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An introduction to hierarchical linear modeling 

Heather Woltman, Andrea Feldstain, J. Christine MacKay, Meredith Rocchi 

University of Ottawa 

 

This tutorial aims to introduce Hierarchical Linear Modeling (HLM). A simple 

explanation of HLM is provided that describes when to use this statistical technique 

and identifies key factors to consider before conducting this analysis. The first section 

of the tutorial defines HLM, clarifies its purpose, and states its advantages. The second 

section explains the mathematical theory, equations, and conditions underlying HLM. 

HLM hypothesis testing is performed in the third section. Finally, the fourth section 

provides a practical example of running HLM, with which readers can follow along. 

Throughout this tutorial, emphasis is placed on providing a straightforward overview 

of the basic principles of HLM. 

 

 
*Hierarchical levels of grouped data are a commonly 

occurring phenomenon (Osborne, 2000). For example, in the 

education sector, data are often organized at student, 

classroom, school, and school district levels. Perhaps less 

intuitively, in meta-analytic research, participant, procedure, 

and results data are nested within each experiment in the 

analysis. In repeated measures research, data collected at 
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different times and under different conditions are nested 

within each study participant (Raudenbush & Bryk, 2002; 

Osborne, 2000). Analysis of hierarchical data is best 

performed using statistical techniques that account for the 

hierarchy, such as Hierarchical Linear Modeling. 

Hierarchical Linear Modeling (HLM) is a complex form 

of ordinary least squares (OLS) regression that is used to 

analyze variance in the outcome variables when the 

predictor variables are at varying hierarchical levels; for 

example, students in a classroom share variance according 

to their common teacher and common classroom. Prior to 

the development of HLM, hierarchical data was commonly 

assessed using fixed parameter simple linear regression 

techniques; however, these techniques were insufficient for 

such analyses due to their neglect of the shared variance. An 

algorithm to facilitate covariance component estimation for 

unbalanced data was introduced in the early 1980s. This 

development allowed for widespread application of HLM to 

multilevel data analysis (for development of the algorithm 

see Dempster, Laird, & Rubin, 1977; for its application to 

HLM see Dempster, Rubin, & Tsutakawa, 1981). Following 

this advancement in statistical theory, HLM’s popularity 

flourished (Raudenbush & Bryk, 2002; Lindley & Smith, 

1972; Smith, 1973).  

HLM accounts for the shared variance in hierarchically 

structured data: The technique accurately estimates lower-

level slopes (e.g., student level) and their implementation in 

estimating higher-level outcomes (e.g., classroom level; 
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Hofmann, 1997). HLM is prevalent across many domains, 

and is frequently used in the education, health, social work, 

and business sectors. Because development of this statistical 

method occurred simultaneously across many fields, it has 

come to be known by several names, including multilevel-, 

mixed level-, mixed linear-, mixed effects-, random effects-, 

random coefficient (regression)-, and (complex) covariance 

components-modeling (Raudenbush & Bryk, 2002). These 

labels all describe the same advanced regression technique 

that is HLM. HLM simultaneously investigates relationships 

within and between hierarchical levels of grouped data, 

thereby making it more efficient at accounting for variance 

among variables at different levels than other existing 

analyses.  

Example 

Throughout this tutorial we will make use of an example 

to illustrate our explanation of HLM. Imagine a researcher 

asks the following question: What school-, classroom-, and 

student-related factors influence students’ Grade Point Average? 

This research question involves a hierarchy with three 

levels. At the highest level of the hierarchy (level-3) are 

school-related variables, such as a school’s geographic 

location and annual budget. Situated at the middle level of 

the hierarchy (level-2) are classroom variables, such as a 

teacher’s homework assignment load, years of teaching 

experience, and teaching style. Level-2 variables are nested 

within level-3 groups and are impacted by level-3 variables. 

For example, schools (level-3) that are in remote geographic 

locations (level-3 variable) will have smaller class sizes 

(level-2) than classes in metropolitan areas, thereby affecting 

the quality of personal attention paid to each student and 

noise levels in the classroom (level-2 variables).  

Variables at the lowest level of the hierarchy (level-1) are 

nested within level-2 groups and share in common the 

impact of level-2 variables. In our example, student-level 

variables such as gender, intelligence quotient (IQ), 

socioeconomic status, self-esteem rating, behavioural 

conduct rating, and breakfast consumption are situated at 

level-1. To summarize, in our example students (level-1) are 

situated within classrooms (level-2) that are located within 

schools (level-3; see Table 1). The outcome variable, grade 

point average (GPA), is also measured at level-1; in HLM, 

the outcome variable of interest is always situated at the 

lowest level of the hierarchy (Castro, 2002). 

For simplicity, our example supposes that the researcher 

wants to narrow the research question to two predictor 

variables: Do student breakfast consumption and teaching style 

influence student GPA? Although GPA is a single and 

continuous outcome variable, HLM can accommodate 

multiple continuous or discrete outcome variables in the 

same analysis (Raudenbush & Bryk, 2002). 

Methods for Dealing with Nested Data 

An effective way of explaining HLM is to compare and 

contrast it to the methods used to analyze nested data prior 

to HLM’s development. These methods, disaggregation and 

aggregation, were referred to in our introduction as simple 

linear regression techniques that did not properly account 

for the shared variance that is inherent when dealing with 

hierarchical information. While historically the use of 

disaggregation and aggregation made analysis of 

hierarchical data possible, these approaches resulted in the 

incorrect partitioning of variance to variables, dependencies 

in the data, and an increased risk of making a Type I error 

(Beaubien, Hamman, Holt, & Boehm-Davis, 2001; Gill, 2003; 

Osborne, 2000).  

Disaggregation 

Disaggregation of data deals with hierarchical data 

issues by ignoring the presence of group differences. It 

considers all relationships between variables to be context 

free and situated at level-1 of the hierarchy (i.e., at the 

individual level). Disaggregation thereby ignores the 

presence of possible between-group variation (Beaubien et 

al., 2001; Gill, 2003; Osborne, 2000). In the example we 

provided earlier of a researcher investigating whether level-

Table 1. Factors at each hierarchical level that affect students’ 

Grade Point Average (GPA) 

 

Hierarchical 

Level 

Example of 

Hierarchical 

Level 

Example Variables 

Level-3 School 

Level 

School’s geographic 

location 

Annual budget 

Level-2 Classroom 

Level 

Class size 

Homework assignment 

load 

Teaching experience 

Teaching style 

Level-1 Student 

Level 

Gender 

Intelligence Quotient (IQ) 

Socioeconomic status 

Self-esteem rating 

Behavioural conduct rating 

Breakfast consumption 

GPAª 

ª The outcome variable is always a level-1 variable. 
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1 variable breakfast consumption affects student GPA, 

disaggregation would entail studying level-2 and level-3 

variables at level-1. All students in the same class would be 

assigned the same mean classroom-related scores (e.g., 

homework assignment load, teaching experience, and 

teaching style ratings), and all students in the same school 

would be assigned the same mean school-related scores 

(e.g., school geographic location and annual budget ratings; 

see Table 2).  

By bringing upper level variables down to level-1, 

shared variance is no longer accounted for and the 

assumption of independence of errors is violated. If teaching 

style influences student breakfast consumption, for example, 

the effects of the level-1 (student) and level-2 (classroom) 

variables on the outcome of interest (GPA) cannot be 

disentangled. In other words, the impact of being taught in 

the same classroom on students is no longer accounted for 

when partitioning variance using the disaggregation 

approach. Dependencies in the data remain uncorrected, the 

assumption of independence of observations required for 

simple regression is violated, statistical tests are based only 

on the level-1 sample size, and the risk of partitioning 

variance incorrectly and making inaccurate statistical 

estimates increases (Beaubien et al., 2001; Gill, 2003; 

Osborne, 2000). As a general rule, HLM is recommended 

over disaggregation for dealing with nested data because it 

addresses each of these statistical limitations.  

In Figure 1, depicting the relationship between breakfast 

consumption and student GPA using disaggregation, the 

predictor variable (breakfast consumption) is negatively 

related to the outcome variable (GPA). Despite (X, Y) units 

being situated variably above and below the regression line, 

this method of analysis indicates that, on average, unit 

increases in a student’s breakfast consumption result in a 

lowering of that student’s GPA.  

Aggregation 

Aggregation of data deals with the issues of hierarchical 

data analysis differently than disaggregation: Instead of 

ignoring higher level group differences, aggregation ignores 

lower level individual differences. Level-1 variables are 

raised to higher hierarchical levels (e.g., level-2 or level-3) 

and information about individual variability is lost. In 

aggregated statistical models, within-group variation is 

ignored and individuals are treated as homogenous entities 

(Beaubien et al., 2001; Gill, 2003; Osborne, 2000). To the 

researcher investigating the impact of breakfast 

consumption on student GPA, this approach changes the 

research question (Osborne, 2000). Mean classroom GPA 

becomes the new outcome variable of interest, rather than 

Table 2. Sample dataset using the disaggregation method, with level-2 and level-3 variables excluded from the data 

(dataset is adapted from an example by Snijders & Bosker, 1999) 

 

Student ID 

(Level-1) 

Classroom ID 

(Level-2) 

School ID 

(Level-3) 

GPA Score 

(Level-1) 

Breakfast Consumption Score 

(Level-1) 

1 1 1 5 1 

2 1 1 7 3 

3 2 1 4 2 

4 2 1 6 4 

5 3 1 3 3 

6 3 1 5 5 

7 4 1 2 4 

8 4 1 4 6 

9 5 1 1 5 

10 5 1 3 7 

 

 
Figure 1.  The relationship between breakfast consumption 

and student GPA using the disaggregation method.  Figure 

is adapted from an example by Snijders & Bosker (1999) and 

Stevens (2007). 
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student GPA. Also, variation in students’ breakfast habits is 

no longer measurable; instead, the researcher must use 

mean classroom breakfast consumption as the predictor 

variable (see Table 3 and Figure 2). Up to 80-90% of 

variability due to individual differences may be lost using 

aggregation, resulting in dramatic misrepresentations of the 

relationships between variables (Raudenbush & Bryk, 1992). 

HLM is generally recommended over aggregation for 

dealing with nested data because it effectively disentangles 

individual and group effects on the outcome variable. 

In Figure 2, depicting the relationship between 

classroom breakfast consumption and classroom GPA using 

aggregation, the predictor variable (breakfast consumption) 

is again negatively related to the outcome variable (GPA). In 

this method of analysis, all (X, Y) units are situated on the 

regression line, indicating that unit increases in a 

classroom’s mean breakfast consumption perfectly predict a 

lowering of that classroom’s mean GPA. Although a 

negative relationship between breakfast consumption and 

GPA is found using both disaggregation and aggregation 

techniques, breakfast consumption is found to impact GPA 

more unfavourably using aggregation. 

HLM 

Figure 3 depicts the relationship between breakfast 

consumption and student GPA using HLM. Each level-1 

(X,Y) unit (i.e., each student’s GPA and breakfast 

consumption) is identified by its level-2 cluster (i.e., that 

student’s classroom). Each level-2 cluster’s slope (i.e., each 

classroom’s slope) is also identified and analyzed separately. 

Using HLM, both the within- and between-group 

regressions are taken into account to depict the relationship 

between breakfast consumption and GPA. The resulting 

analysis indicates that breakfast consumption is positively 

related to GPA at level-1 (i.e., at the student level) but that 

the intercepts for these slope effects are influenced by level-2 

factors [i.e., students’ breakfast consumption and GPA (X, Y) 

units are also affected by classroom level factors]. Although 

disaggregation and aggregation methods indicated a 

negative relationship between breakfast consumption and 

GPA, HLM indicates that unit increases in breakfast 

consumption actually positively impact GPA. As 

demonstrated, HLM takes into consideration the impact of 

Table 3. Sample dataset using the aggregation method, with level-1 variables excluded from the data 

(dataset is adapted from an example by Snijders & Bosker, 1999) 

 

Teacher ID 

(Level-2) 

Classroom GPA 

(Level-2) 

Classroom Breakfast Consumption 

  (Level-2) 

1 6 2 

2 5 3 

3 4 4 

4 3 5 

5 2 6 

 

 
Figure 2.  The relationship between classroom breakfast 

consumption and classroom GPA using the aggregation 

method.  Figure is adapted from an example by Snijders & 

Bosker (1999) and Stevens (2007). 

 

 
Figure 3. The relationship between breakfast consumption 

and student GPA using HLM.  Figure is adapted from an 

example by Snijders & Bosker (1999) and Stevens (2007). 
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factors at their respective levels on an outcome of interest. It 

is the favored technique for analyzing hierarchical data 

because it shares the advantages of disaggregation and 

aggregation without introducing the same disadvantages. 

As highlighted in this example, HLM can be ideally 

suited for the analysis of nested data because it identifies the 

relationship between predictor and outcome variables, by 

taking both level-1 and level-2 regression relationships into 

account. Readers who are interested in exploring the 

differences yielded by aggregation and disaggregation 

methods of analysis compared to HLM are invited to 

experiment with the datasets provided. Level-1 and level-2 

datasets are provided to allow readers to follow along with 

the HLM tutorial in section 4 and to practice running an 

HLM. An aggregated version of these datasets is also 

provided for readers who would like to compare the results 

yielded from an HLM to those yielded from a regression. 

In addition to HLM’s ability to assess cross-level data 

relationships and accurately disentangle the effects of 

between- and within-group variance, it is also a preferred 

method for nested data because it requires fewer 

assumptions to be met than other statistical methods 

(Raudenbush & Bryk, 2002). HLM can accommodate non-

independence of observations, a lack of sphericity, missing 

data, small and/or discrepant group sample sizes, and 

heterogeneity of variance across repeated measures.  Effect 

size estimates and standard errors remain undistorted and 

the potentially meaningful variance overlooked using 

disaggregation or aggregation is retained (Beaubien, 

Hamman, Holt & Boehm-Davis, 2001; Gill, 2003; Osborne, 

2000). 

A disadvantage of HLM is that it requires large sample 

sizes for adequate power. This is especially true when 

detecting effects at level-1. However, higher-level effects are 

more sensitive to increases in groups than to increases in 

observations per group. As well, HLM can only handle 

missing data at level-1 and removes groups with missing 

data if they are at level-2 or above. For both of these reasons, 

it is advantageous to increase the number of groups as 

opposed to the number of observations per group. A study 

with thirty groups with thirty observations each (n = 900) 

can have the same power as one hundred and fifty groups 

with five observations each (n = 750; Hoffman, 1997).  

Equations Underlying Hierarchical Linear Models 

We will limit our remaining discussion to two-level 

hierarchical data structures concerning continuous outcome 

(dependent) variables as this provides the most thorough, 

yet simple, demonstration of the statistical features of HLM. 

We will be using the notation employed by Raudenbush and 

Bryk (2002; see Raudenbush & Bryk, 2002 for three-level 

models; see Wong & Mason, 1985 for dichotomous outcome 

variables). As stated previously, hierarchical linear models 

allow for the simultaneous investigation of the relationship 

within a given hierarchical level, as well as the relationship 

across levels. Two models are developed in order to achieve 

this: one that reflects the relationship within lower level 

units, and a second that models how the relationship within 

lower level units varies between units (thereby correcting 

for the violations of aggregating or disaggregating data; 

Hofmann, 1997). This modeling technique can be applied to 

any situation where there are lower-level units (e.g., the 

student-level variables) nested within higher-level units 

(e.g., classroom level variables).  

To aid understanding, it helps to conceptualize the 

lower-level units as individuals and the higher-level units as 

groups. In two-level hierarchical models, separate level-1 

models (e.g., students) are developed for each level-2 unit 

(e.g., classrooms). These models are also called within-unit 

models as they describe the effects in the context of a single 

group (Gill, 2003). They take the form of simple regressions 

developed for each individual i: 

  (1) 

where: 

 = dependent variable measured for ith level-1 unit 

nested within the jth level-2 unit,  

 = value on the level-1 predictor,  

 = intercept for the jth level-2 unit,  

 = regression coefficient associated with  for the jth 

level-2 unit, and  

 = random error associated with the ith level-1 unit 

nested within the jth level-2 unit. 

In the context of our example, these variables can be 

redefined as follows: 

 = GPA measured for student i in classroom j 

 = breakfast consumption for student i in classroom j 

 = GPA for student i in classroom j who does not eat 

breakfast 

 = regression coefficient associated with breakfast 

consumption for the jth classroom 

 = random error associated with student i in classroom 

j. 

As with most statistical models, an important 

assumption of HLM is that any level-1 errors ( ) follow a 

normal distribution with a mean of 0 and a variance of  

(see Equation 2; Sullivan, Dukes & Losina, 1999). This 

applies to any level-1 model using continuous outcome 

variables. 

  (2) 
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In the level-2 models, the level-1 regression coefficients 

( 
 
and ) are used as outcome variables and are related 

to each of the level-2 predictors. Level-2 models are also 

referred to as between-unit models as they describe the 

variability across multiple groups (Gill, 2003). We will 

consider the case of a single level-2 predictor that will be 

modeled using Equations 3 and 4: 

  (3) 

  (4) 

where: 

 = intercept for the jth level-2 unit; 

 = slope for the jth level-2 unit; 

 = value on the level-2 predictor; 

 = overall mean intercept adjusted for G; 

 = overall mean intercept adjusted for G; 

 = regression coefficient associated with G relative to 

level-1 intercept; 

 = regression coefficient associated with G relative to 

level-1 slope; 

 = random effects of the jth level-2 unit adjusted for G 

on the intercept; 

 = random effects of the jth level-2 unit adjusted for G 

on the slope. 

In the context of our example, these variables can be 

redefined as follows: 

 = intercept for the jth classroom; 

 = slope for the jth classroom; 

 = teaching style in classroom j; 

 = overall mean intercept adjusted for breakfast 

consumption; 

 = overall mean intercept adjusted for breakfast 

consumption; 

 = regression coefficient associated with breakfast 

consumption relative to level-2 intercept; 

 = regression coefficient associated with breakfast 

consumption relative to level-2 slope; 

 = random effects of the jth level-2 unit adjusted for 

breakfast consumption on the intercept; 

 = random effects of the jth level-2 unit adjusted for 

breakfast consumption on the slope. 

It is noteworthy that the level-2 model introduces two 

new terms (
 

and ) that are unique to HLM and 

differentiate it from a normal regression equation. 

Furthermore, the model developed would depend on the 

pattern of variance in the level-1 intercepts and slopes 

(Hofmann, 1997). For example, if there was no variation in 

the slopes across the level-1 models,  would no longer be 

meaningful given that  is equivalent across groups and 

would thus be removed from Equation 3 (Hofmann, 1997). 

Special cases of the two-level model Equations 1, 3 and 4 can 

be found in Raudenbush & Bryk (1992). 

The assumption in the level-2 model (when errors are 

homogeneous at both levels) is that  and  have a 

normal multivariate distribution with variances defined by 

 and  and means equal to  and . Furthermore, 

the covariance between  and  (defined as  ) is equal 

to the covariance between  and . As in the level-1 

assumptions, the mean of  and  is assumed to be zero 

and level-1 and level-2 errors are not correlated. Finally, the 

covariance between  and  and the covariance of  

and  are both zero (Sullivan et al., 1999). The assumptions 

of level-2 models can be summarized as follows 

(Raudenbush & Bryk, 2002; Sullivan et al., 1999): 

 (5)  

In order to allow for the classification of variables and 

coefficients in terms of the level of hierarchy they affect (Gill, 

2003), a combined model (i.e., two-level model; see Equation 

6) is created by substituting Equations 3 and 4 into Equation 

1: 

  (6) 

The combined model incorporates the level-1 and level-2 

predictors (  or breakfast consumption and  or teaching 

style), a cross-level term (  or teaching style × breakfast 

consumption) as well as the composite error 

( ). Equation 6 is often termed a mixed 

model because it includes both fixed and random effects 

(Gill, 2003). Please note that fixed and random effects will be 

discussed in proceeding sections. 

A comparison between Equation 6 and the equation for a 

normal regression (see Equation 7) further highlights the 

uniqueness of HLM. 

 
 (7) 

As stated previously, the HLM model introduces two new 

terms (
 

and ) that allow for the model to estimate 

error that normal regression cannot. In Equation 6, the errors 

are no longer independent across the level-1 units. The 

terms  and  demonstrate that there is dependency 

among the level-1 units nested within each level-2 unit. 

Furthermore,  and  may have different values within 

level-2 units, leading to heterogeneous variances of the error 

terms (Sullivan et al., 1999). This dependency of errors has 
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important implications for parameter estimation, which will 

be discussed in the next section.   

Estimation of Effects 

Two-level hierarchical models involve the estimation of 

three types of parameters. The first type of parameter is 

fixed effects, and these do not vary across groups (Hofmann, 

1997). The fixed effects are represented by , ,  and 

 in Equations 3 and 4. While the level-2 fixed effects 

could be estimated via the Ordinary Least Squares (OLS) 

approach, it is not an appropriate estimation strategy as it 

requires the assumption of homoscedasticity to be met. This 

assumption is violated in hierarchical models as the 

accuracy of level-1 parameters are likely to vary across 

groups (e.g., classrooms; Hofmann, 1997). The technique 

used to estimate fixed effects is called a Generalized Least 

Squared (GLS) estimate. A GLS yields a weighted level-2 

regression which ensures that groups (e.g., classrooms) with 

more accurate estimates of the outcome variable (i.e., the 

intercepts and slopes) are allocated more weight in the level-

2 regression equation (Hofmann, 1997). Readers seeking 

further information on the estimation of fixed effects are 

directed to Raudenbush & Bryk (2002).  

The second type of parameter is the random level-1 

coefficients ( and ) which are permitted to vary across 

groups (e.g., classrooms; Hofmann, 1997). Hierarchical 

models provide two estimates for random coefficients of a 

given group (e.g., classroom): (1) computing an OLS 

regression for the level-1 equation representing that group 

(e.g., classroom); and (2) the predicted values of  and  

in the level-2 model [see Equations 3 and 4]. Of importance 

is which estimation strategy provides the most precise 

values of the population slope and intercept for the given 

group (e.g., classroom; Hofmann, 1997). HLM software 

programs use an empirical Bayes estimation strategy, which 

takes into consideration both estimation strategies by 

computing an optimally weighted combination of the two 

(Raudenbush & Bryk, 2002; Raudenbush, Bryk, Cheong, 

Congdon & du Toit, 2006). This strategy provides the best 

estimate of the level-1 coefficients for a particular group 

(e.g., classroom) because it results in a smaller mean square 

error term (Raudenbush, 1988). Readers interested in further 

information concerning empirical Bayes estimation are 

directed to Carlin and Louis (1996).  

The final type of parameter estimation concerns the 

variance-covariance components which include: (1) the 

covariance between level-2 error terms [i.e., cov(  and ) 

or cov(
 
and ) defined as ]; (2) the variance in the 

level-1 error term (i.e., the variance of  denoted by ); 

and (3) the variance in the level-2 error terms (i.e., the 

variance in  and  or  and  defined as  and , 

respectively). When sample sizes are equal and the 

distribution of level-1 predictors is the same across all 

groups (i.e., the design is balanced), closed-form formulas 

can be used to estimate variance-covariance components 

(Raudenbush & Bryk, 2002). In reality, however, an 

unbalanced design is more probable. In such cases, variance-

covariance estimates are made using iterative numerical 

procedures (Raudenbush & Bryk, 2002). Raudenbush & Bryk 

(2002) suggest the following conceptual approaches to 

estimating variance-covariance in unbalanced designs: (1) 

full maximum likelihood; (2) restricted maximum 

likelihood; and (3) Bayes estimation. Readers are directed to 

chapters 13 and 14 in Raudenbush & Bryk (2002) for more 

detail.  

Hypothesis Testing 

The previous sections of this paper provided an 

introduction to the logic, rationale and parameter estimation 

approaches behind hierarchical linear models. The following 

section will illustrate how hierarchical linear models can be 

used to answer questions relevant to research in any sub-

field of psychology. It is prudent to note that for the sake of 

explanation, equations in the following section (which we 

will refer to as sub-models) purposely ignore one or a few 

facets of the combined model (see Equation 6) and are not 

Table 4.  Hypothesis and necessary conditions: Does student breakfast consumption and 

teaching style influence student GPA? 

Hypotheses 

1 Breakfast consumption is related to GPA. 

2 Teaching style is related to GPA, after controlling for breakfast consumption. 

3 Teaching style moderates the breakfast consumption-GPA relationship. 

Conditions 

1 There is systematic within- & between-group variance in GPA. 

2 There is significant variance at the level-1 intercept. 

3 There is significant variance in the level-1 slope. 

4 The variance in the level-1 intercept is predicted by teaching style. 

5 The variance in the level-1 slope is predicted by teaching style. 
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ad hoc equations. Through this section we will sequentially 

show how these sub-models can be used in order to run 

specific tests that answer hierarchical research questions. 

Thus the reader is reminded that all analyses presented in 

this section could be run all at once using the combined 

model (see Equation 6; Hofmann, 1997; Hofmann, personal 

communication, April 25, 2010) and an HLM software 

program. The following example was adapted from the 

model in Hofmann (1997). For more complex hypothesis 

testing strategies, please refer to Raudenbush and Bryk 

(2002). 

Suppose that we want to know how GPA can be 

predicted by breakfast consumption, a student-level 

predictor, and teaching style, a classroom-level predictor. 

Recall that the combined model used in HLM is the 

following:  

  (8)  

Substituting in our variables the combined model would 

look like this: 

 
 (9) 

Our three hypotheses are a) breakfast consumption is 

related to GPA; b) teaching style is related to GPA, after 

controlling for breakfast consumption; and c) teaching style 

moderates the breakfast consumption-GPA relationship. In 

order to support these hypotheses, HLM models require five 

conditions to be satisfied. Our hypotheses and necessary 

conditions to be satisfied are summarized in Table 4. 

Condition 1: There is Systematic Within- and Between-

Group Variance in GPA 

The first condition provides useful preliminary 

information and assures that there is appropriate variance to 

investigate the hypotheses. To begin, HLM applies a one-

way analysis of variance (ANOVA) to partition the within- 

and between-group variance in GPA, which represents 

breakfast consumption and teaching style, respectively. The 

relevant sub-models (see Equations 10 and 11) formed using 

select facets from Equation 9 are as follows: 

 
 (10) 

 
 (11) 

where: 

 = mean GPA for classroom j; 

 = grand mean GPA ; 

 = within group variance in GPA; 

 = between group variance in GPA. 

The level-1 equation above [see Equation 10] includes 

only an intercept estimate; there are no predictor variables. 

In cases such as this, the intercept estimate is determined by 

regressing the variance in GPA onto a unit vector, which 

yields the variable's mean (HLM software performs this 

implicitly when no predictors are specified). Therefore, at 

level-1, GPA is equal to the classroom's mean plus the 

classroom's respective error. At level-2 [see Equation 11], 

each classroom's GPA is regressed onto a unit vector, 

resulting in a constant ( ) that is equal to the mean of the 

classroom means. As a result of this regression, the variance 

within groups ( ) is forced into the level-1 residual ( ) 

while the variance between groups ( ) is forced into the 

level-2 residual ( ).  

HLM tests for significance of the between-group 

variance ( ) but does not test the significance of the within-

group variance ( ). In the abovementioned model, the total 

variance in GPA becomes partitioned into its within and 

between group components; therefore Variance(GPAij) = 

Variance ( ) = . This allows for the 

calculation of the ratio of the between group variance to the 

total variance, termed the intra-class correlation (ICC). In 

other words, the ICC represents the percent of variance in 

GPA that is between classrooms. Thus by running an initial 

ANOVA, HLM provides: (1) the amount of variance within 

groups; (2) the amount of variance between groups; and (3) 

allows for the calculation of the ICC using Equation 12. 

  (12) 

Once this condition is satisfied, HLM can examine the next 

two conditions to determine whether there are significant 

differences in intercepts and slopes across classrooms. 

Conditions 2 and 3: There is Significant Variance in the 

Level-1 Intercept and Slope 

Once within- and between-group variance has been 

partitioned, HLM applies a random coefficient regression to 

test the second and third conditions. The second condition 

supports hypothesis 2 because a significant result would 

indicate significant variance in GPA due to teaching style 

when breakfast consumption is held constant. The third 

condition supports hypothesis 3 by indicating that GPAs 

differ when students are grouped by the teaching style in 

their classroom. This regression is also a direct test of 

hypothesis 1, that breakfast consumption is related to GPA. 

The following sub-models (see Equations 13- 15) are created 
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using select facets of Equation 9: 

 
 
(13) 

  
(14) 

  
(15) 

where: 

 =  mean of the intercepts across classrooms; 

 = mean of the slopes across classrooms (Hypothesis 

1); 

 = Level-1 residual variance; 

 = variance in intercepts; 

 = variance in slopes. 

The  and  parameters are the level-1 coefficients of the 

intercepts and the slopes, respectively, averaged across 

classrooms. HLM runs a t-test on these parameters to assess 

whether they differ significantly from zero, which is a direct 

test of hypothesis 1 in the case of . This t-test reveals 

whether the pooled slope between GPA and breakfast 

consumption differs from zero. 

A χ² test is used to assess whether the variance in the 

intercept and slopes differs significantly from zero (
 
and 

, respectively). At this stage, HLM also estimates the 

residual level-1 variance and compares it to the estimate 

from the test of Condition 1. Using both estimates, HLM 

calculates the percent of variance in GPA that is accounted 

for by breakfast consumption (see Equation 16). 

 (16) 

Of note is that in order for the fourth and fifth conditions to 

be tested, the second and third conditions must first be met.  

Condition 4: The Variance in the Level-1 Intercept is 

Predicted by Teaching Style 

The fourth condition assesses whether the significant 

variance at the intercepts (found in the second condition) is 

related to teaching style. It is also known as the intercepts-

as-outcomes model. HLM uses another random regression 

model to assess whether teaching style is significantly 

related to the intercept while holding breakfast consumption 

constant. This is accomplished via the following sub-models 

(see Equations 17-19) created from using select variables in 

Equation 9: 

 (17) 

  (18) 

 
 (19) 

where: 

 = Level-2 intercept; 

 = Level-2 slope (Hypothesis 2); 

 = mean (pooled) slopes; 

 = Level-1 residual variance; 

 = residual intercept variance; 

 = variance in slopes. 

The intercepts-as-outcomes model is similar to the 

random coefficient regression used for the second and third 

conditions except that it includes teaching style as a 

predictor of the intercepts at level-2. This is a direct test of 

the second hypothesis, that teaching style is related to GPA 

after controlling for breakfast consumption. The residual 

variance ( ) is assessed for significance using another χ² 

test. If this test indicates a significant value, other level-2 

predictors can be added to account for this variance. To 

assess how much variance in GPA is accounted for by 

teaching style, the variance attributable to teaching style is 

compared to the total intercept variance (see Equation 20). 

 

  (20) 

Condition 5: The Variance in the Level-1 Slope is Predicted 

by Teaching Style 

The fifth condition assesses whether the difference in 

slopes is related to teaching style. It is known as the slopes-

as-outcomes model. The following sub-models (see 

Equations 21-23) formed with select variables from Equation 

9 are used to determine if condition five is satisfied.  

 
 (21) 

  (22) 

 
  (23) 

where: 

 = Level-2 intercept; 

 = Level-2 slope (Hypothesis 2); 

 = Level-2 intercept; 

 = Level-2 slope (Hypothesis 3); 

 = Level-1 residual variance; 

 = residual intercept variance; 

 = residual slope variance.  

With teaching style as a predictor of the level-1 slope,  

becomes a measure of the residual variance in the averaged 

level-1 slopes across groups. If a χ² test on  is significant, 

it indicates that there is systematic variance in the level-1 

slopes that is as-of-yet unaccounted for, therefore other 

level-2 predictors can be added to the model. The slopes-as-
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outcomes model is a direct test of hypothesis 3, that teaching 

style moderates the breakfast consumption-GPA 

relationship. Finally, the percent of variance attributable to 

teaching style can be computed as a moderator in the 

breakfast consumption-GPA relationship by comparing its 

systematic variance with the pooled variance in the slopes 

(see Equation 24). 

 

 (24) 

Model Testing – A Tutorial 

To illustrate how models are developed and tested using 

HLM, a sample data set was created to run the analyses. 

Analysis was performed using HLM software version 6, 

which is available for download online (Raudenbush, Bryk, 

Cheong, Congdon, & du Toit, 2006). For the purposes of the 

present demonstration, a two-level analysis will be 

conducted using the logic of HLM.  

Sample Data  

The sample data contains measures from 300 basketball 

players, representing 30 basketball teams (10 players per 

team). Three measures were taken: Player Successful Shots on 

Net (Shots_On_5), Player Life Satisfaction (Life_Satisfaction), 

and Coach Years of Experience (Coach_Experience). Scores for 

Shots_On_5 ranged from 0 shots to 5 shots; where higher 

scores symbolized more success. Life_Satisfaction scores 

ranged from 5 to 25 with higher scores representing life 

satisfaction and lower scores representing life 

dissatisfaction. Finally, Coach_Experience scores ranged 

from 1 to 3, with the number representing their years of 

experience. The level-1predictor (independent; individual) 

variable is Shots_On_5; the level-2 predictor (independent; 

group) variable is Coach_Experience, and the outcome 

(dependent) variable is Life_Satisfaction. The main 

hypotheses were as follows: 1) the number of successful 

shots on net predicts ratings of life satisfaction, and 2) coach 

years of experience predict variance in life satisfaction.  

For the purposes of the present analysis, it is assumed 

that all assumptions of HLM are adequately met. 

Specifically, there is no multicollinearity, the Shots_On_5 

residuals are independent and normally distributed, and 

Shots_On_5 and Coach_Experience are independent of their 

level-related error and their error terms are independent of 

each other (for discussion on the assumptions of HLM, see 

Raudenbush and Bryk, 2002). 

Preparation  

It is essential to prepare the data files using a statistical 

software package before importing the data structure into 

the HLM software. The present example uses PASW 

(Predictive Analytics SoftWare) version 18 (Statistical 

Package for the Social Sciences; SPSS). A separate file is 

created for each level of the data in PASW. Each file should 

contain the participants’ scores on the variables for that 

level, plus an identification code to link the scores between 

levels. It is important to note that the identification code 

variable must be in string format, must contain the same 

number of digits for all levels, and must be given the exact 

same variable name at all levels. The data file must also be 

sorted, from lowest value to highest value, by the 

identification code variable (see Figure 4). 

In this example, the level-1 file contains 300 scores for the 

measures of Shots_on_5 and Life_Satisfaction, where 

participants were assigned identification codes (range: 01 to 

30) based on their team membership. The level-2 file 

contains 30 scores for the measure of Coach_Experience and 

identification codes (range: 01 to 30), which were associated 

with the appropriate players from the level-1 data. Once a 

data file has been created in this manner for each level, it is 

possible to import the data files into the HLM software.  

HLM Set-Up 

The following procedures were conducted according to 

those outlined by Raudenbush and Bryk (2002). After 

launching the HLM program, the analysis can begin by 

clicking File � Make New MDM File � Stat Package Input. In 

the dialogue box that appears, select the MDM (Multivariate 

Data Matrix). We will select HLM2 to continue because our 

example has two levels. A new dialogue box will open, in 

which we will specify the file details, as well as load the 

level-1 and level-2 variables.  

First, specify the variables for the analysis by linking the 

file to the level-1 and level-2 SPSS data sets that were 

created. Once both have been selected, click Choose Variable 

to select the desired variables from the data set (check the 

box next to In MDM) and specify the identification code 

variables (check the box next to ID). Please note that you are 

not required to select all of the variables from the list to be in 

the MDM, but you must specify an ID variable. You must 

also specify whether there are any missing data and how 

missing data should be handled during the analyses. If you 

select Running Analyses for the missing data, HLM will 

perform a pairwise deletion; if you select Making MDM, 

HLM will perform a listwise deletion.  In the next step, 
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ensure that under the Structure of Data section, Cross sectional 

is selected. Under MDM File Name, provide a name for the 

current file, add the extension “.mdm”, and ensure that the 

input file type is set to SPSS/Windows. Finally, in the MDM 

Template File section, choose a name and location for the 

template files.  

To run the analyses, click Make MDM, and then click 

Check Stats. Checking the statistics is an invaluable step that 

should be performed carefully. At this point, the program 

will indicate any specific missing data. After this process is 

complete, click Done and a new window will open where it 

is possible to build the various models and run the required 

analyses. Before continuing, ensure that the optimal output 

file type is selected by clicking File � Preferences. In this 

window, it is possible to make a number of adjustments to 

the output; however, the most important is to the Type of 

Output. For the clearest and easiest to interpret output file, it 

is strongly recommended that HTML output is selected as 

well as view HTML in default browser. 

Unconstrained (null) Model 

As a first step, a one-way analysis of variance is performed 

to confirm that the variability in the outcome variable, by 

level-2 group, is significantly different than zero. This tests 

whether there are any differences at the group level on the 

outcome variable, and confirms whether HLM is necessary. 

Using the dialogue box, Life_Satisfaction is entered into the 

model as an “outcome variable” (see Figure 5). The program 

will also generate the level-2 model required to ensure that 

the level-1 model is estimated in terms of the level-2 

groupings (Coach_Experience). Click Run Analysis, then Run 

the Model Shown to run the model and view the output 

screen. The generated output should be identical to Figure 6. 

The results of the first model test yield a number of 

different tables. For this model, the most important result to 

examine is the chi-square test (x2) found within the Final 

Estimation of Variance Components table in Figure 6. If this 

result is statistically significant, it indicates that there is 

variance in the outcome variable by the level-2 groupings, 

and that there is statistical justification for running HLM 

analyses. The results for the present example indicate that 

x2(29) = 326.02, p < .001; which supports the use of HLM.  

As an additional step, the ICC can be calculated to 

determine which percentage of the variance in 

Life_Satisfaction is attributable to group membership and 

which percentage is at the individual level. There is no 

consensus on a cut-off point, however if the ICC is very low, 

the HLM analyses may not yield different results from a 

traditional analysis. The ICC (see Equation 12) can be 

calculated using the σ2 (level-1) and τ (level-2) terms at the 

top of the output, under the Summary of the model specified 

 

Figure 4.  Example of SPSS data file as required by HLM.   The image on the left represents the data for level-1.  The 

image on the right represents the data for level-2.  
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Figure 5.  Building the unconstrained (null) model in HLM. 

 
 

Figure 6.  HLM output tables – Unconstrained (null) model.  

This represents a default output in HLM.  

 

heading in Figure 6 (see Equation 25). 

  (25) 

In the present example, σ2 = 14.61 and τ = 14.96, which 

results in an ICC of 0.506. This result suggests that 51% of 

the variance in Life Satisfaction is at the group level and 49% 

is at the individual level. 

Random Intercepts Model 

Next, test the relationship between the level-1 predictor 

variable and the outcome variable. To test this, return to the 

dialogue box and add Shots_on_5 as a variable group centered 

in level-1. In most cases, the level-1 predictor variable is 

entered as a group centered variable in order to study the 

effects of the level-1 and level-2 predictor variables 

independently and to yield more accurate estimates of the 

intercepts. We would select variable grand centered at level-1 

if we were not interested in analyzing the predictor 

variables separately (e.g. an ANCOVA analysis, which tests 

one variable while controlling for the other variable, would 

require grand centering). Leave the outcome variable 

(Life_Satisfaction) as it was for the first model and ensure 

that both error terms (
 
and ) are selected in the “Level 

2 Model” (see Figure 7). By selecting both error terms, the 

analyses include estimates of both the between- and within-

error. Specifically,  starts with the assumption that life 

satisfaction varies from team to team and  starts with the 

assumption that strength of the relationship between 

Shots_on_5 and Life_Satisfaction varies from group to 
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Figure 7. Building the random intercepts model in HLM. 

           

 

 
 

Figure 8.  HLM output tables – Random intercepts model. 

 

 

group. Click Run Analysis to run this model and view the 

output screen. The generated output screen should be 

identical to Figure 8.  

A regression coefficient is estimated and its significance 

confirms the relationship between the level-1 predictor 

variable and the outcome variable. To view results of this 

analysis, consult the significance values for the INTRCPT2, 

 in the Final estimation of fixed effect output table (refer to 

Figure 8), which is non-standardized. The non-standardized 

final estimation of fixed effects tables will be similar to the 

standardized table (i.e. with robust standard errors) unless 

an assumption has been violated (e.g. normality), in which 

case, use the standardized final estimation. The results of the 

present analysis support the relationship between 

Shots_on_5 and Life_Satisfaction, b = 2.89, p < .001. Please 

note that the direction (positive or negative) of this statistic 

is interpreted like a regular regression.  

To calculate a measure of effect size, calculate the 

variance (r2) explained by the level-1 predictor variable in 

the outcome variable using Equation 26. 

  (26) 

Note that σ2null is the sigma value obtained in the previous 

step (null-model testing) under the Summary of the model 

specified heading in Figure 6 (σ2null = 14.61). The σ2random is 

sigma value found at the top of the output under the 

Summary of the model specified heading in Figure 8 (in the 

present example, σ2random = 4.61). Using the values and the 

specified equation, the results indicate that Shots_on_5 
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explains 71.5% of the variance in Life_Satisfaction. 

Means as Outcomes Model 

The next step is to test the significance and direction of 

the relationship between the level-2 predictor variable and 

the outcome variable. To test this, return to the dialogue box 

and remove Shots_on_5 as a group centered predictor 

variable in level-1 by selecting delete variable from model and 

leave the outcome variable (Life_Satisfaction). Add 

Coach_Experience as a grand centered predictor variable at 

level-2 (see Figure 9). The issue of centering at level-2 is not 

as important as it is at level-1 and is only necessary when 

we are interested in controlling for the other predictor 

variables. When examining the level-1 and level-2 predictor 

variables separately, centering will not change the 

regression coefficients but will change the intercept value. 

When the level-2 predictor variable is centered, the level-2 

intercept is equal to the grand mean of the outcome 

variable. When the level-2 predictor variable is not centered, 

the level-2 intercept is equal to the mean score of the 

outcome variable when the level-2 predictor variables equal 

zero. In the current example, a mean score of zero at level-2 

is not of much interest given that coach experience scores 

ranged from 1 through 3, therefore the grand centered option 

was appropriate. When interested in the slopes and not the 

intercepts, centering is not usually an issue at level-2. Click 

Run Analysis to run the model and view the output screen. 

The output generated should be identical to Figure 10. 

A regression coefficient is estimated and, as before, its 

significance confirms the relationship between the level-2 

predictor variable and the outcome variable (at level-1). To 

view the results, see COACH_EX y01 in the output under the 

Final estimation of fixed effects table in Figure 10. The results 

 
 

Figure 9.  Building the means as outcomes model in HLM. 

 

 
 

Figure 10.  HLM output tables – Means as outcomes model. 



  66 

 

 

 

of this analysis support that Coach_Experience predicts 

Life_Satisfaction, b = 4.78, p < .001. For a measure of effect 

size, the explained variance in the outcome variable, by the 

level-2 predictor variable can be computed using Equation 

27. 

  (27) 

where τ2null is the τ value obtained in the first step (null-

model testing) under the Summary of the model specified table 

in Figure 6 (τ2null = 14.96). Next τ2means is the τ value obtained 

under the Summary of the model specified table in the present 

analysis (τ2means = 1.68; Figure 10). The results confirm that 

Coach_Experience explains 88.8% of the between measures 

variance in Life_Satisfaction. 

Random Intercepts and Slopes Model 

The final step is to test for interactions between the two 

predictor variables (level-1 and level-2). Please note that if 

only interested in the main effects of both predictor 

variables (level-1 and level-2), this final step is not necessary. 

Alternatively, this final model could be used to test the two 

previous models instead of running them separately. If you

 
Figure 11. Building the random intercepts and slopes model 

in HLM.  The mixed model must be obtained by clicking on 

“Mixed”.  

     

 

 
Figure 12.  HLM output tables – Random intercepts and 

slopes model. 
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choose to run this final model instead of testing the main 

effects separately, be aware that the results will differ 

slightly because of the maximum likelihood estimation 

methods used to calculate the models. 

To test this final model, return to the dialogue box and 

add Shots_on_5 as a group centered predictor variable in 

level-1, leave the remaining terms from the 3rd model, and 

add the level 2 predictor variable, Coach_Experience as a 

grand centered variable to both equations (f0 and f1). By adding 

it to both equations, the interaction term does not 

accidentally account for all of the variance. The error terms 

( 
 

and ) should be selected for both equations (see 

Figure 11). Finally, click Run Analysis to run the model and 

view the output screen. The generated output should be 

identical to Figure 12.  

For this output, we will focus on the interaction term 

only. The results of the interaction can be found under the 

Final estimation of fixed effects table of Figure 12 (see 

COACH_EX y11 ). HLM results reveal that the interaction 

was not significant (b = 0.38, p = .169), providing support that 

there is no cross-level interaction between the level-1 and 

level-2 predictors.  

Reporting the Results 

Now that the analyses are complete, it is possible to 

summarize the results of the HLM analysis. The statistical 

analyses conducted in the present example can be 

summarized as follows:  

Hierarchical linear modeling (HLM) was used to 

statistically analyze a data structure where players (level-1) 

were nested within teams (level-2). Of specific interest was 

the relationship between player’s life satisfaction (level-1 

outcome variable) and both the number of shots on the net 

(level-1 predictor variable) and their coach’s experience 

(level-2 predictor variable). Model testing proceeded in 4 

phases: unconstrained (null) model, random intercepts 

model, means-as-outcome model, and intercepts- and 

slopes-as-outcomes model. 

The intercept-only model revealed an ICC of .51. Thus, 

51% of the variance in life satisfaction scores is between-

team and 49% of the variance in life satisfaction scores is 

between players within a given team. Because variance 

existed at both levels of the data structure, predictor 

variables were individually added at each level. The 

random-regression coefficients model was tested using 

players’ shots on net as the only predictor variable. The 

regression coefficient relating player shots on net to life 

satisfaction was positive and statistically significant (b = 2.89, 

p < .001). Player’s life satisfaction levels were higher when 

their shots on net levels were also higher (relative to those 

whose shots on net were lower). Next, the means-as-

outcomes model added coaches’ experience as a level-2 

predictor variable. The regression coefficient relating 

coaches’ experience to player life satisfaction was positive 

and statistically significant (b = 4.784, p < .001). Life 

satisfaction levels were higher in teams with coaches who 

had more experience (relative to coaches who had less 

experience). Finally, the intercepts model and slopes-as-

outcomes model were simultaneously tested with all 

predictor variables tested in the model to test the presence of 

any interactions between predictor variables. The cross-level 

interaction between shots on net and coaches’ experience 

was not statistically significant (b = 0.38, p = .169); which 

means that the degree of coach experience had no influence 

on the strength of the relationship between shots on net and 

life satisfaction.  

Conclusion 

Since its inception in the 1970s, HLM has risen in 

popularity as the method of choice for analyzing nested 

data. Reasons for this include the high prevalence of 

hierarchically organized data in social sciences research, as 

well as the model’s flexible application. Although HLM is 

generally recommended over disaggregation and 

aggregation techniques because of these methods’ 

limitations, it is not without its own challenges.  

HLM is a multi-step, time-consuming process. It can 

accommodate any number of hierarchical levels, but the 

workload increases exponentially with each added level. 

Compared to most other statistical methods commonly used 

in psychological research, HLM is relatively new and 

various guidelines for HLM are still in the process of 

development (Beaubien et al., 2001; Raudenbush & Bryk, 

2002). Prior to conducting an HLM analysis, background 

interaction effects between predictor variables should be 

accounted for, and sufficient amounts of within- and 

between-level variance at all levels of the hierarchy should 

be ensured. HLM presumes that data is normally 

distributed: When the assumption of normality for the 

predictor and/or outcome variable(s) is violated, this range 

restriction biases HLM output. Finally, as previously 

mentioned, outcome variable(s) of interest must be situated 

at the lowest level of analysis in HLM (Beaubien et al., 2001). 

Although HLM is relatively new, it is already being used 

in novel ways across a vast range of research domains. 

Examples of research questions analyzed using HLM 

include the effects of the environment on aspects of youth 

development (Avan & Kirkwood, 2001; Kotch, et al., 2008; 

Lyons, Terry, Martinovich, Peterson, & Bouska, 2001), 
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longitudinal examinations of symptoms in chronic illness 

(Connelly, et al., 2007; Doorenbos, Given, Given, & 

Verbitsky, 2006), relationship quality based on sexual 

orientation (Kurdek, 1998), and interactions between patient 

and program characteristics in treatment programs (Chou, 

Hser, & Anglin, 1998). 

Throughout this tutorial we have provided an 

introduction to HLM and methods for dealing with nested 

data. The mathematical concepts underlying HLM and our 

theoretical hypothesis testing example represent only a 

small and simple example of the types of questions 

researchers can answer via this method. More complex 

forms of HLM are presented in Hierarchical Linear Models: 

Applications and Data Analysis Methods, Second Edition 

(Raudenbush & Bryk, 2002). Readers seeking information on 

statistical packages available for HLM and how to use them 

are directed to HLM 6: Hierarchical Linear and Nonlinear 

Modeling (Raudenbush et al., 2006).  
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