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Randomization test of mean is compuationally inaccessible  

when the number of groups exceeds two 

Denis Cousineau 

Université de Montréal 

 

With the advent of fast computers, the randomization test of mean (also called the 

permutation test) received some attention in the recent years. Here we show that the 

randomization test is possible only for two-group design; comparing three groups 

requires a number of permutations so vast that even three groups of ten participants is 

beyond the current capabilities of modern computers. Further, we show that the rate of 

increase in the number of permutation is so large that simply adding one more 

participant per group to the data results in a computation time increased by at least 

one order of magnitude (in the three-group design) or more. Hence, the exhaustive 

randomization test may never be a viable alternative to ANOVAs. 

 

 
  With the advent of fast computers, an alternative to the 

Analysis of Variance (ANOVA) test of mean is receiving an 

increased amount of attention. This test, the randomization 

test (also called the permutation test), was proposed by 

Fisher in 1935 (Fisher, 1935/1951). It evaluates the 

significance of the results by examining the way the data 

might have been if there had been no effect of the 

conditions. To do so, the data are shuffled across groups and 

for each permutation, the effect size is computed. Finally, 

the probability of the observed effect size is assessed with 

regard to all the possible effect sizes. 

The randomization test is a wonderful test because it 

does not require that the distribution of the population(s) 

from which the data are sampled be known. In particular, it 

does not require that the populations be normally 

distributed, as is the case for the ANOVA test. Further, it 

does not require that the variance be homogeneous across 
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conditions, another prerequisite for an ANOVA test. Hence, 

by choosing to perform a randomization test, a researcher is 

spared two preliminary tests (a test of normality, e.g. the 

Kolmogorov-Smirnov/Lilliefors test, and a test of 

homogeneity of variances, e.g. the Levene test, Siegel and 

Castellan, 1988) whose statistical power are uncharted. 

The type-I error rate and the power of the randomization 

tests were examined in two-group designs using Monte 

Carlo simulations. Mewhort (2005) varied the asymmetry of 

the data and found the randomization test to be more 

powerful than the ANOVA test while maintaining the same 

type-I error rate. Armstrong, Bors & Cheng (2007) examined 

the impact of heterogeneous variances and unequal sample 

sizes and found that the randomization test is both powerful 

and reliable except when the smaller of the two groups had 

the largest variance. Because the last condition was extreme 

(a ratio of 2:1 between the sample sizes and a ratio of 9:1 

between the variances), the overall pattern of results is 

favorable to the randomization test. 

Facing all these advantages, the randomization test 

comes with one difficulty: all the possible permutations of 

the data between the groups must be examined. The number 

of permutations increases rapidly with the number of 

participants. For two groups, it involves picking   data to be 

placed in group 1, the remaining data being placed in the 

second group. The following computes the number of  
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permutations: 

  (1) 

where  is the number of data in group 1 and  is the total 

number of data ( ). For example, with two groups 

of 10 participants, the number of permutations is 184 756, a 

number clearly within the grasp of actual computers based 

on the von Newman architecture. 

The general impression is therefore that the 

randomization test is the test of mean to use with small 

sample sizes and that they will soon be used routinely. 

As we show here, this impression is wrong and based on 

the fact that only two-group designs were examined. 

Adding just one more group results in a dramatic increase in 

the number of permutations, and the numbers are so 

dramatically high that they will forever be out of reach of 

computers. 

Computing the number of permutations for  groups of 

 data ( = 1, ..., ) involves first selecting  data for group 

1, then among the remaining  -  data, selecting  data, 

and so on. The general formula is 

  (2) 

which contains p factors, but the last one simplifies to 1 as 

there is only one way to select  data among remaining  

data. This formula simplifies to: 

  (3) 

The first factor of Equation (2) is equivalent to Equation (1) 

in a two-group design. In case where all the groups are of 

equal size (  =  = … =  = ), this formula can be 

simplified to: 

 . (4) 

As an illustration, adding a third group of 10 participants 

brings the number of permutations from 184 756 to more 

than 5 thousand billion (5.5 × 1012). It represents an increase 

in the number of permutations by a factor of 3 million.  

If we accept to run permutation test when the number of 

permutations does not exceed 10 millions (requiring less 

than an hour on a typical computer) (or 200 millions; 

requiring less than a day), we would be able to compare (a) 

two groups of 12 (14) participants, (b) three groups of 5 (8) 

participants, (c) four groups of 3 (4) participants, (d) five 

groups of 2 (2) participants. Clearly, with such small sample 

sizes, performing any test of means is questionable in the 

first place. 

Table 1 lists the number of permutations as a function of 
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the number of groups and of group size (all groups assumed 

equal) and. By comparison, the number of seconds elapsed 

since the beginning of the universe is believed to be about 

300 000 000 000 000 000 (3 × 1017). 

With the improvement of computers, maybe these 

figures will soon be accessible? It is possible to show that it 

is not the case. Suppose that a computer can perform a 

randomization test with  groups of  participants in an 

acceptable amount of time. What would be the impact of 

adding just one more participant in each group? In the limit, 

adding one more participant to two groups has a 

consequence to increase the number of permutation by four, 

so that the computation time will likewise increase by a 

factor of four. However, for a four-group design, adding one 

more participant in each group increases the number of 

permutation by a factor of 256. Following the Moore's law 

(computers double their processing speed every year and a 

half), it will take twelve years before this extra participant 

can again be computed in an acceptable amount of time. 

Table 2 lists the factor of increase in the number of 

permutations when one extra participant is added to each 

group as a function of the number of data per group (all 

groups assumed to be of equal size). At the limit, adding one 

more participant in each of the p groups increases the 

number of permutations by a factor of . 

Discussion 

If permutation test is to become an alternative to 

ANOVA test, we need to reconsider seriously the necessity 

to explore all the permutations. Hayes, 2000, 1998, 1996, 

proposed to use only a sample of permutations chosen 

randomly. He proposed to limit the number of permutations 

to 5000, but this number could now easily be increased to 

50,000, a safer sample size to infer decision thresholds for 

small probability (e.g. and  of 0.01).  

The situation reported above pertains to independent-

group designs. In repeated-measure designs, those figures 

may change drastically. Indeed, to test the significance of a 

within-subject factor, data need not be moved between 

participants. This restriction reduces considerably the 

number of possible permutations as they now increase as a 

function of the number of participants ( ), not the total 

number of measures ( ). The total number of within-subject 

permutation is given by: 

  (4) 

where  is the number of repeated measures. For example, 

for 10 participants measured in three conditions, there 

would be 60,466,176 possible permutations. This number is 

large, but not inaccessible to actual computers. It is also 

91,803.3 times smaller than if independent groups had been 

used. Further explorations are required to assess the number 

of permutations in factorial designs and in designs involving 

both within and between subject factors.  

There is still the possibility that permutation results can 

be computed efficiently. For example, Gill (2007) found that 

the 2-group permutation test could be decomposed using 

Fourier transform into a single difference statistic which can 

be computed in linear time. Likewise, Mewhort, Johns and 

Kelly (2010) showed how the Fourier transform could be 

used with factorial designs in which the number of levels is 

always 2 (e.g., a 2 × 2 design). However, it seems that a 

similar result cannot be achieved regarding sums of squares 

statistics. Hence, in the absence of a similar decomposition 

for multi-group designs, randomization tests may be forever 

inaccessible. 
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