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Statistical simulation and counterfactual analysis 

in social sciences  

François Gélineau, Pierre-Olivier Bédard, Mathieu Ouimet 

Université Laval 

 

In this paper, we present statistical simulation techniques of interest in substantial 

interpretation of regression results. Taking stock of recent literature on causality, we 

argue that such techniques can operate within a counterfactual framework. To 

illustrate, we report findings using post-electoral data on voter turnout. 

 

 

 The analysis of quantitative data, and the estimation of 

regression models in particular, can now be considered 

commonplace in the social sciences. There are, of course, 

notable variations in the ways those analyses are generated 

(research design, estimation methods, etc.). In the same way, 

there are discrepancies in terms of standards when it comes 

to the interpretation of the results and their proper 

communication.  

Depending on the nature of the data at hand and the 

chosen estimation methods, the interpretation phase can be 

rather equivocal. For instance, displaying the odd ratios, or 

their natural logarithm, following logistic regressions can be 

far from intelligible, especially when one is interested in 

parameters beyond their statistical significance threshold 

and the direction of their coefficients. Consequently, a 

greater analytical effort appears to be required to flesh out 

the proper signification and meaning of parameters, most 

particularly to express their magnitude. The interpretation 

of statistical results appears crucial, especially under the lens 

of knowledge transfer, which involves non-statistical experts 

(decision-makers, policy analysts, etc.). We contend here 

that statistical simulation can be put to profit to this end.  

We also make the argument that this approach is 

compatible with a counterfactual conception of causality. 

Although this is not the place to develop a full-fledged 
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argument about causality, it has been suggested that 

counterfactual logic is central to the study of causality (see 

among others, Morgan & Winship, 2007; Pearl, 2000; 

Antonakis et al., 2011; Woodward, 2003: 191) and to scientific 

thought more generally. In effect, a counterfactual 

conception of causality refers more to an overarching logic, 

to broad features of research designs than to specific 

analytical techniques. In the case of observational research 

(which is our focus here), a counterfactual framework would 

lean towards answering specific research questions about 

the likely effect of a given phenomenon under specific 

conditions. Or, put differently, such a design would be 

driven by an interest in « what-if-things-had-been-

different questions » (Woodward, 2003). More precisely, a 

counterfactual analysis thus implies a comparison between 

two sets of conditions in the explanation of a given problem: 

one where the presumed cause is present (in the case of an 

experiment, the latter would be called a ‘treatment’), and 

one where it is absent (again, in experimental language, the 

latter would be called ‘control’). Consequently, the 

presumed causal effect would be the difference between the 

two states. The present paper aims to expose the advantages 

of specific simulation procedures applied to social science 

research problems framed in counterfactual language.  

Objectives 

Recently, multiple methods have been put forth to assist 

researchers in a more substantial interpretation of their data, 

notably through the application of statistical simulations. The 

current paper is largely based on existing works, notably 

from King, Tomz & Wittenberg (2000; see also Tomz, 
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Wittenberg & King: 2001). Our goal here is not to repeat the 

authors’ argument, but rather to build on their 

methodological insights and further their discussion of the 

interest in statistical simulation. Therefore, the objectives of 

the present paper are to 1) provide a brief overview of some 

existing simulation methods and their underlying principles 

(mainly, from a frequentist and Bayesian perspective), 2) 

discuss the relevance and implications of counterfactual 

analysis, 3) provide a few empirical illustrations of the 

simulation methods discussed, and 4) propose possible 

applications in other branches of statistics.   

Simulation in frequentist and Bayesian statistics 

Without resorting to a full review of existing statistical 

approaches and their philosophies, we can nonetheless 

frame our topic with respect with the two main statistical 

approaches – that is frequentism and Bayesianism. Both 

approaches, while often presented as largely opposed, 

display several features relevant to capture how statistical 

simulations operate. Essentially, by simulation we mean 

here two things: 1) the manipulation of the variables to 

compute quantities of interest and their variations given 

different values assigned to them, and 2) the generation of 

these estimates while taking into account the variables’ 

distributional characteristics. This definition, however, 

comes with a caveat, as it is not a unifying definition. There 

exists multiple forms of simulation, but we limit our 

comments and propositions to empirically based simulations. 

The aim of such approach is mainly to explore the 

distributional properties of parameters and to convert this 

information into the language of probabilities (i.e. 

conditional probabilities) 

Frequentism and Bayesianism differ on a number of 

aspects but we explore here three conceptions – of 

probabilities, inferences and analytical output – all of which 

have bearing on the topic of simulation. First of all, both 

operate (or can operate) as functions of maximimum 

likelihood (Jackman, 2000: 376) but differ on their views of 

parameters to be estimated, and more generally on the 

probabilistic notions underlying those estimations. For the 

frequentists, the parameters of the population are fixed (θ), 

but unknown, and the properties of the sample ( ) are 

random (meaning that multiple sampling would generate 

different results). Each sample is a random draw from an 

unknown population. As in the case of ordinary least 

squares (OLS), it is posited that the sample is normally 

distributed, that its distributional properties are similar to 

that of the population. Therefore, the inference that one is 

making is about the sample and its likelihood, and not 

directly about the population. In sum, in this perspective we 

seek to maximize the likelihood of the model, or rather to 

minimize its deviation from a perfect model (Pétry & 

Gélineau, 2009: 185).  

Following the Bayesian approach, the reverse is true. The 

properties of the sample ( ) are fixed and the parameters of 

the population (θ) are random (in the sense that they appear 

unknown to the researcher). This last idea refers to the 

stochastic component of the models estimated in 

Bayesianism. The Bayesian methods are a way to integrate 

known information about a problem, and confronting this 

information to the data at hand, through Bayes’ famous 

theorem, which we can describe as follows:  

  

where, Pr (H | E) is the probability that H is true, as a 

function of the data (therefore expressing a justification for 

our belief in H). The left-hand side of the equation is the 

posterior density, obtained through the estimation. The right-

hand side can be explained as follows: Pr(E | H) is the 

probability of obtaining the observed results, reached 

through maximimum likelihood. Pr(H) is the expected 

probability (called prior density function), expressed and 

quantified a priori, about the research hypothesis. Finally, Pr 

(E) is the marginal probability. Therefore, the density 

function is related to the true parameter β (beta), and not the 

estimated , as is the case in standard regression: “it is 

interpreted as reflecting the odds the researcher would give 

when taking a bets on the true value of β.” (Kennedy, 2008: 

214) The formula just described is thus a “weighted average 

of the prior density and the likelihood (the “conditional” 

density of the data, conditional on the unknown 

parameters).” (Kennedy, 2008, 214) Or to put it again 

differently, “the posterior is proportional to the prior times 

the likelihood.” (Jackman, 2004: 485) 

Consequently, the frequentist and Bayesian approaches 

also differ in their analytical output. Without going into too 

much detail here, let’s just recall that frequentist analysis 

produces point estimates, that is, punctual estimations, 

whereas Bayesian analysis produces as we have seen 

posterior density functions. Also, the Bayesian approach isn’t 

based on sampling distributions. Nonetheless, and this is 

central to our upcoming discussion, Bayesian approaches 

tend to privilege statistical simulation as a way to increase 

statistical power. And this is consequent with what has been 

exposed earlier: “Anything we want to know about a 

random variable θ, we can learn by repeated sampling from 

the probability density function of θ.” (Jackman, 2004: 493) 

The main reason we considered this very brief incursion 

into the Bayesian approach, is that is has had a notable 

influence on several procedures such as Markov Chain 

Monte Carlo: “MCMC has a distinctly Bayesian heritage and 
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is associated with a resurgence in Bayesian statistics.” 

(Jackman, 2000: 376) Also, the reach of such statistical 

procedures goes well beyond the Bayesian field of statistics, 

and reach the frequentists as well: “we have also become 

more at ease with using Bayesian ideas such as simulation, 

whether from a “classical” (Herron 2000; King, Tomz, and 

Wittenberg 2000) or a Bayesian (Jackman 2000) perspective.” 

As we will see later on, some existing methods allowing for 

the simulation of parameters (for instance, CLARIFY) have a 

clear Bayesian signature, in that they operate largely 

through Monte Carlo simulation (Bartels & Sweeney, 2004: 

5), while still remaining in the frequentist tradition and 

without deflecting from central limit theorem.  

The relevance of such methods and its applications, 

which will be described below, tend to illustrate that 

frequentism and Bayesianism, though quite different on 

various aspects, are nonetheless complementary 

(Williamson, 2011). What is more, we can go on to suggest 

that their analytical differences are mainly a consequence of 

the distinct, yet complementary, inferential objective each 

pursues: the frequentist mainly produces inferences about 

classes of events (e.g. the effect of a given variable), whereas 

Bayesianism appears a useful tool to produce inferences 

about particular cases or events (the probability of 

occurrence of a phenomena, given what we know).   

Counterfactuals, causality and simulations  

The recent interest in simulations has been equally 

fraught with enthusiasm (Reiss, 2011), doubt (Kästner & 

Arnold, 2011) and skepticism (about a specific form of 

simulation; Funcke, 2011). To some extent, this development 

is interestingly paralleled (although non necessarily co-

extensive) with a renewed interest in the philosophical and 

methodological aspects of causality. We can distinguish 

between at least two types of concerns in this respect, that is, 

the proper conceptualization of causality (its ontology and 

its formalization) and the conditions of its materiality and 

the related methodological issues in the study of presumed 

causality.   

As was suggested above, the counterfactual logic is 

closely related to the language of experiments (“treatment 

vs. control”). But this need not be limited to experimental 

designs, and we argue that observational analyses can 

emulate, so to speak, such counterfactual logic. What is 

more, statistical simulations can be put to profit in this 

respect. While it would probably be excessive to suggest that 

statistical simulations could act as substitute for experiments 

(Kästner & Arnold, 2011) – especially in social sciences, 

simulations can be designed and described using 

counterfactual language, therefore approximating 

experimental designs, at least in principle. That is to say “the 

epistemology of simulation is essentially an experimental 

epistemology” (Reiss, 2011: 250). As we shall see below, it is 

possible to proceed to postestimation analyses in a 

counterfactual fashion, where the intervention is emulated 

by a manipulation of the values of given variables.  

Of course, this does not exempt the researcher to be 

methodologically sensitive to the usual disclaimer about the 

validity of causal inferences in non-experimental and the 

concerns about endogeneity. We can define this generalized 

problem as such: “If the relation between x and y is due, in 

part, to other reasons, then x is endogenous, and the 

coefficient of x cannot be interpreted, not even as a simple 

correlation (i.e., the magnitude of the effect could be wrong 

as could be the sign)” (Antonakis et al., 2010: 1080). As it is 

understood here, the simulation procedures we explore have 

empirical contents (in that it is not merely intended to 

explore mathematical properties), and could be more or less 

conceived as a way to model reality. Therefore, the methods 

we discuss are valid inasmuch as the data, specification and 

estimations are valid. We believe that statistical modeling, 

simulation and postestimation procedures offer an epistemic 

access to causal inference (Russo, 2009: 55; Khander, 

Koolwal & Samad, 2010) and that this should be 

accompanied by a focus on the conditions of validity of those 

causal inferences (Antonakis et al., 2010: 1090; Shadish, 

Cook, & Campbell, 2002; Pearl, 2004). 

Simply put, the idea behind the counterfactual approach 

allows us to mimic the ex ante treatments and controls that 

are usually introduced in laboratory experiment, but with an 

ex post statistical strategy. In a laboratory setting, we would 

select the participants on the basis of some specific 

characteristics (e.g., age) in order to neutralize its effect on 

the dependent variable (e.g., voter turnout). This would 

allow us to measure the impact of another variable (e.g., 

years of schooling) on voter turnout through simple 

bivariate correlation. In the postestimation approach we use 

random participant selection, and assign a fixed value to 

every participant on one variable (age) while letting the 

other (years of schooling) vary when computing the point 

estimates.  In doing so, we can isolate the effect of schooling 

on voter turnout while controlling for age. 

Approaches to the computation of  

conditional quantities of interest 

Predicted quantities of interest 

It is quite common in regression analysis to report the 

coefficient, its direction, and its statistical significance at a 

given threshold. Although this can be instructive to some 

extent, it can also be limited in maximum likelihood models 

as the scale of the coefficient is not always intuitively and 
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directly interpretable. This phenomenon holds true for 

different quantities of interest such as probabilities or other 

values.  In this paper, predicted probabilities are used as an 

illustrative example of the simulation of a specific quantity 

of interest. The first step to obtain a more substantial 

interpretation of the data is to compute the predicted 

probabilities for each (or only one) categories of the 

dependent variable. It is possible to compute the predicted 

probability for each observation contained in the data set 

and obtain a new variable expressing the mean of those 

probabilities for each category of the dependent variable. In 

logistic regression, the predicted probability for each 

observation is obtained by the following equation:  

  

where L is the predicted log-odds ratio obtained by 

resolving the logit equation with individual data points. 

Averaging the values obtained with this formula using the 

observed data points in the dataset informs us of the mean 

probability of obtaining a positive value in the case of a 

dichotomous variable. This provides some information, but 

in theory, it shouldn’t be very different from the mean value 

of this variable. That is to say that restraining yourself to this 

information would be of little value. To the extent that we 

are interested in obtaining a refined analysis of the marginal 

effect of one (or more) explanatory variable(s) when they 

take on different values it is possible to apply the 

counterfactual scheme described above by comparing the 

predicted probabilities for two given scenarios.  

By scenario, we mean a situation where we assign a 

specific set of values to the independent variables in the 

model in order to obtain a predicted probability. The interest 

of such procedure is that it allows us to measure the relative 

impact of a single variable on the predicted probability. To 

do so, we repeat the simulation by maintaining the variables 

at their same values, except for the variable of interest which 

would be free to vary within the range of interest (say, an 

increase of one unit in the case of a continuous variable, and 

from the minimum to maximum (0 to 1) in the case of a 

dichotomous variable). Although extremely simple, this 

method can be informative of the effect of certain variables 

and can be useful to depict realistic scenarios of interest. 

A notable caveat of this simple method is that it doesn’t 

take into account the notion of uncertainty. The computation 

of the probabilities is based on the observations in the data 

set at hand and therefore the probabilities are expressed as 

point estimates, and not as distributions of probabilities. If 

there were no uncertainty surrounding our estimation, we 

wouldn’t obtain a distribution but a specific value. This 

absence of uncertainty is posited implicitly if we report on 

predicted probabilities without confidence intervals.  

This would be paradoxical if we return to the frequentist 

postulates regarding the status of estimated coefficients. 

Uncertainty, whether it is caused by measurement errors or 

by pure randomness, is inherent to regression analysis and 

should therefore be reported in analyses built on those 

estimations. As signaled by Herron (1999: 85):  

[...] if β is a random variable after estimation, then 

functions of β are random as well. In particular, 

randomness in β implies that the values of such 

functions cannot be known with complete certainty 

even after probit estimation. Therefore, when 

researchers estimate probit models and report 

functions of estimated β vectors, it is incumbent on 

them to identify residual uncertainty by also 

reporting standard errors and/or confidence intervals 

for the estimated function values. 

One of the ways we can compute a confidence interval 

for predicted probabilities, also suggested by Herron, is to 

draw random vectors from the normal distribution of the 

variables and to compute the predicted probabilities in a 

repeated fashion (ibid: 87). This is precisely what CLARIFY 

(King et al., 2000) allows one to do, through a simplified 

sequence. We turn next to the sequence used to randomly 

draw parameters from the normal distribution, as 

implemented in CLARIFY, to then turn to possible 

expansion and applications of this methods and its 

principles.   

Random simulation of coefficients with CLARIFY 

As was suggested above; “We can learn about the 

distributional properties of a random variable, y, by 

sampling many (m) times from the probability distribution 

that generated y.” (Bartels & Sweeney, 2004: 4) In this 

respect, the programmed sequence CLARIFY (King, Tomz et 

Wittenberg, 2000; Tomz, Wittenberg & King, 2001) 

implemented for STATA software, allows for the generation, 

through random simulation, of parameters distributions. 

These distributions can then be used to estimate predicted 

probabilities involving a confidence interval. This can be 

done in a counterfactual fashion, as already suggested, and 

in this sense, can yield more substantive interpretation of 

data.  

The procedure employed in CLARIFY is essentially a 

three-step operation, corresponding to three implemented 

commands in STATA. The first step is to estimate the 

regression model, just as would be done without resorting to 

the CLARIFY program. At that stage, the command 

generates as many coefficients as there are variables in the 

model, plus the constant (i.e. the mean value of Y when X 

variables are fixed at 0). However, for each coefficient β, one 

thousand observations are simulated, using the known 
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properties of the variable (mean, standard deviation). In 

doing so, CLARIFY randomly generates a series of 

parameters with the same distributional characteristics. 

Those simulated parameters can thus be considered as 

multiple observations on the initial coefficients.  

We can easily see at this stage that the procedure is not 

unfaithful to the central limit theorem postulates, in that the 

simulations are built around a normal distribution. On the 

other hand, the simulations include a stochastic component 

kindred to Bayesian techniques (e.g. MCMC). Consequently, 

as a result of this random component, the estimation 

generated by this method a likely to differ lightly when 

repeated.  

There is also a difference to signal between the approach 

just exposed and other common techniques, such as 

bootstrapping. While the latter also simulates data, it is 

distinct in that it considers the sample as a pseudo-population 

from which other samples are drawn. In contrast, CLARIFY 

doesn’t generate a subsample, but rather new distributions 

from the known properties of the parameters.  

The second step in the process, once the model is 

estimated and the parameters are simulated, is to set the 

explanatory variables at given values. These can be the 

average value of the explanatory variables, or any other 

value that illustrates a given scenario. This is where the 

counterfactual logic comes into play.  

Once the values are set, we can compute the quantities of 

interest (predicted or expected probabilities or first 

differences). This step is essentially the resolution of the 

equation for each combination of simulated coefficients (the 

default in CLARFY is 1000). In the case of predicted 

probabilities, the output is to be captured as the mean 

probability (average of the 1000 predicted probabilities) of 

obtaining, say, a positive value in a dichotomous dependent 

variable. This method is all the more interesting because it 

allows the result to be reported with a confidence interval. 

This interval stands as the average of the upper and lower 

bounds of each distribution, given any given level of 

confidence. It should be noted that in the case of first 

differences (the reported difference in probabilities when a 

variable of interest take successively two different values), 

the estimation of the probability is sensitive to the values to 

which the variables are set. Therefore, as the distribution is 

curvilinear (as it is a log function), once the values of all the 

explanatory variables allow the probability to go beyond the 

curve’s inflexion threshold (where the curve flattens), the 

marginal effect of the variable of interest will be minimal, as 

it approaches a probability of 1.  

We can clearly see how CLARIFY provides the 

advantage of reporting predicted probabilities contained in 

a confidence interval. The ensuing estimation is more 

reflective of the uncertainty and margin of error 

surrounding the estimation of β.  

Simulation of parameters through sequences (or loops) 

operating in CLARIFY 

The interest of such a method resides precisely in the fact 

that the parameters are simulated on the basis of the 

observation values themselves. Concretely, as we suggested 

before, the first three steps described above remains 

essentially the same. Yet we introduce a small change in the 

second step (after the estimation of the model). Instead of 

imposing a single set of values to the explanatory variables, 

we set, in as many iterations as there are observations in the 

dataset, the variables to the real values of each observation. 

The fist iteration thus uses the values of individual i. In 

doing so, we obtain a distribution of parameters based on 

the observed values of the first individual in the dataset. At 

that stage, we obtain an averaged predicted probability, 

with its confidence interval (lower and upper bound), for 

individual i. The sequence is then rerun based on the 

observed values in individual ii. The sequence is then 

repeated for every individual. The results of this procedure 

are stored in a new variable. In order to obtain an overall 

predicted value, we simply take the mean value of the 

newly created variable. The main advantage of this 

procedure is that it makes no explicit assumption about the 

distribution of the independent variables. 

Empirical illustrations   

To illustrate possible applications of the procedures 

described above, we develop a straightforward voter 

turnout model. The extant literature provides many 

plausible explanations to determine why some individuals 

vote while others abstain. 1 In the Canadian context, authors 

generally identify two series of explanations: 

sociodemographics and attitudinal factors (Blais 2000; Blais 

et al. 2000; Blais et al. 2002; Nevitte et al. 1999; O’Neil 2003; 

Pammett and LeDuc 2003; Rubenson et al. 2003). For 

instance, on the one hand, men, French-speakers, older 

people, wealthier, and more educated individuals are all 

expected to have a greater propensity to vote. On the other 

hand, people who immigrated recently as well as more 

cynical and less politically interested individuals are 

expected to vote less. 

                                                                 

1 See Blais 2000, chapter 2, for a nice review of the 

socioeconomic determinants of turnout in comparative 

perspective. 
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Data set  

The model we estimate uses individual level data from a 

post-electoral survey administered immediately after the 

December 8, 2008 Quebec general election. The 

questionnaire was administered by Jolicoeur et Associés, a 

Montreal-based survey firm. Interviews were completed 

between December 9, 2008 and January 24, 2009. 

Respondents were selected from a list of randomly sampled 

phone numbers. The overall response rate was established 

at 38.4%. 

A sampling strategy was developed to obtain a greater 

number of non-voters than we generally obtain through 

phone surveys. This strategy assigned a higher selection 

probability to non-voters in households that contain both 

voters and non-voters (mixed households). The resulting 

sample of 9992 respondents included 742 voters and 257 

non-voters. Even with such a strategy, we were not able to 

match the real ratio of non-voters to voters. Our non-

weighted estimate of turnout is 74.27%. The real turnout was 

almost 17% lower, at 57.43%.  

The models 

The model we use is fairly straightforward and follows 

the strategy used by Blais et al. (2004). We estimate a probit 

regression to assess the direct effect of a series of 

sociodemographic and attitudinal variables on the 

individual propensity to vote3. “Age” is inserted as the 

number of years4. “Education” is a categorical variable that 

distinguish respondents (1) with no schooling to secondary 

incomplete from (2) those with a secondary diploma 

completed and (3) those with a university diploma 

completed. The variable “francophones” is a dichotomous 

variable that identify respondents who mostly speak French 

at home. The variable labeled “immigrants” is a 

dichotomous variable that identifies respondents who 

immigrated to Quebec during the last 10 years. Finally two 

attitudinal variables are added to the model. These were 

generated from a series of 21 survey questions through a 

                                                                 

2 Because of missing values, the final sample contains 793 

individuals, of which 587 (or 75%) declared having voted. 

3 The reader is referred to the Apendix to consult the coding 

used to generate the basic probit model (see, “BASIC 

PROBIT MODEL AND ESTIMATION OF Y USING THE 

MEAN VALUES OF THE IND VARS”) as well as the coding 

used for all subsequent analyses.  

4 Note that in this section, the life cycle effect is not modeled 

as a curvilinear effect. Doing so would have made the path 

analysis too complex to interpret. 

 

factor analysis. These variables measure political interest 

and cynicism. These two variables are zero-centered and 

range from about -3 to 3. 

The simulation phases 

In order to draw a comparison of the methods surveyed 

above, we proceed to compute the predicted probabilities, 

following the estimated model. We hereby intend to show 

that the different procedures, although similar in features, 

can yield variable results, even when ran with the same 

data. Before presenting the results, let us give an overview 

of how the procedures discussed above were applied in our 

demonstration.  

We first estimated the predicted probability by setting 

the values of all explanatory variables to their mean, as in 

the simple CLARIFY strategy presented above. We resolved 

the equation to generate the average probability of 

occurrence of a positive value in y (i.e. propensity to vote). 

This analysis allows us to answer the question concerning 

the probabilities of voting for an average voter (as defined 

by its sociodemographic characteristics). Of course, by using 

the mean values, this strategy assumes that the independent 

variables follow a normal distribution. 

Secondly, we proceeded to the estimation of the same 

quantity of interest, but instead of resolving the equation 

using the sample means, we worked by iterations, using the 

actual observed values for each individual in the dataset. 

The first iteration used the values of individual i, the second 

used the values of individual ii, the third used those of 

individual iii, and so forth. In the end, we completed as 

many iterations as there are individuals in the dataset. The 

final estimations were obtained by taking the mean 

predicted probabilities of the n iterations. The interest of this 

method is that it is reflective of real observed values, and 

that it does not assume the normal distribution of the 

independent variables.  

Third, we estimated the differences in predicted 

probabilities (first difference) by setting the explanatory 

variables at their mean. As we were interested in describing 

the marginal effect of specific variables (mainly, the 

attitudinal disposition – cynicism), we allowed the latter to 

vary. Starting from the initial position to its mean, the 

variable of interest was then downgraded by one standard 

deviation below the mean, therefore capturing the effect of 

lower cynicism in voting behavior. This was done by 

following the steps implemented in the simplest CLARIFY 

strategy – as described above in the first step.  

Although the first differences are useful to flesh out the 

magnitude of a given variable, the results of such 

estimations (using the simple CLARIFY strategy) remain 

bounded by the values set to the explanatory variables (that 
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is, in the preceding example, to their mean). To give the 

estimations a more realistic tone, we worked by iterations, 

just like in the second strategy outline above. The 

procedure5, akin to that applied by Duch & Stevenson (2008, 

2005), consists in downgrading the explanatory variable of 

interest (in this case, cynicism) by a unit, starting from the 

actual observed value for each individual. That is to say that 

individual i, who scored 0 will be downgraded to 0 minus 

one standard deviation, individual ii, who scored 3, will be 

set to 3 minus one standard deviation, and so forth. The first 

difference is thus estimated for every individual in as many 

iterations as there are individuals in the dataset. The 

individual effects are then averaged (so are the confidence 

interval lower and upper bounds). We contend that this 

strategy allows the predicted probabilities estimated to be 

closer to the actual data, and hence be more convincing and 

realistic. 

Results 

The basic probit model used for our demonstration was 

estimated on 786 observations and generated a pseudo R2 of 

                                                                 

5 As described above, is also close to the second step 

described.  
 

0.1132, as reported in Listing 1. As it is the main focus of our 

demonstration, let us now focus mainly on the results for 

our variable of interest, that is cynicism. As shown, it is 

statistically significant at the 0.001 level, and the negative 

coefficient suggests that a greater level of cynicism induces a 

lower propensity to vote, when all things remain constant.  

We are mainly interested in the substantive effect of the 

variable and therefore report the predicted probabilities, 

marginal effects and the like in a counterfactual framework. 

As described above, our first postestimation strategy yielded 

a predicted probability for the likelihood of voting when all 

other explanatory variables contained in the model are set to 

their mean. As shown in Listing 2, the average predicted 

probability of voting is 0.7749 (with a confidence interval 

located between 0.7419 and 0.8066). 

This result is interesting in itself, but it comes with a 

caveat. When one is dealing with categorical and 

dichotomous variables, the mean, while statistically correct, 

just isn’t realistic. As this was our case (“education” is 

categorical while “immigration status” and “French 

speaking” are dichotomous), it is worth turning to an 

approach that is more representative of the data at hand. As 

described above, our second strategy was to sequentially 

impose the scores of each individual, and then take the 

Listing 1. A probit model of voting propensity 

 
Iteration 0:   log likelihood = -442.54388   
Iteration 1:   log likelihood = -392.82019   
Iteration 2:   log likelihood = -392.43731   
Iteration 3:   log likelihood = -392.43719   
Iteration 4:   log likelihood = -392.43719   
 
Probit regression                                 Number of obs   =        786 
                                                  LR chi2(7)      =     100.21 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -392.43719                       Pseudo R2       =     0.1132 
 
------------------------------------------------------------------------------ 
       statu |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
     interet |   .3188387   .0620054     5.14   0.000     .1973104     .440367 
     cynisme |  -.1999815   .0635844    -3.15   0.002    -.3246047   -.0753583 
        age1 |   .0202896   .0036323     5.59   0.000     .0131705    .0274087 
        educ |   .0632003   .0863653     0.73   0.464    -.1060726    .2324731 
       femme |   .1798704     .10392     1.73   0.083     -.023809    .3835498 
       anglo |  -.4082725   .2198382    -1.86   0.063    -.8391475    .0226025 
     nouvimm |  -.9579363    .344262    -2.78   0.005    -1.632678   -.2831952 
       _cons |  -.3960619   .2726144    -1.45   0.146    -.9303763    .1382526 
------------------------------------------------------------------------------ 

 

 

Listing 2. Predicted probability of voting, given that all variables are set to their means  

 

      Quantity of Interest |     Mean       Std. Err.    [95% Conf. Interval] 
---------------------------+-------------------------------------------------- 
         Pr(statu=votants) |   .7749115     .0162244     .7419243    .8065885 
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average predicted probability. As reported in Listing 3, this 

strategy yields an estimated probability of voting of 0.7476 

(with in a confidence interval ranging from 0.6691 (yhat_lo) 

to 0.8183 (yhat_hi)).  

While the probability is still quite high, it is interesting to 

note that our second strategy yielded a different predicted 

probability. We could certainly argue that the results are not 

strikingly different, but it still goes to show that these kinds 

of postestimation procedures are sensitive to the values we 

use to obtain the predicted probabilities, a point to which we 

will return in our closing comments.  

We now turn to our results of differences in the 

predicted probabilities (first differences) by applying the two 

different approaches described above. At this stage, we 

proceeded to estimate the marginal effect of cynicism by 

setting all the explanatory variables to their mean, and by 

letting the variable of interest (cynicism) be downgraded by 

one standard deviation from the mean. The marginal effect, 

in this case, is simply the reported difference between the 

two predicted probabilities for the two scenarios. As 

reported in Listing 4, the marginal effect of cynicism, using 

this strategy, is estimated to be 0.0481 (with a confidence 

interval ranging from 0.0200 to 0.0753).  

Finally, we estimated the marginal effect of our variable 

of interest by iteratively downgrading it by one standard 

deviation from the observed value for each individual, as 

described above. As reported in Listing 5, the marginal 

effect of cynicism on turnout is estimated to be 0.0462 (with 

a confidence interval ranging from 0.0179 (d_yhat_lo) to 

0.0753 (d_yhat_hi).  

Concluding remarks 

We opened up by suggesting the importance of applying 

simulation technique to generate more substantive 

interpretations of statistical data, to “simulate for substance” 

(Bartels & Sweeney, 2004). We have shown in this paper that 

relatively simple methods can be applied, following 

statistical regressions, to yield estimates reporting quantities 

of interest expressible in the language of probabilities. We 

contend that taking greater advantage of such techniques 

can only be beneficial to flesh out the implications of 

inferential claims about presumed exogenous variables.  

Nonetheless, the simulation procedures discussed above 

have some limits that should be made explicit. First of all, as 

the methods presented here intervene mainly after the 

model has been specified and estimated, it cannot be seen as 

an easy way out of the difficult problems that hinder 

statistical analyses more generally (that is, correct model 

specification, endogeneity, measurement error, 

multicollinearity, etc.). We can see that the results are model-

dependent, in that they are an extension of the distributional 

properties of the variables contained in the model. For the 

sake of our demonstration, these things were taken for 

granted, even though in the course of current analysis, these 

aspects are fundamental.  

The second identifiable limit to the simulation 

Listing 3. Predicted probability of voting – given that all observed values are sequentially imposed  

 
    Variable |       Obs        Mean    Std. Dev.       Min        Max 
-------------+-------------------------------------------------------- 
        yhat |       786    .7476261    .1523263   .1739246   .9849181 
     yhat_lo |       786    .6691551    .1809765   .0435246    .964664 
     yhat_hi |       786    .8183593    .1221224   .3397878   .9957854 

 

 

Listing 4. Marginal effect of cynicism – given that all explanatory variables are set to their means and that 

cynicism is downgraded by a standard deviation below the mean 

 
      Quantity of Interest |     Mean       Std. Err.    [95% Conf. Interval] 
---------------------------+-------------------------------------------------- 
            dPr(statu = 1) |   .0481557     .0144332     .0197009    .0753839 

 

 

Listing 5. Marginal effect of cynicism – given that all explanatory variables are set to their means and that 

cynicism is downgraded by a standard deviation below the actual observed value. 

 
    Variable |       Obs        Mean    Std. Dev.       Min        Max 
-------------+-------------------------------------------------------- 
      d_yhat |       786    .0462472    .0169467   .0047315   .0702915 
   d_yhat_lo |       786    .0179051    .0062936   .0015096   .0312669 
   d_yhat_hi |       786    .0753074    .0275097    .008661   .1188982 

 



 104 

 

 

procedures discussed here is that they are sensitive to the 

type of variables mobilized in the estimation, especially 

when those are not normal-centered. This was the case for 

some of the variables used in our demonstrations, and the 

results suggest that the quantities of interest estimated aren’t 

necessarily constant, when shifting the values imposed on 

the explanatory variables. Although the discrepancy 

certainly was not a major one, it nonetheless suggests a form 

of caution when proceeding to this kind of analysis and its 

interpretation. One should keep in mind that these 

estimations are partly contingent, in that they are 

conditional on the values one feeds in the explanatory 

variables. As see above, the iterative sequences are a 

possible solution to circumvent this kind of problem, as it 

remains committed to the estimation of predicted 

probabilities based on observed values.  

In a general sense, our demonstration has hopefully 

shown the relevance of statistical simulation and 

counterfactuals but, in our view, it also acts as a reminder of 

the prime importance to think about the way we define our 

counterfactuals (see, among others, King & Zeng, 2007; 

2006). This can be considered an argument that reinstates 

the importance of guiding our analyses by theory, or by 

being pragmatically guided and allowing minimal realism 

in our statistical operations.  
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Apendix. Programming used in STATA 11 

* BASIC PROBIT MODEL AND ESTIMATION OF Y USING THE MEAN VALUES OF THE IND VARS  

* [Results are shown in Listing 1 & 2] 

use analyse_v1, clear 

tab statu 

estsimp probit statu interet cynisme age1 educ femme anglo nouvimm 

setx mean 

simqi, prval(1) genpr(yhat) 

summ yhat 

 

 

*ESTIMATION OF Y USING THE LOOP STRATEGY [Results are shown in Listing 3]  

use analyse_v1, clear 

probit statu interet cynisme age1 educ femme anglo nouvimm 

keep if e(sample) 

gen yhat=. 

gen yhat_lo=. 

gen yhat_hi=. 

gen id=_n 

summ id 

local e = r(max) 

 

forvalues i = 1/`e' { 

 

 quietly: estsimp probit statu interet cynisme age1 educ femme anglo nouvimm 

 

 quietly: setx interet interet[`i'] cynisme cynisme[`i'] age1 age1[`i'] educ 

    educ[`i'] femme femme[`i'] anglo anglo[`i'] nouvim nouvim[`i'] 

 

 quietly: simqi, prval(1) genpr(prob) 

 

 quietly: summ prob 

 

 quietly: replace yhat=r(mean) if id==`i' 

 

 quietly: _pctile prob, p(2.5, 97.5) 

 

 quietly: replace yhat_lo=r(r1) if id==`i' 

 

 quietly: replace yhat_hi=r(r2) if id==`i' 

 

 drop b1 b2 b3 b4 b5 b6 b7 b8 prob 

} 

 

summ yhat yhat_lo yhat_hi 

 

*ESTIMATION OF D.Y USING SIMPLE CLARIFY STRATEGY [Results are shown in Listing 4] 

use analyse_v1, clear 

tab statu 
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estsimp probit statu interet cynisme age1 educ femme anglo nouvimm 

setx mean 

simqi, pr fd(prval(1)) changex(cynisme mean -.88) 

 

 

*ESTIMATION OF D.Y USING THE LOOP STRATEGY [Results are shown in Listing 5] 

use analyse_v1, clear 

probit statu interet cynisme age1 educ femme anglo nouvimm 

keep if e(sample) 

gen d_yhat=. 

gen d_yhat_lo=. 

gen d_yhat_hi=. 

drop cynisme1 

gen cynisme1=cynisme-.88 

gen id=_n 

summ id 

local e = r(max) 

 

forvalues i = 1/`e' { 

 

 quietly: estsimp probit statu interet cynisme age1 educ femme anglo nouvimm 

 

 quietly: setx interet interet[`i'] cynisme cynisme[`i'] age1 age1[`i'] educ  

   educ[`i'] femme femme[`i'] anglo anglo[`i'] nouvim nouvim[`i'] 

 

 quietly: simqi, prval(1) genpr(prob1) 

 quietly: setx cynisme cynisme1[`i'] 

 quietly: simqi, prval(1) genpr(prob2) 

 quietly: gen d_prob=prob2-prob1 

 

 quietly: summ d_prob 

 

 quietly: replace d_yhat=r(mean) if id==`i' 

 

 quietly: _pctile d_prob, p(2.5, 97.5) 

 

 quietly: replace d_yhat_lo=r(r1) if id==`i' 

 

 quietly: replace d_yhat_hi=r(r2) if id==`i' 

 

 drop b1 b2 b3 b4 b5 b6 b7 b8 prob1 prob2 d_prob 

} 

 

summ d_yhat d_yhat_lo d_yhat_hi 
 

 


