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This paper introduces Hidden Markov Models for the analysis of authentic learning 
data from an applied field. For illustrative purposes, it shows how classical 2-state all-
or-none models can be extended to adequately fit the competence development 
process of nursery apprentices in a clinical context. It also presents some of the main 
underlying ideas, such as model specifications, parameters estimation, model 
selection, the Viterbi algorithm, and goodness-of-fit issues. 

 
 

Markov models have been used in psychology since the 
mid-fifties (Miller, 1952; Steiner & Greeno, 1969) to infer 
cognitive states from sequences of data in learning 
experiments. They are now considered very general tools for 
integrating large sets of longitudinal observations 
(Langeheine, Stern, & van de Pol, 1994), from implicit 
learning (Visser, Raijmakers, & van der Maas, 2009) to well-
being (Eid, & Langeheine, 2007). They have also been used 
in the classroom context to study negotiations between 
actors (Weingart, Prietula, Hyder, & Genovese, 1999), peer 
scaffolding (Pata, Lehtinen, & Sarapuu, 2006) emerging from 
interactions between students in a synchronous network 
environment, and to compare counselling methods used by 
effective and ineffective students (Duys and Headrick, 2004). 
Some advanced models are also developed to account for 
sequential decision processes (Fu & Anderson, 2006; 
Littman, 2010; Niv, 2009).  

In this paper, the process of elaborating a Hidden 
Markov Model (HMM) is presented for tutorial purposes. It 
reaffirms some of the main ideas underlying anterior 
tutorial works (Visser, Raijmakers, & Molenaar, 2002; 
Wickens, 1982) and proposes, for illustrative purposes, to 
extend the classical 2-state model to observations from a 
clinical field. Modeling such data from an applied field is an 
important contribution. It suggests that HMMs are of great 
practical value when synthesizing competence development 
processes in authentic learning situations.  

More specifically, some HMMs will be built to illustrate 
how the interactions between a nursery supervisor and her 

apprentices can be analyzed to grasp the hidden process of 
competence growth of apprentices in a clinical context. 
Meanwhile, the tutorial discusses some important issues, 
such as model specifications, parameter estimation, model 
selection and goodness-of-fit issues.  

Model specifications 

Model specifications arise from intertwined 
psychological and mathematical considerations. Thus, a 
Markov chain is defined as a series of states. The main 
property of all Markov chains is that knowledge of an “S” 
state at time “t” is all that is necessary to predict the 
evolution of the system at “t+1.” A conditional probability 
(1) expresses this idea and should be read as the probability 
that an individual goes to state S’, considering that he was 
previously in an St state, only depends on that St state and 
not on previous ones. 

 P(St+1 = S’/S1,… St) = P(St+1 = S’/St) (1) 

A T function specifies the transition probabilities p(S’/S) 
from state S to S’. A  vector defines the initial probabilities 

i = p(Si) of being in Si states just before starting the 
observation process. The elements of this vector and the 
transition function are constrained and equal 1. These can be 
expressed as  and . 

In psychology, states refer to the internal dispositions of 
an individual and these cannot be directly observed. For 
instance, literature in psychology and education largely 
suggests that the competence of a person cannot be known 
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by simply looking at her; it must be inferred from her 
performance during a series of authentic tasks. So, by 
definition, competences are considered hidden constructs. 
As a consequence, a special family of Markov models called 
Hidden Markov Models are recommended to analyze them. 

In HMMs, both a set of manifested behaviours and a set 
of hidden states must be defined. Observation function O 
then specifies the conditional probability of observing a 
manifested behaviour (Ω) at each S state. These conditional 
probabilities p(Ωi / S) are submitted to the constraint 

.

 In general learning models (Visser et al.., 2002; Wickens, 
1982), three categories of states are proposed to account for 
success and error sequences. These models distinguish the 
learned, error and intermediary states. The learned states are 
characterized by the probability of errors approaching zero. 
In most models, they are considered as absorbing states and 
this expresses the idea that once a concept or a rule has been 
mastered, the learner does not revisit the error or 
intermediary states. The error states are characterized by a 
probability of errors and successes near random 
performance. Intermediary states correspond to partial 
mastery levels and the probabilities of observing a success 
are higher than expected for a random behaviour.  

Moreover, in many learning experiments, the set of 
observations are composed of two types of results called 
error and success. However, this set can be extended. For 
instance, in many professions, important concepts and 
procedures are learned in the context of authentic 
interventions as part of the apprenticeship. To account for 
competence growth, observation data are often gathered 
using observation grids that record multiple variables about 
the apprentice and the work situation. These grids record 
important aspects about the general level of autonomy of the 
apprentice, whether or not she correctly conceptualizes what 
she has to do, and whether or not she displays the correct 
procedural behaviour without error or forgetting. For 
instance, such grids are especially useful in describing the 
performance of nurses in an apprenticeship context (Harvey 
& Barras, 2008; Harvey, 2009). 

However, it is necessary to adopt a notation to 
systematize such data from complex situations. Therefore, to 
generate a meaningful unit from these observations, bigrams 
or trigrams can be created. For example, Weingart et al. 
(1999) have used this strategy to study negotiations. They 
joined two dichotomous variables to create a bigram that 
indicates the person in turn-taking and qualifies the nature 
of the interaction (distributive or integrative). A trigram is 
composed of three letters, a letter for each of the variables 
observed. For each letter, an uppercase indicates an 
adequate scheme, while a lowercase stands for an 

inappropriate one. Thus, to systematize our notation, the 
first letter of the trigram will be indicative of the adequacy 
of the conceptual scheme (C or c) based on the explanations 
given before and during the intervention. The second letter 
will design the quality of the procedural schemes (P or p) 
associated with the instrumental aspects of the intervention. 
This letter is set to p when errors or forgetting occurs or to P 
otherwise. Finally, the third letter is an overall judgment 
about the autonomy (a or n) of the apprentice. The space of 
observations is consequently defined as the set of trigrams Ω 
= {cpn, cpa, Cpn, Cpa, cPn, cPa, CPn CPa}.  

Some of these trigrams have strong psychological 
meanings. For instance, CPa represents the ideal situation 
where the apprentice has all the conceptual and procedural 
schemes to perform a task and is autonomous. On the other 
hand, cpn corresponds to a situation where the apprentice is 
not autonomous and failed to mobilize adequate knowledge 
schemes in the situation. Notice that some trigrams are not 
expected to be observed very often. These are cpa, CPn, cPn 

and cPa. First, cpa represents an hypothetical situation where 
the apprentice does not possess the adequate conceptual and 
procedural schemes but would have been considered 
autonomous. Second, CPn is the opposite situation where all 
the appropriate schemes are observed but the apprentice is 
nevertheless not considered autonomous for some (mainly 
affective) reasons. Finally, cPn and cPa are situations where 
the procedural schemes would be present but the apprentice 
would be unable to explain his actions. All of these 
situations are considered unlikely, at least, in an explicit 
learning context.1  

                                                                 
1 Note that the distinction between declarative and 
procedural schemes made here is not new (Harvey & 
Anderson, 1996; Singley & Anderson, 1989) but is 
fundamental in education (Potgieter, Harding, & 
Engelbrecht, 2008). The notion of schemes refers very largely 
to what in a situation is transposed to similar situations or 
generalized across situations. Schemes are defined as a form 
of abstract mental representation that guides action (Sabah, 
2002). They are the basic internal resources used by the 
competences. Schemes are transformed and attuned from 
situation to situation. Declarative schemes are general 
knowledge structures organized into interrelated networks 
of concepts. They must be distinguished from more context-
specific procedural schemes represented by the “condition-
action” rule. The basic assumption is that such an 
interrelated network of concepts is needed by the 
information processing machinery to create procedures that 
are appropriate to a given context.  
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It is possible to intuitively map these observations into 
hidden competence states. Figure 1 illustrates the mapping 
process. First, the learned state is expected to be composed 
mainly of CPa observations. The unlearned state should be 
characterized both by the presence of cpn episodes and the 
absence of autonomy in more than 50% of the cases. 
Intermediary states are expected to be composed of mixture 
of observations with autonomy level greater than 50%. 

Moreover, different learning models can be specified to 
grasp the competence development process. For instance, 
the literature suggests that some conceptual changes occur 
as a learner progressively abandons their naïve and intuitive 
conception of a situation to construct more elaborate 
explanations (Vosniadou, 2007). Such a change can be 
symbolized as a transition between two states (symbolized 
cp�Cp). Bruner, Goodnow and Austin (1977, p. 50) speak of 
a “…transition experience between not having a distinction 
and having it.” The literature also identifies many 
mechanisms operating on procedures and concepts to create 
meta-procedures (symbolized cp�cP). The conceptual 
knowledge base also supports the development of 
procedural ones through problem solving (symbolised 
Cp�CP). On the contrary, it is also accepted that previously 

learned procedures support the acquisition of new concepts 
by a posteriori reflection on action (symbolised cP�CP). 
When some successive transitions occur, paths with 2, 3, or 
more states might occur. As a result, using this terminology, 
a 2-state model is a model where a learner transits from a 
state characterized by the absence of adequate conceptual 
and procedural schemes to a state where these schemes have 
been acquired (cp� CP). Note that this process occurs 
without visiting some intermediary states. Figure 2a 
illustrates this 2-state model. 

A step model emerges when a learner transits from the 
unlearned state to the learned state by visiting some 
intermediary states (Wickens, 1982). Therefore, a 3-state step 
model has such an intermediary state. Figure 2b illustrates a 
3-state step model. Notice that a 1-state model can also be 
observed. Such a model suggests that the apprentice 
remains in the same state for the entire period of 
observation. This may occur if the apprentice fails to learn 
or, alternatively, if she is already in the learned state at the 
beginning of the observation process. How to determine the 
most likely models from the observations will be discussed 
in the next sections. 

 

Figure 1. General model. Skill levels N (hidden states) are inferred from the observations.  

N1 

cpn CPa cpn 

Skill levels 

(Hidden states)  

CPa

a 

CPa CPa 

N3 

Cpn cpn Cpa 

N2 

 

Observations  

  

                                       
    a) 2-state all-or-none model               b) 3-state step model 

 
Figure  2. Some paths for the acquisition of conceptual and procedural schemes during skill learning.  
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Parameter estimation 

Parameter estimates of a given model are obtained 
iteratively by maximizing the likelihood of the observed 
sequences using the Expectation/Maximisation (EM) 
algorithm (Visser et al, 2002). This algorithm searches for 
optimal parameters that best describe the series. For long 
series, it is recommended (Hélie, 2006) to maximize the log-
likelihood of the data. However, as a result, only local 
optima might be found and results must be interpreted with 
caution. It is important to notice that the number of 
parameters to estimate changes from model to model. For 
instance, our 2-state model is composed of 22 parameters if 
all types of observations are made. Indeed, it has 2 
parameters for the initial distribution , four for the 
transition function, and 16 (2 x 8) for the observation 
function. However, as  is constrained and sums to 1, only 
one parameter of the initial distribution is free. Similarly, the 
transition function has 2 free parameters and the 
observation function 14. Consequently, the number of free 
parameters for our 2-state model is 17. Alternatively, our 3-
state model might have up to 36 parameters (3, 9, 24) with 29 
free ones. These models may have a smaller number of 
parameters if some observation types are not present in the 
data.  

Model selection and model fit 

Once the parameters of a model have been estimated, the 
next step is to determine how well it fits the data (Hélie, 
2006; McCoach & Black, 2008; Visser et al., 2002). Two kinds 
of questions are of interest (Wickens, 1982). The first is 
whether a more complicated model is an improvement over 
a simpler one. The second concerns the overall fits of the 
model.  

Strategies for comparing and selecting models have 
received much attention in recent years in the literature 
(Hélie, 2006; McCoach & Black, 2008). First, the significance 
of each parameter can be tested. If some parameters are not 
significantly different from zero, a simpler model might be 
preferred. Second, there are different tests based on the 
likelihood of the series. For instance, when comparing 
models with the same number of parameters, the likelihood-
ratio test can be used (Hélie, 2006; Visser et al., 2002). This 
test indicates whether or not two models are significantly 
different based on the ratio between their likelihoods. When 
comparing models with a different number of parameters, 
their likelihoods are not directly comparable and alternative 
indices, such as the Aikaike Information Criteria (AIC) and 
the Bayesian Information Criteria (BIC), are competing 
choices. These indexes make corrections to the likelihood 
according to the number of degrees of freedom across 

models (AIC and BIC) and the length of the series (BIC). 
They are defined as (Visser et al, 2002, p. 190): 

 AIC = −2 log L + 2np  (2) 

 BIC = −2 log L + np log(N), (3) 

where L is the likelihood of the fitted model, np the number 
of free parameters of the model and N, the number of 
observation used in fitting the model. As a rule of thumb, 
AIC index generally favors the selection of more complex 
models while the BIC advantages simpler ones (Hélie, 2006). 

The second question of interest is to determine if it 
adequately fits the observation data. Here, a goodness-of-fit 
test can provide valuable information. A property of the 
Markov model is that it can predict the distribution of 
observations based on the theoretical state at each time 
period. For this, the Viterbi algorithm provides the optimal 
hidden states sequence according to the observations at 
hand and the specified model. When many sequences are 
analysed with the same model, the Viterbi algorithm can be 
applied successively to each independent realisation 
(subject). Then, a Chi-square goodness-of-fit test can be 
calculated based on observed and predicted observations.  

  ,  (4) 

Such a test has c-p-1 degrees of freedom when the 
estimation of parameters and the goodness-of-fit test are 
done on the same data set (Visser et al, 2002; Wickens, 1982). 
Here, c is the number of categories used in the test and p is 
the number of free parameters in the model. So, with 169 
observation periods and a 2-state model with 17 free 
parameters, the χ2 would have 151 degrees of freedom (169 -
17-1). 

Skill development during apprenticeship in a clinical context 

For illustrative purposes, data from authentic clinical 
situations will highlight that HMMs can be valuable tools to 
synthetize the learning process. For instance, in the health 
care system and nursing in particular, literature points out 
that some contextual factors may inhibit learning and have a 
negative impact on the knowledge gained (Lauder, 
Reynolds & Angus, 1999). In order to characterize the 
learning process in such a controversial context, this paper 
proposes that the interactions between a supervisor and 13 
apprentices be traced and modeled using HMMs.  

As will be shown, the HMM are very useful and 
informative as they can clearly characterize the learning 
process of each apprentice (using the Viterbi algorithm). For 
each situation, a set of variables about the apprentice’s 
cognitive states will be observed. Then 1-state, 2-state and 3-
state models will be tested. Although the actions of the 
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supervisor are also recorded, they will not be integrated into 
the HMM. Such integration would require a more complex 
Markov model (e.g. Littman, 2010) and is outside the scope 
of this paper. The next section briefly reviews the 
methodology of the study. 

The observation set is from Harvey and Barras (2008; 
Harvey, 2009). Thirteen students enrolled in a nursery 
curriculum at two colleges participated on a voluntary basis 
in the study. There were 11 females and 2 males. They were 
observed during health care activities with 43 patients in 
two hospitals as parts of their professional training.  

Two skills have been observed as defined by the nursery 
care program in the province of Québec (Ministère de 
l’Éducation, du Loisir et du Sport, 2004). These skills can be 
translated as “Intervene and provide health care to aged people 

with loss of autonomy in a health care institution” and “Intervene 

and provide health care to adults and aged people in medicine and 

chirurgical units.” To master these skills, an apprentice must 
be able to complete a large variety of activities. These 
activities generally follow a “plan, act, evaluate and follow-up” 

cycle. Each intervention has been further broken down into 
episodes. Each episode corresponds to an action of the 
apprentice. In total, 1,926 episodes were observed. A series 
of episodes forms a sequence. Thirteen sequences have been 
observed, one for each subject. On average, there are 148.15 
episodes per sequence with a standard deviation of 12.56 
and a range between [126 and 169] episodes.  

An observation grid similar to the one used in the 
academic institution has been used and modified to better 
suit the needs of the study. It distinguishes 1) the 
intervention performed; 2) the quality of the apprentice’s 
explanations (adequate or not); 3) presence or absence of 
errors or forgetting; 4) the scaffold actions {Demonstration, 
Coach, Help, Information, Observation}. Moreover, the 
supervisor has noticed 5) whether or not an appropriate 
follow-up has been provided and 6) has made a binary 

judgment on the autonomy of the apprentice (autonomous 
versus not autonomous).  

The analyses of this data set are divided into two parts. 
First, trigrams are created from the action of joining three 
variables. Thus, each episode has been coded as one of the 
observation sets {cpa, cpn, Cpa, Cpn, cPa, cPn, CPa, CPn} by 
joining the Explanations (C or c), Errors and Forgetting (P or p) 
and Autonomy (a or n) variables.  

In the second part, the general learning models are 
explored. Models with 2 or 3 states are investigated. Each 
individual sequence is considered as the replicate of the 
same model. The parameters of the models are obtained 
using the maximum likelihood estimates calculated from the 
observations using the EM algorithm. These statistics are 
provided by the R program RHmm (Taramasco, 2009). 
Models are compared using loglikelihood, AIC and BIC 
criteria using equations 2 and 3. Individual optimal state 
sequences are then obtained using the Viterbi algorithm. A 
goodness-of-fit test is also presented. 

Results 

Overall, the apprentices were autonomous in 71.4% (n = 
1 375, N=1926) of the observed episodes. In 42% of the cases 
(n = 820), errors and/or forgetting were recorded. In 143 
cases (7.4%), appropriate explanations about the activities 
were not provided by the apprentices. In 219 activities (11.37 
%), the follow-up provided to the patient was considered 
incorrect. From these raw data, each of the 1,926 episodes 
has been classified as one instance of the observation set Ω = 
{cpn, cpa, Cpn, Cpa, cPn, cPa, CPn CPa}. Figure 3 presents these 
raw data2 for each observation day. Learning is observable 
from an increase in CP episodes and a decrease in both Cpn 

                                                                 
2 Note that only one instance of cPa and none of cPn have 

been observed. To eliminate many zero parameters in the 
models, the cPa has been recoded as a CPa. 
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Figure 3. Observed and expected  frequency distributions of CP, Cpa, Cpn and cp data over each day (T1 to T4).  
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and cp episodes. 
Identification of the skill development model. The aim of 

these analyses is to determine whether or not a general skill 
development model emerges from this learning context. 
Table 1 presents the loglikelikood, AIC and BIC indexes for 
models from 1 to 3 states. The 3-state model has the lowest 
AIC but the 2-state model has the lowest BIC. As said 
earlier, AIC favors the selection of more complex model as 
compared to BIC. In such a case, the selection of a 3-state 
over a 2-state model might be based on theoretical or 
pragmatic considerations. The next sections will develop the 
3-state model and will highlight that this 3-state model is 
useful when a researcher is interested in having more details 
about the transition from the unlearned to the learned state. 
Otherwise, the 2-state model should be preferred. 

The parameters of the 3-state model are presented in 
Table 2. Overall, state transitions highlight a step model. The 
path goes from error state N1 to intermediary N2 state and 
from N2 to N3, the learned state. Figure 4 illustrates this 
transition process. The learning rate is initially slow. 
Transition rate from the unlearned state to the intermediary 
state is 2%. Once in the intermediary state, apprentices 
generally transit rather rapidly (30%) to the learned state. 
Once in the learned state, they may however regress into 
state 2 about 16% of the times. This suggests that the 
apprentices encounter new and still very difficult situations 
even after reaching the learned state.  

For illustrative purposes, some individual predictions 
are shown in Figure 5. These individual predictions are 
obtained by applying the Viterbi algorithm to a given 
observed sequence for a specified state model. Transition 
paths for three apprentices (3, 8, and 13) are detailed. Visual 

inspection of apprentice 3’s path shows that she remains in 
state 1 for some period and then rapidly transits to state 3. 
She very briefly visited intermediary state 2. She passes her 
apprenticeship. Seven other apprentices present similar 
learning curves. Apprentice 8 also remains in state 1 for a 
long period and transits to state 3. However, she regularly 
regresses to state 2. Therefore, at this time, her skill is not 
completely developed and she still needs some supervision. 
Three other apprentices are in a similar situation. Finally, 
apprentice 13 remains in the unlearned state for the whole 
observation period. She clearly failed her apprenticeship.  

Table 3 is the observation function O and shows the 
nature of the hidden states. It relates each state to the 
observed trigrams. As expected, the learned state N3 is made 
of CPa episodes at 89%. The intermediary N2 state is a 
mixture of Cpa, CPa and Cpn. The sum of Cpa (0.41) and CPa 
(0.31) is 72% and suggests that the apprentices are 
autonomous most of the time. However, their procedural 
schemes still need to be improved, as 68% of the episodes 
are Cpa (0.41) and Cpn (0.27). Finally, the unlearned state N1 
is made of observations where the apprentices are not 
autonomous at 49%. Moreover, this state is made of cpn, 

observations at 11%, suggesting that they are disoriented 
both from conceptual and instrumental points of views by 
the situations. 

Next, the goodness-of-fit test is presented. It determines 
whether or not the model adequately predicts the data 
pattern as it evolves over time. Two time categories (c) will 
be considered here. The first is the day time category. This 
time category provides a preliminary overview of the fit of 
the model. The second is the trial time category, which will 
be used as the goodness-of-fit test.  

Table 1. Number of free parameters (np), loglikelihood (Log L), AIC and BIC coefficients for models with one, two and three 
states.  

 
States np Log L AIC BIC 

1 6 -2384 4780 4813 
2  13 -2250 4526 4598 
3  23 -2229 4504 4631 

 

Table 2. Three state step model. Transition probabilities and initial distribution (π).  
 
 

 
Current 

state 

 Transition to state  
 
 N1 N2  N3     

N1 0.98 0.02 0.00 1.00 
N2 0.0 0.70 0.30 0.00 
N3 0.0 0.16 0.83 0.00 
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For the overview, predictions for the main types of 
observations were aggregated for each day of observation 
(see Figure 3). It is worth mentioning that the visual fit is 
rather good. The model effectively describes the evolution of 

observations on all days. However, HMMs can make much 
more precise predictions. To illustrate, a goodness-of-fit test 
for the CPa observations at each observation time was 
performed. The hidden states at each observation time (from 

 

Figure 4.   General skill development model. The hidden states N are represented by circles and transition probabilities by 
arrows.  A 3-steps model emerges.  

0 50 100 150

0
1

2
3

4

Apprentice 3

Trials

S
ta

te
s

0 50 100 150

0
1

2
3

4

Apprentice 8

Trials

S
ta

te
s

 

0 50 100 150

0
1

2
3

4

Apprentice 13

Trials

S
ta

te
s

 
Figure 5. Learning paths for three apprentices. 
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1 to 169) were used to compute the expected frequencies of 
CPa observations. This paper presents only the test for these 
observations for two reasons. First, this type is closely 
associated with the evolution of the learned state. Second, it 
has a sufficient number of data available at each time period 
to run the χ2 test. Figure 6 presents the results. With 169 time 
categories (c) and 23 free parameters (p) in the model, the 
χ2 equals 72.2 with 145 df’s. It fails to be significant (p < 1) 
and suggests that the model is adequate. There is no 
significant difference between the observed and predicted 

frequencies of CPa episodes. Together, both the overall 
(visual) and the goodness-of-fit tests suggest that the model 
adequately describes the raw data. 

Discussion 

This paper proposes that Hidden Markov Models can 
adequately grasp the competence development process of 
nursery apprentices in a clinical context. The model 
highlights three states and a progressive step path. 
Autonomy and the presence of adequate conceptual and 

Table 3. Three state step model. Conditional probability p(O/N) of an observation as a function of hidden states N (skill 
level). 
 

Levels Observations  

   

 CPa  Cpa  Cpn cpn  Interpretation 

N3 0.89    Is autonomous. Correctly conceptualize and execute the 
set of interventions.  
 

N2 0.31 0.41 .27  Is autonomous most of the times. Correctly 
conceptualize the sets of interventions. The 
interventions need some instrumental refinement. 

N1 0.35 0.16 0.34 0.11 Half of the times is not autonomous. Conceptualisation 
is adequate but interventions have important 
instrumental pitfalls. Constant support is needed. 

For clarity, coefficients lower than 0.10 are not represented.    

0 50 100 150

2
4

6
8

1
0

CPA's

Trials

F
re

q
u
e

n
c
y

 
Figure 6. Observed and expected distributions of CPa  at each trial (from 1 to 169). Chisq = 72.2, df  = 138 (169-30-1), p < 1. 
Expected are vertical bars and the continuous line, the observed 
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procedural schemes composed the learned state. The 
absence of conceptual and procedural knowledge as well as 
autonomy composed the unlearned state. An intermediary 
state with partial knowledge has also been inferred.  

This 3-state model is different from the 2-state model 
based on success and errors as considered in implicit 
learning (Visser et al., 2007). The main difference is that it 
accounts for both conceptual and procedural aspects that are 
often neglected in the literature but are nonetheless 
important in the health care context (Lauder et al., 1999). 
Therefore, as new situations are encountered, the 
competence develops while conceptual and instrumental 
schemes transit in a continual series of re-representations 
(Anderson, 2005). The rates of progression in this step model 
range between 2% and 30% and fluctuate from path to path. 
In implicit conceptual learning, Visser et al. (2002) report 
comparable rates in the range of 3% to 23%. 

However, there are some discrepancies in this general 
model that indicate that the apprentices do experience some 
difficulties in adapting to some unpredictable situations. 
First, the skill acquisition process is marked by regressions 
to the intermediary state. Indeed, in the learned state, there 
is a 16% probability of regression to the antecedent state. 
Moreover, from an ideal perspective, observing a learned 
state composed of only 89% of successes at the end of this 
health care curriculum might be considered problematic. It 
suggests that 11% of the interventions have some conceptual 
or instrumental pitfalls. These results are interpreted in 
terms of lack of transfer (Lauder et al., 1999) and needs for 
further supervision (Wholley & Jarvis, 2007), at least for 
some of the apprentices. In this respect, the model precisely 
portrays the progression path of each apprentice. 

Conclusion 

This paper suggests that a Hidden Markov Model is an 
adequate description of competence growth in a 
professional context. It extends previous work based on the 
analysis of success and error data (Visser et al., 2002; 2007; 
Wickens, 1982) and discusses some important topics, such as 
model specifications, parameter estimation, model selection, 
the Viterbi algorithm and goodness-of-fit.  

In education, these models are not well known. 
Competences are usually inferred from series of standard 
items (Leighton & Gierl, 2007). It is then possible to 
distinguish the item difficulty from the student’s ability 
level. However, in professional situations, cases emerge 
from practice and are not standard. In Markov models, 
competence is inferred from observations of some key 
variables. These models are best for describing competence 
changes over time. However, some caution is needed when 
interpreting fluctuations in these parameters, as the 

complexity of the situations and the apprentice ability level 
are confused. Hopefully, future models can disentangle 
these issues by recording an index of task difficulty. In 
summary, HMMs are flexible and provide new and 
insightful models for the dynamic assessment of 
competences in classroom and apprenticeship contexts. 
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