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Non-central t distribution needed for assessing the power of the t test is described. 

Three approximations are compared and their merits discussed in regard to simplicity 

and accuracy. 

 

 

Power evaluation for the various forms of Student’s t test 

ties in with the non-central t distribution, explicitly noted 

, where ν is the “degrees of freedom” parameter and δ 

the non-centrality value. The  variable represents the 

quotient of a standard normal (z) variable displaced by a 

constant (δ), over the square root of a Chi-square (χ2) 

variable divided by its parameter  (ν) : 

  . (1) 

 coincides with the standard (central) tν distribution. In 

the following,  represents the effect size; by convention, a  

of 0.5 is considered a "medium" effect size. 

In Figure 1 are shown three instances of the t′ density 

envelope for ν = 10, one with δ = 0 (a standard t), and two 

with δ = 3 and δ = 6 : one may note that, whereas t10(δ = 0) is 

centered at 0 and symmetrical, the non-central t′’s are 

displaced toward δ, their variance is increased and they are 

skewed.  

The probability density function for  is (Levy & 

Narula, 1974) : 

 f (t) =  (2) 

in which  

 . (2) 

Its first statistical moments are: 

 , (3a) 

 , (3b) 

 

 , (3c) 

 

  (3d) 

in which  denotes the moments about the mean (in 

particular,  is the variance) and ' denotes the central 

moments (in particular,  is the mean, also noted E(t′)). 

Note that, approximately, µ1′ ≈ δ × [1 + 14/(17ν)] and σ2 ≈ 

ν/(ν–2) + δ2/(2ν–7). It can be shown for given δ that, as ν 

increases, E(t′) → δ, var(t′) → var (t) = ν / (ν – 2), skewness 

index γ1( t′ ) = µ3 / σ3 → γ1( t ) = 0 and kurtosis index γ2( t′ ) = 

µ4 / σ4 – 3 → γ2( t ) = 6 / (ν – 4). Of course, we also know that 

t → z with increasing ν, z being a standard normal variable. 

These relations have inspired some approximation 

procedures. For illustration, Table 1 shows calculated values 

of the moments µ1′, σ2, γ1 and γ2 for some combinations of ν 

and δ, together with the above approximations for µ1′ and 

σ2. 

Power calculation and approximations 

A standard reference for statistical distributions is the 

celebrated series by Johnson, Kotz and Balakrisnan (1994, 

1995), of which Volume 2 devotes a chapter to the non-

central t distribution. From expression 31.11’ on p. 514, one 

obtains the following function for evaluating the 

distribution function of : 
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Pr{ } =  

 , (4) 

where Φ(x) is the standard normal distribution function. Use 

of 

 Pr{ )}, (5) 

where t(ν[α]) is the appropriate critical value for the t test, 

produces the exact power value.1 

Cousineau (2007) proposed an approximation to t′(δ) as 

t + δ, the power being estimated through: 

 Pr{ tν ≥ t(ν[α]) – δ } ; (6) 

he illustrated this with an example involving the 

comparison of two groups, each with N1 = N2 = 64 elements, 

and therefore, a t test  having v = 126 degrees of freedom. 

Farther on in the same direction, one could approximate 

as z + δ and obtain an approximate power through :  

 Pr{ z ≥ z[α] – δ } , (7) 

z[α] being the appropriate critical value from the normal 

distribution. Finally, Johnson et al. (1995, eq. 31.25) report an 

approximation by Jennet and Welch (1939), from which we 

propose the following : 2 

 Pr{ z ≥ z* } , (8) 

where 

 , (8a) 

                                                                 
1 Evaluation for the right-hand side, i.e. t′ν ≥ t( ν[α] ), is 

illustrative of a positive “true effect size” δ > 0. Power for a 

negative effect δ < 0 would be obtained through t′ν ≤ t( ν[α] ). 
2 Formulas for E(χ) and var(χ) of the χv (square root of χ2) 

distribution are approximate. 

 

 , (8b) 

and . (8c) 

Table 2 presents some illustrative data for comparing 

these approximations. 

Comparing the approximations (6), (7) and (8) to the 

exact power value (5) highlights the obvious superiority of 

Jennet and Welch’s formula (5), a formula which has the 

additional advantage of transferring a t′ evaluation problem 

to the well-known and much tabulated standard normal 

integral. Cousineau’s approximation (6), which implies the 

evaluation of a standard t distribution function, is the next 

best, more so when degrees of freedom are higher and non-

centrality parameter is low. Lastly, except for situations 

involving very numerous degrees of freedom, the simple 

normal approximation (7) is not worth considering. 

Example 1 

As our first example, we examine a situation where a 

sample of 10 male executives, aged 30-40 years, underwent a 

thorough physical examination, including VO2 max 

evaluation, for which they averaged 43.0 ml.min-1.kg-1 O2 

with a standard deviation of 3.5. The mean value of North-

American males in that age span is 45.0 (fictitious). The one-

sample t test for this situation is t = (43.0 – 45.0) / 3.5 ≈ -1.807. 

The two-tailed critical values on a standard t distribution 

having ν = N – 1 = 9 df and 5% significance level are ± 2.262, 

so that quite obviously the observed difference is not 

statistically significant. 

Some documentation (fictitious) reports a singular 

relative effect size δ1 = -0.2 for this comparison, i.e. each 

individual in that age group and with similar characteristics 

(educated, sedentary worker) would deviate by -0.2 

 
Figure 1. Three non-central t distribution (t′) with ν = 10 degrees of freedom and non-centrality values δ = 0, 3 and 6. 
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standard deviation from the general mean for that age 

group. The relevant non-centrality parameter in this case 

would be: 

 , (9) 

here, δ10 = × -0.2 ≈  -0.632. Hence, for evaluating the 

actual power of our test (with N = 10 participants), we refer 

to the t9′(–0.632) distribution and calculate Pr{ t9′(-.632) ≤ 

-2.262 } = 0.0819, calculations being on the left-hand side 

wherein the null hypothesis is to be contradicted.  

From approximation (8), we first obtain E(χ) ≈ × [1 – 1 

/(4×9)] ≈ 2.9167, var(χ) ≈ (4×9 – 1) / (8×9) ≈ 0.4861, then x = 

{-0.632 – (-2,262) / × E(χ)} / {1 + (-2.2622) / 9 × var(χ)}½ ≈ 

1.387 and, finally, 1 – Φ(1.387) ≈ 0.0827. Cousineau’s t 

solution (6) is simply Pr{ t9 ≤ -2.262 – (-0.632) } = Pr{ t9 ≤ -

1.630 } ≈ 0.0688, a value obtained by resorting to the 

standard Student t distribution function. Lastly, the normal 

approximation (7) is simply Pr{ z ≤ -1.960 – (-0.632) } = Φ(-

1.328) ≈ 0.0921. Although it is not particularly accurate, 

Jennet and Welch’s approximation (5) still keeps its 

promises. 

Example 2 

Going back to Cousineau’s (2007) illustrative example, 

we have two groups, each containing 64 participants, the 

difference of their means to be tested with the independent-

groups t test procedure. With ν = 64 + 64 – 2 = 126 df, the 5% 

critical values applicable are ±1.979. The “effet size” 

proposed for this case, established3 as δ1 = (µ1 – µ2) / σ , is 

said to be 0.5 /  ≈ 0.35355 ; thus the relevant value of the 

non-centrality parameter δN  is  ×δ1 =  × 0.35355 ≈ 

2.8284 : the true power here is 0.8014. By approximation (8), 

we have x ≈ -0.847 and Pr{ z ≥ -0.847 } = Φ(0,847) ≈ 0.8015. 

Cousineau’s method, with Pr{ t126 ≥ 2.8284 – 1.979 }, 

produces 0.8014, and the simpler normal approximation 

gives 0.8074. The large value of the df (or ν) parameter in this 

case insures a converging agreement on the true power, 

even with the very simple normal approximation (7). 

                                                                 
3 Some authors use instead (µ1 – µ2) / σ, similarly to the one-

sample t where we use (µ1 – µ) / σ. 

Table 1. Moments of  for some combinations of ν and δ, and their approximations 

 

ν δ μ1′ σ2 γ1 γ2 ≈ μ1′ ≈ σ2 

10 0 0,000 1,250 0 1,000 0,000 1,250 

10 2 2,167 1,552 0,724 1,827 2,165 1,558 

10 4 4,335 2,459 1,097 2,945 4,329 2,481 

10 6 6,502 3,970 1,254 3,580 6,494 4,019 

5 5 5,947 7,966 2,840 28,889 5,824 10,000 

10 5 5,419 3,139 1,192 3,315 5,412 3,173 

20 5 5,198 1,872 0,627 0,950 5,206 1,869 

50 5 5,077 1,312 0,273 0234 5,082 1,310 

 

Table 2. Comparison of power calculations from the exact non-central t distribution and three approximations, in 

different contexts* 

 

 Exact 

(5) 

Cousineau 

(6) 

Normal    

(7) 

Jennet & 

Welch (8) 

N = 10 ,  ν = 9,  t9[0.95] = 1.833 

δ = .5 0.119 0.108 0.126 0.119 

δ = 1 0.236 0.213 0.260 0.236 

δ = 2 0.580 0.565 0.639 0.579 

δ = 3 0.868 0.863 0.912 0.869 

N = 50 , ν = 9,   t49[0.95] = 1.677 

δ = .5 0.125 0.122 0.126 0.125 

δ = 1 0.255 0.251 0.260 0.255 

δ = 2 0.628 0.626 0.639 0.628 

δ = 3 0.905 0.904 0.912 0.905 

* Calculations refer to the one-sample t test on the mean, with a right-tailed significance criterion at the 0.05 

level. 
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Discussion and conclusion 

The recent availability of on-line calculators for power 

evaluation or, in some instances, the direct use of a 

computer-programmed algorithm for the non-central t’s 

distribution function may supersede the need for approx-

imation formulas (see Appendix). It is our experience 

however that a simple, handy procedure is always 

welcomed for such a task, be it to cross-check a calculation 

or to incorporate it in a software package. In this light, 

Jennet and Welch’s method (8, 8a), supplemented with our 

estimation functions (8b, 8c), simply do the job, with an 

accuracy that holds in all situations, provided that df (= ν) ≥ 

8. As for Cousineau’s (2007) approximation (6), its domain of 

validity depends on a combination of the δ and ν 

parameters, and it requires the evaluation of  Student t’s 

distribution function. 
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Appendix: The non-central t distribution in existing software 

SPSS gives access to the non-central version of the t distribution with the function ncdf.t (t; ν, δN) which computes 

Pr{ }. Hence, with the following instructions ran in a syntax window: 

 

compute criticalvalue = idf.t(0.975, 9). 

compute power= 1-ncdf.t(criticalvalue, 9, 0.632). 

execute. 

 

The critical value for a t test with 9 degrees of freedom will be computed, and then, the power at that given critical value will 

be returned. The result above is 0.082, as in Example 1. 

Mathematica does not provide the non-central t distribution as a built-in function but this function can be programmed 

using these three lines of code: 

Afterwards, this function can be used as previously, e.g. 

will return 0.0819213 as in Example 1. 

 


