

Item parameters a, b and P being estimated across 

respondents, it is to be expected that both reliability and 

pertinence coefficients benefit from an increase of their 

number N. Reliability of P is globally somewhat higher than 

that of  (F = 738.69, df = 1, 348, ω2 = 0.672), the difference 

diminishing as N increases (F = 79.07, df = 2, 348). For 

pertinence coefficients (right of Table 7), the initial 

advantage of P at N = 100 (F = 631.81, df = 1, 348) vanishes at 

N = 500 (F < 1) and turns upside down at N = 1000 (F = 

17.55). 

As for the accuracy of , we must recall first that, in the 

realm of our IRT procedures and programs, hyper-

parameters μb and μθ play a compensatory game by virtue of 

which the resultant , the mean of the estimated  

distribution, is put equal to 0. This means, for instance, that 

a μθ = δ distribution of true abilities will engender a μ( ) = 0 

distribution of estimated abilities and a concomitant μ( ) =  

-δ distribution of difficulty indices. Given this caveat, the 

means  are unbiased (≈ –δ), with no variance effects of N or 

of k. As shown in Table 8, the relative accuracy of  increases 

with k (F = 14.38, df = 3, 348, ω2 = 0.100) and more so with N 

(F = 520.54, df = 2, 348, ω2 = 0.743), these effects diminishing 

somewhat (F = 2.48, df = 6, 348, p < 0.05, ω2 = 0.024) toward 

high values of N and k. 

Reliability, pertinence and accuracy of â estimates 

The global behaviour of the discrimination parameter 

estimate (â) has been studied through conditions of cases 2 

and 3, which offered 8 different values of hyper-parameter 

μa  (from 0.165 to 1.843). The bias of â (measured with  – μa) 

is generally positive; in contrast to generated a’s, where  = 

μa (R2 = 0.9805), we observe  = 0.1079 + 0.9384 × μa (R2 = 

0.9355). Positive bias is higher for small μa’s, which 

correspond to high values of k in our design (F = 24.70, df = 

11, 1044), and it decreases steadily toward 0 as N increases 

(F = 214.38, df = 2, 1044). Computations with ratios  / μa 

Table 8. Accuracy of b̂  as a function of k and N 

 k N 

 10 30 50 100 100 500 1000 

ave |  – b| 0.332 0.283 0.280 0.268 0.456 0.246 0.171 
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render similar effects.  

As for individual â estimates, Table 9 documents some of 

their properties : data come from case 1, in the standard (μθ 

= 0, μb = 0) conditions. Reliability increases with k (F = 40.87, 

df = 3, 348, ω2 = 0.249) and more so with N (F = 201.16, df = 2, 

348, ω2 = 0.527), without interaction effects (F = 1.11, df = 6, 

348). Pertinence values follow a similar pattern, increasing 

with k (F = 34.07, ω2 = 0.216) and N (F = 212.38, ω2 = 0.540), 

without interaction (F = 1.14). Accuracy, measured by ave |â 

– a|, gets better as a function of k (F = 49.24, ω2 = 0.287) and 

of N (F = 898.98, ω2 = 0.833) ; a small interaction term (F = 

4.09, df = 6, 348, ω2 = 0.049) indicates that effect of k 

diminishes as N increases. 

Among many others, the preferred index of “item 

discrimination” in CTT is probably the item-test correlation 

coefficient, r(yj, X), where yj is the subject’s 0/1 response at 

item j, and X is his number of good responses across k items 

(where X = Σ yj). We correlated this index with the âj 

parameter estimate : Table 10 presents the correlations 

obtained. 

First, the individual correlations (per iteration) range 

from 0.779 up to 0.997 and have a global average of 0.976. 

Generally they increase with k (F = 44.76, df = 3, 348, ω2 = 

0.267) and N (F = 67.07, df = 2, 348, ω2 = 0.269). A curious 

interaction occurs (F = 11.48, df = 6, 348, ω2 = 0.149), the 

correlations for N = 100 curving down unexpectedly at k = 

100 (a fact which explains the drop of values at k = 100, in 

Table 10). 

3. DISCUSSION 

About the ability parameter estimate 

Interesting features of Monte Carlo studies such as this 

one include the cheap abundance of generated data and the 

fact that data models are explicitly defined and 

implemented. In the case of the present study, true ability 

and item parameters were put on stage, together with their 

statistical estimates, which derived from response protocols 

obtained through an explicit 2-parameter logistic IRT model. 

Thus, the IRT model’s properties were assured per definition, 

and conclusions hereof can be safely drawn.  

Regarding the invariance of  ability estimate in IRT, our 

data plainly demonstrate two things. Firstly, as Table 3 

shows, the  estimate is generally biased, bias coinciding 

accidentally with zero when the associate population 

location parameter (μθ) is zero. This bias pertains to the 

indeterminacy of the  and b scales, in fact to the 

indeterminacy of the difference (  – b) in the definition of the 

IRT model (see formula 1 at page 3). The currently applied 

two-phase estimation procedure, used also in this study, 

settles the indeterminacy by anchoring the  estimates in a 

finite distribution with mean 0, i.e. μ( ) = 0, while allowing a 

shift of the  distribution to accommodate examinees’ 

response patterns. Another factor infringing invariance is k, 

the number of items in the estimation set, the spread (range 

and standard deviation) of estimated  correlating with k 

(see Fig. 1 and 2). Secondly, observed values of correlations 

between true i and estimated , our so-called pertinence 

coefficients, give a paradoxical support to the “congruence” 

aspect of invariance. It is true to say that estimates  are 

linearly related to their parametric counterparts i, the 

paradox being that (1) the correlation level between the two 

obeys standard theorems of CTT, theorems whose 

demonstration is based on the interplay of true and error 

variance, and (2) expectedly enough, the same correlation 

levels are observed between i and raw score Xi. The 

threshold of “r ≥ 0.90” for declaring invariance appears quite 

irrelevant in this context. Moreover, data from our witness 

protocols show patently that the level (or bias) of the  

estimate is adjusted to the context of the companion 

respondents with which it is processed – notwithstanding 

the fact that the adjusted  is based upon an unchanged 

Table 9. Reliability, pertinence and accuracy of â as a function of k 

and N 

 k N 

 10 30 50 100 100 500 1000 

r(â1, â2) 0.282 0.508 0.544 0.571 0.198 0.538 0.693 

r(a, â1) 0.524 0.684 0.719 0.742 0.429 0.736 0.837 

ave |â – a| .174 0.132 0.126 0.127 0.237 0.109 0.073 

 

Table 10 

Mean correlation (Pearson’s r) between âj and r( yj, X) 

 k N 

 10 30 50 100 100 500 1000 

r{âj, r(yj,X)} 0.958 0.983 0.986 0.977 0.961 0.983 0.984 
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response protocol. 

Summarising the above discussion and the detailed 

evidence in our data, we assert that the concept of 

“invariance”, given as a distinctive asset of item response 

theory, is over-defined and overrated. The  estimates are 

not invariant across a shift in the population location 

parameter (μθ) and their spread and positioning are 

influenced by the number of items. If  estimates appear to 

be invariant across sets of items, it is because the  

distribution is formed anew using μ( ) = 0, notwithstanding 

the actual difficulty levels (μb) of items. Thus, the alleged 

“invariance of the IRT ability estimate” should be changed 

to “linear equivalence, tainted with bias indeterminacy”. 

Moreover, the observed linear, or “congruence”, properties 

of  are entirely shared by classical score X, apart from the 

fact that only X scores levels vary coherently with true  

levels. Hence, in our opinion, “invariance” does not hold for 

the  ability estimate and, above all, its remaining 

“congruence” (or linear) properties do not constitute a 

distinctive asset, as they characterize also the classical X 

score measure. Finally, the apparent superiority of  

estimates in terms of discriminating capacity
9
 is not 

corroborated by a superior reliability level or by a better 

efficiency to discriminate respondents, as was shown earlier. 

About the item parameters’ estimates 

Accessorily, the present Monte Carlo rendered some 

information on the properties of item parameter estimates, 

the â et  of IRT as well as r(yj, X) and P in CTT. Due to the 

( , b) indeterminacy mentioned above, the  estimate is 

intrinsically  biased, its location parameter μ( ) playing a 

compensatory role with μ( ) in fixing μ( ) = 0 in phase 1 of 

the two-phase estimation procedure. Apart from that,  and 

P are linearly congruent with the true b parameter (see Table 

7), the classical P index being somewhat more reliable. No 

crude bias effect was observed for the â estimate, were it not 

for a slight positive bias depending upon hyper-parameter 

μa. Our data contain no information specific to the 

“invariance” of the â estimate, as the experimental design of 

the study included only shifts in location (via hyper-

parameters μθ and μb) but not in range (all  and b 

distributions were controlled with σ2 = 1). Estimated â’s 

were not perturbed by shifts of location in ability or 

difficulty parameters, and they correlated nicely with true a 

values (see Table 9). 

4. CONCLUSION 

Item response theory’s estimates of ability ( ) are not 

invariant across a change of the estimation context, be it a 

shift in the ability level of co-examinees or in the global 

difficulty level of items. Wells et al. (2002) have already 

documented such variant effects under small changes in 

subgroups of items, but the real snag comes from the 

intrinsic indeterminacy of the ( , b) pair in all IRT models, 

e.g. Pj( r) = [ 1 + exp( –aj( r – bj) ]–1, the operating 

characteristic of Pj( r) being the difference ( r – bj) where 

each shift of  can be compensated by an equal shift of b. IRT 

estimation procedures, like the two-phase procedure 

employed here, cannot overcome this indeterminacy, which 

results in the fact that  distributions are generally biased 

and arbitrarily centered on μ( ) = 0. 

On the other hand, the  estimate displays nice linear, or 

“congruence” (Hambleton et al., 1991) properties : its 

reliability levels are comparable to those of classical raw 

score X, and its pertinence, i.e. correlation of the estimate ( ) 

with the true individual parameter ( i), is also quite good, in 

fact, it is comparable again to the correlation between i and 

raw score Xi ! These linear properties are influenced by the 

size of their estimation basis (the number of items) and 

statistically consistent ; indeed, they seem to reflect the 

proportional amount of true variance, a standard result in 

CTT and one that does not appear to be grounded in the 

algebraic framework of item response theory. As for the 

relative advantages of item parameter estimates of IRT 

versus CTT, IRT’s estimate of item difficulty  correlated 

highly with classical P difficulty index, index P being 

somewhat more reliable and better correlated with the true 

parametric b value. The two discrimination indices also 

compared well, IRT’s â coefficient being a little more reliable 

and better linked to the a parameter than classical item-test 

correlation r(y,X). 

It may be pertinent here to restate that the generic IRT 

model is, up to now, the only conceptual apparatus that can 

pretend to be a true “model” of what goes on between the 

respondent and the set of items that confronts him. It is a 

first-order (no interactions nor sequential processes are 

assumed), stimulus-response model, but, even then, it goes a 

long way beyond the crude axiomatic basis of CTT. When 

we turn to concrete applications, though, this good model 

turns up flawed with an intrinsic indeterminacy and with 

grave estimation problems. Consequently, when on the 

practical side, the hoped-for theoretical merits of IRT 

estimates become tarnished and should be judged on a 

psychometric basis at a par with the classical estimates X, P 

and r(y, X), who behave as well if not better (Fan 1998 ; 

Frenette et al. 2007).  

Even if the procedural and parametric settings of this 

simulation study matched those of current IRT applications, 

their limitations are present and must be overcome. How do 

IRT estimates fare under estimation procedures different 

from the ones employed here and, above all, what are the 

essential changes entailed by a one-phase, joint estimation 
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procedure (for both ability and item parameters) ? How do 

test-retest reliability levels of ability estimates ( , X) 

compare, when item parameters are estimated only once, at 

test time? And, finally, are the concepts of “invariance” and 

“dimensionality” really cardinal in the epistemological 

definition of a response model (Blais, 1987 ; Frenette et al., 

2007 ; Wells et al., 2002), and could they not be replaced by 

the more universal descriptors used in statistical estimation 

theory ? The creative potential of the generic IRT model has 

not been exhausted by this or all other studies, and much 

has yet to be harvested with its aid. 
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1
 Expressed otherwise, “… the congruence between the two 

sets of estimates of each item parameter can be taken as an 

indication of the degree to which invariance holds” 

(Hambleton et al., 1991, p. 24). 

2
 The functional relation ρXX = f (k, μa) was obtained 

empirically. On the one hand, we have ρk ~ k ρ1 / (1 + (k–

1)×ρ1), as by the Spearman-Brown theorem and formula (see 

text) for scores based on k items. On the other hand, we 

found the approximate relation ρ1 ≈ (0.2743×μa) / (0.2743×μa 

+ 1), with R2 ≈ 0.996. Note that the (k, μa, ρXX) combinations 

were individually and precisely adjusted through Monte 

Carlo simulations. 

3
 This computer freeware is available from 

http://libirt.sf.net/  

4
 For instance, using real data from N = 400 respondents on 

k = 85 items (with dichotomous responses), the two-

parameter a, b and θ estimates from BILOG-MG 3 correlated 

with EIRT’s as 0.9982, 0.9876 and 0.9861 respectively. 

Artificial data on k = 10 items were generated by PersonFit 

(Sodoke, Raîche & Nkambou, 2007) for N = 100 

“respondents” with ability levels (θ) uniformly spread from 

–3 to 3. Correlations between BILOG’s and EIRT’s estimates 

were 0.984, 0.999 and 0.998 for a, b and θ, and the maximum 

and mean absolute difference for  θ were 0.257 and 0.039. 

Nearer to our setting, we generated data for N = 400 

“respondents” with ability levels (θ) distributed as standard 

normal variates and k = 10 items (with uniform parameter 

distributions), and obtained correlations 0.9996, 0.9996 and 

0.9997 for a, b and θ estimates, and maximum and mean 

absolute differences of 0.069 and 0.018 respectively, our 

confidence in the concordance of EIRT and BILOG-MG 

procedures being secured. 

5
 The expected value of the range of N normal deviates is 

readily computed from expressions in Kendall and Stuart 

(1977, eq. 14.82, p. 362) or Owen (1962, p. 140). Note that, for 

the standard normal distribution, E(R) = 5.015, 6.073 and 

6.483 for N = 100, 500 and 1000 respectively. 

6
 The approximation E{ max [ |z1|, |z2|, …, |zN| ] } × 

, is well correlated to the max | –  | measure, 

although with important haphazard discrepancies. 

7
 Astonishing because the value recorded is a true zero, not 

a statistical (i.e. approximate) zero, and its variance is null 

across replications. 

8
 Ranges (min vs. max) of Student’s paired t values are given 

for the 30 replications. 

                                                                                                            
9
 Except for identical response patterns, the expected 

number of different  estimates obtained is min(N, 2k), 

whereas the maximum possible number of different X scores 

is k + 1, a largely inferior value. 


