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Outlier identification often implies inspecting each z-transformed variable and adding 
a Mahalanobis D2. Multiple outliers may mask each other by increasing variance 
estimates. Caroni & Prescott (1992) proposed a multivariate extension of Rosner’s 
(1983) technique to circumvent masking, taking sample size into account to keep the 
false alarm risk below, say, α = .05. Simulations studies here compare the single 
multivariate approach to "multiple-univariate plus multivariate" tests, each at a 
Bonferroni corrected α level, in terms of power at detecting outliers. Results suggest 
the former is better only up to about 12 variables. Macros in an Excel spreadsheet 
implement these techniques. 

 
 

The impetus of the present work was to identify, in the 
context of a graduate course in multivariate statistics, sound 
statistical procedures to recommend for the examination of 
multivariate data for the detection of outliers, assuming 

normal distributions. The basic consideration is that the 
statistical criterion beyond which a piece of data would be 
considered an outlier must take into account both the 
number of cases (subjects) inspected as well as the number 
of variables examined if the variables are inspected one by 
one. This is required to adequately control the risk of falsely 
rejecting at least one case that actually belongs to the 
population. In particular, a fixed critical z-score, irrespective 
of number of variables or of sample size, can hardly be 
recommended. Beyond controlling for false alarm (FA) rate, 
an adequate outlier detection procedure should 
accommodate, for adequate sensitivity, the fact that a 
multiplicity of outliers makes their detection more difficult 
than detecting a single outlier, due to a masking effect. 
Furthermore, for practical considerations, an adequate 
procedure must be available even to students with no 
computer programming experience and should 
accommodate cases belonging to groups that could differ in 
means (assuming homogeneity of their covariance matrices). 

Based on work by Wilks (1963) and by Rosner (1983), 
Caroni and Prescott (1992) documented a multivariate 
outlier detection procedure meant to control the FA rate 

even when some real outliers are present in the sample, i.e. 
controlling the risk of declaring outliers outside the subset 
actually present in the sample. Although this appears close 
to the optimal procedure sought to recommend, except for 
easy availability, no discussion was found of whether this is 
uniformly better than applying Rosner’s (1983) procedure 
with a Bonferroni correction on each of the p variables (i.e., 
setting "variable-wise α" to "global α"/p in testing each 
variable, where p is the number of variables) when the 
outliers to be detected are actually outliers on a single 
variable. Initial exploratory simulations with various 
combinations of number of cases and number of independent 
variables indicated some advantage for multiple univariate 
tests over a single multivariate test, which would 
correspond to the usual recommendation to inspect the z 
scores on each variable besides inspecting the global 
Mahalanobis D2. 

Obviously, the multiple univariate approach alone 
would not detect pattern-only outliers, i.e. outlier cases in 
which all variables show individual scores within an 
acceptable range but their pattern does not fit the rest of the 
distribution. If a multiplicity of univariate test, with 
adequate control of FA rate, was to be generally superior to 
the single multivariate test for detecting univariate outliers 
within the sample, then a general procedure should apply 
both approaches, so as not to miss pattern-only outliers, 
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correcting appropriately for the extra multivariate test 
added to the p univariate tests. Exploratory work on this 
question indicated that counting the multivariate test as only 
half an extra test, for the purpose of applying a Bonferroni 
correction for the total number of tests, is generally 
appropriate. 

Both the Rosner univariate outlier detection procedure 
and the Caroni and Prescott (CP) multivariate outlier 
detection procedure include a parameter k that specifies an 
upper limit on the actual number of outliers that could be 
present in the data and both were documented with k = 10 in 
the presence of up to five outliers in the data sets. These 
procedures do not require the exact number of outliers to be 
known, k is the maximum expected. But if more than k 
outlier cases are actually present in the sample, masking 
effects might prevent even some of the k most extreme cases 
from being detected, although they might be if a larger value 
of k was selected. 

In these procedures, the successively most extreme 
values (or most extreme cases, for the multivariate test), 
from none to k-1, are iteratively excluded from the sample 
and the most extreme remaining value is tested against a 
suitable criterion that depends on the current sample size. 
All extreme values down to the latest one to exceed its own 
criterion (based on current sample size) are declared 
outliers, even if some earlier extreme values did not qualify 
by themselves as significant outliers, presumably because of 
masking, i.e. because the currently remaining outliers in the 
sample inflated the variance estimate and displaced the 
mean. 

Empirical formula improvement. 

Both these procedures were documented to reliably 
maintain the FA rate close to the nominal level for samples 
larger than about 25. Empirical exploration of each 
procedure indicated that, for smaller sample sizes, they do 
not produce inflated FA rates when a single outlier is to be 
detected (i.e. with k set to 1). This indicates that the criterion 
set for the largest deviation in a sample is correctly 
estimated, even for relatively small samples. It follows that 
the problem of inflated FA rate for small sample sizes but 
with k > 1 is associated with the correction for more than one 
extreme value removed. The risk of the first extreme value 
being significant, in the absence of real outliers, could be 
made less than the nominal rate so as to allow for a few 
instances where it is a later extreme that first exceeds the 
nominal value. Alternately, the progression of critical value 
could be such that it is really exceptional that a later extreme 
from a normal distribution without outliers is significant 
when the previous extremes were not. Based on this latter 
option, the respective formulas described by Rosner (1983) 

and by Caroni and Prescott (1992) were revisited through an 
educated trial-and-error procedure that introduced the 
original sample size, n0 (i.e. sample size with zero 
observation removed), in the equation for the current critical 
value. In discussing this, we may by extension denote ni the 
reduced sample size after the i most extreme cases 
sequentially identified have been excluded.  

For ease of computation, Rosner’s formula for a critical 
Student t value may be implemented as its square, yielding 
a critical F value (crit) for the maximum of ni scores, which is 
itself based on , the critical value of the 
distribution with 1 and ni-2 degrees of freedom and a 
probability α/ni, embedding the Bonferroni correction, 
where α is the selected global FA rate, typically .05 (when a 
single variable is to be examined). We then calculate the 
appropriate critical value as: 

  

Implementation is further simplified if the index calculated 
for the maximum deviation in the sample involves its 
division by the sum of squared deviations from the mean, 
instead of by the variance. This resulting index will be 
smaller by a factor of (ni-1), and so should its critical value. 
For practical reasons, Rosner’s (1983) original procedure 
may be implemented by squaring the maximum deviation 
from the mean, dividing by the sum of squared deviations 
and comparing the result to the following critical value:  

  

which represesents a variant of Rosner’s formula applicable 
to squared deviation divided by sum of squared deviations. 

Similarly, the CP procedure, which reduces to Rosner’s 
approach for the specific case of a single variable (i.e., p = 1) 
may be implemented by calculating 

  

where xj is the vector of observations for subject j and  is 
the inverse of the sum of cross products matrix. The 
maximum of this score is then compared to its critical value, 
Ccrit, which is based on the critical F value with p and n-p-1 
degrees of freedom and which is calculated as follows: 

first  

and then  

Our empirical exploration of this formula to remedy the 
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inflated FA rate in relatively small samples and with k = 10, 
led to changing (ni-1) in the numerator above into (n0-1), 
which corrects the problem for small samples while affecting 
larger samples only minimally. Thus, the general 
multivariate formula computes G as above but follows with 

  

which, for the univariate case, reduces to  

 . 

Before proceeding with the main purpose of the present 
work, it was appropriate to document, through Monte Carlo 
simulations, the behavior of the modified formulas 
compared to the original ones as well as the appropriateness 
of a Bonferroni correction for the number of variables if the 
univariate outlier detection procedure is to be applied 
sequentially to each variable in a multivariate set and a case 
excluded if any of its p measurements exceeds the criterion 
for outlier declaration. 

A first simulation study bearing on the FA rate when no 
outlier is actually present will be followed by the 
comparison of two candidate methods in terms of power at 
detecting true outliers and in terms of their FA rates for the 
remaining non outlier cases in the presence of true outliers. 
This latter section will include various levels of correlations 
among the variables, which will also, aside from the main 
purpose, document the effect of correlations among the 
variables on the FA rates. 

Study 1: Confirmation that the modified formula keeps 

the FA rate within the nominal 5% value. 

Methods 

All simulations were carried in MATLAB 7.10 (R2010a) 
or 7.12 (R2011a) using the default pseudo random number 
generation algorithm, the Mersenne Twister (Matsumoto & 
Nishimura, 1998). All simulation studies looked for a 
maximum of k = 10 outlier cases in the sample, with global α 
set to .05. Varied numbers of variables (10 levels of p: 2:1:6, 
8:2:12, 15, 20, 30) and varied cases per variable ratios (6 
levels: 2, 3, 5, 9, 15 and 25) were used, to span a wide range 
of experimental situations. Only combinations yielding at 
least 15 cases and with at least 10 cases more that the 
number of variables were used (otherwise, removing 9 
potential outliers results in a singular sum of cross products 
matrix). For each of the 54 valid combinations of these 
parameters, 10 000 simulated data sets were generated, 
where each variable was drawn from an N(0,1) distribution 
(i.e. no real outlier added). For each distribution, five outlier 

detection methods were applied, (1) the standard and (2) the 
modified Rosner procedures, both with a Bonferroni 
correction of the nominal α of each univariate test (i.e. 
dividing .05 by the number p of variables), (3) the standard 
and (4) the modified CP procedures (single test at α = .05) 
and (5) a combo procedure, applying the modified 
univariate test on each individual variable in addition to the 
modified multivariate test, with each of these tests 
performed at α = .05/(p+½). The latter correction followed 
our preliminary explorations indicating that the multivariate 
test, in parallel to the p univariate tests may be counted as 
only half an extra test for the purpose of correcting for the 
total number of tests performed on each subject. For each 
simulation condition, the number of simulated studies 
yielding at least one FA was tallied for each method 
separately. 

In addition to the above, the original and modified 
formulas were applied to 100 000 simulations with a single 
variable and n = 15:5:40. The added number of simulated 
studies, here, aimed at a narrower estimate of the actual FA 
rate for eventual univariate applications of the modified 
procedure. 

Assuming that a method actually yields its nominal FA 
rate, the 99% confidence interval for FA rate out of 10 000 
simulated studies includes from 4.44% to 5.56% FAs. With 
100 000 simulated studies, the 99% confidence interval goes 
from 4.82% to 5.18%. Conditions that yielded more FAs than 
the upper limit are of particular interest here, but there is 
also interest in noting whether the corrections described 
above make the tests conservative on relatively large 
samples.  

Results 

The original Rosner procedure with a Bonferroni correction 
for the total number of variables exceeded 5.56% FAs in all 
conditions with n ≤ 20. In decreasing order, these were 
15.71% (n = 15, p = 3), 9.03% (n = 18, p = 2), 7.97% (n = 18, 
p = 6), and 6.44% (n = 20, p = 4). The limit was also slightly 
exceeded for n = 25, p = 5 (5.60%) and for n = 30, p = 2 
(5.62%). In the simulations with only one dependent 
variable and 10 times as many simulated studies per 
condition, the observed FA rates were above the upper limit 
of 5.18% even for the larger sample size tested. The observed 
rates were 17.1% (n = 15), 7.99% (n = 20), 6.26% (n = 25), 
5.69% (n = 30), 5.46% (n = 35) and 5.42% (n = 40). 

With more than one variable, the modified Rosner 

procedure yielded all FA rates actually between 4.54% and 
5.44%, i.e., all well within the 99% confidence interval. With 
a single variable, it fared better than the original version but 
nevertheless exceeded the upper limit of the 99% confidence 
interval, with observed rates of 5.67% (n = 15), 5.60% (n = 20), 
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5.48% (n = 25), 5.38% (n = 30), 5.27% (n = 35) and 5.30% 
(n = 40). 

For the original CP procedure, 13 of the 54 conditions 
exceeded the confidence interval upper limit of 5.56%. Seven 
of these conditions had sample sizes at least 25. The 
maximum of the latter was 9.22% obtained for n = 40, p = 20. 

The modified CP procedure produced FA rates between 
4.58% and 5.47% except for 4.36% with n = 200, p = 8, and for 
5.59% with n = 15, p = 3, which both are just outside the 99% 
confidence interval. Running new sets of simulations in 
these two conditions gave respective FA rates of 4.86% and 
5.71% (but 15.99% for the original CP procedure), suggesting 
that the initial result for n = 15, p = 3 reflects a real FA excess, 
although a slight one, while the initial result for n = 200, p = 8 
was a statistical accident. 

Finally, the combo procedure produced all FA rates 
between 4.64% and 5.45%. Although this appears completely 
acceptable, the distribution of counts below and above the 
expected count of 500, respectively at 15 and 38, is clearly 
asymmetrical (  (1) = 9.98, prob. = .0016). 

Discussion 

The first conclusion form these simulations is that the 
modified version of both the Rosner and CP procedures 
improves over the original version and is highly satisfactory. 
The correction does not even make the tests conservative 
with large sample sizes. It actually appear totally 
satisfactory for all tested multivariate cases and, although 
the modified version still has a slight tendency to exceed its 
nominal FA rate when applied to a single dependent 
variable, its observed FA rate was always observed below 
5.72% (for a nominal rate of 5%) when estimated with 
100 000 simulated studies. 

Since the modified Rosner procedure performed at 
nominal level for the multivariate cases with independent 
variables, it may be inferred that the principle of a 
Bonferroni correction for number of variables tested is 
supported by these data. Had this been an excessive 
correction (for independent variables), a tendency to 
produce significantly less that nominal FA rate would have 
been observed. Not observing this may not be attributed to a 
mere compensation effect associated with a (slightly) 
inflated FA rate that would apply, with a single variable, 
across all levels of α. Indeed, an extra univariate run with 
n = 20 but α = .01 indicated that the modified procedure 
signals outliers within the expected interval, with an 
observed FA rate of 0.983%. Thus, the modified Rosner 
procedure appears very adequate when used with α smaller 
than .05, which is the case with a Bonferroni correction for 
the number of variables tested and which the present 
simulations demonstrated to work as expected. 

When an outlier is declared on a variable, the question 
arises whether the case should be removed from the sample 
or not in inspecting the remaining variables. In the present 
simulation study this did not matter as we were only 
concerned with the per study FA rate and it was found that 
very close to the expected 95% of the simulated studies 
included no apparent outlier at all. In actual applications in 
which true outliers may be present, excluding outliers 
detected on earlier tested variables would reduce sample 
size for the remaining variables and would thus provide 
slightly more power at detecting new outlier cases on the 
remaining variables (because of the embedded Bonferroni 
correction for sample size). The slight gain in power would, 
however, come at the cost of not detecting, say, a pair of 
outlier scores in the same subject. If the combo procedure is 
adopted and it is decided a priori that any subject failing 
any outlier detection test would necessarily be excluded 
from the sample, exclusion of already identified outlier cases 
should be applied as the sequence of tests progresses. 

It should be noted here that the independent variables 
used in the simulations should constitute a worse case 
condition for multiple tests per subject. With correlated 
variables, the risk for a subject of being falsely declared an 
outlier on variable j+1, given that he/she was within limits 
on the first j variables should actually be lower when this 
variable is correlated with the ones previously tested than 
when it is independent from them. This should be 
confirmed in study 2 that uses correlated variables. 

Finally, the present simulations confirm the rule of 
thumb derived from preliminary explorations that adding 
the multivariate outlier detection test to the univariate 
outlier detection test on each variable may be counted as 
only half an extra test. The asymmetry of FA rates above and 
below the expected value, however, hints that this may only 
be a rough approximation. Examination of the distribution 
of high and low FA counts across the conditions with 
different numbers of variables provided no suggestion of a 
tendency of either type of counts to be associated with a low 
of high number of variables. In particular, the mean number 
of variables in the simulations for which FA number was 
observed below the expected 500 count was 11.67 while that 
for FAs above 500 was 11.82. Considering that correlated 
variables should lead to conservative tests when a 
Bonferroni correction is applied, the correction with p+½ 
when the multivariate test is also applied should be 
completely adequate. 

Note that from here on, the Rosner and CP procedures 
should be taken to mean their modified versions. The 
Rosner procedure (equivalently, the CP formula used for 
multiple univariate tests, where p = 1) will only be used 
within the combo procedure, since it cannot detect pattern-
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only outliers. 

Study 2: Comparison of approaches to outlier detection. 

Given that both methods currently considered for outlier 
detection in multivariate data provide good control over 
FAs, the question remains whether one is uniformly more 
powerful than the other at detecting true outliers. The CP 
method applies a single multivariate test to all subjects and 
operates at α = .05 sample-wise. The combo method, on the 
other hand applies p+1 tests per subject, but each at the more 
extreme criterion of α = .05/(p+½) sample-wise. 

The primary purpose of study 2 was to compare the CP 
and the combo methods when some outliers are present, 
including cases of pattern-only outliers, which is a 
meaningful concept only with correlated variables. As an 
extreme case for multiple tests, however, conditions of 
independent variables should also be included. Aside from 
the level of correlation between variables, the number of 
variables was varied since the Bonferroni correction 
embedded in the combo procedure (number of variables 
plus one half) might affect its relative power compared to 
the CP procedure for detecting true outliers. 

Three patterns of outliers are relevant to the present 
investigation. First, a case may be an outlier on a single 
variable. Secondly, a comparable distance of a case from the 
means may be widely spread over many variables, which 
should leave the case comparatively detectable for a 
multivariate procedure. Pattern-only outliers are not easily 
matched in size with the previous two types but may be 
produced by sign changes on about half of the variables. The 
combo procedure may be expected less powerful at 
detecting these because its embedded multivariate CP test is 
applied with a much reduced α level. 

Procedure adjustment 

Preliminary simulations with up to five true outliers 
present in the data indicated a FA problem with the CP 
procedure under some conditions. With four or five same 
polarity outliers either on a single variable or each spread 
among several variables, but not with pattern-only outliers, 
the CP procedure produced excess amounts of FA among 
the remaining cases, a phenomenon known as swamping 
(Bradu & Hawkins, 1982). For instance, with a nominal α of 
.05, at least one FA was observed in 16.26% of 10 000 
simulated studies when the sample contained five outliers 
on the same variable out of 12 variables reflecting three 
correlated factors. A reasonable speculation about these FAs 
is that they would come from values in the tail of the 
distribution opposite to the direction of slippage. With 
enough outliers of the same polarity present, the shift in the 
estimated population mean could make one of these come 

out as the currently most extreme case, although not 
currently significant. When true outliers are later detected 
beyond their criterion, all previous extremes are also 
counted as outliers by virtue of the prescribed rule. This 
suggests revising the outlier exclusion rule. 

The original decision rule consists in comparing the 
statistics calculated for each successive extreme value with 
its own criterion (that depends on the current sample size) 
and to exclude all successive extreme values up to the latest 
significant one. A rule that solves the excess FA problem 
simply adds a final test on each extreme value identified 
before the last significant one. Starting from the subsample 
in which the last significant extreme value was obtained, 
this extreme value is replaced in turn by each preceding 
extreme value and the most extreme value of this subsample 
is then identified. The case just reintroduced is declared an 
outlier only if it is the current extreme and its statistics 
exceeds the current critical value. Cases not so rejected as 
outliers are not reintroduced in the sample in this final 
retesting phase, such that all potential outliers are retested 
with the same critical value. 

To formally document that the original rule produces an 
excess of FAs when the sample contains four or five true 
outliers and to confirm the appropriateness of the modified 
rejection rule, a set of 2 000 simulated studies was run, each 
with 10 variables and sample size 100. The variables 
depended on three independent factors expressed 
respectively in four, three and three variables with 
randomly selected weight between .6 and 1.0 and with noise 
adjusted to give each variable unit variance in the 
population. For each of 2 000 simulated studies, zero to five 
outliers of three types were produced in each data set. 
Outliers were created by adding 5 to one of the first four 
variables or 7.4 to the factor score that is expressed in these 
first four variables. Pattern-only outliers were created by 
inverting the sign of the weights for half the variables 
depending on factor 1. 

Main simulations. 

After documenting the modified rejection rule, nine sets 
of simulation were run in a 3 x 3 design with 6, 15 or 30 
variables that were either independent, relatively weakly 
correlated or relatively strongly correlated in the population. 
Only the modified decision rule was applied for these 
conditions. 

Sample distributions. Stimulations for independent 
variables simply involved generating 100 random numbers 
from a N(0,1) distribution for each variable. In the remaining 
six sets of simulations, random correlations were produced 
by modifying the pair-wise orthogonality of initially 
independent variables, with a probability of 0.7 of reducing 
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the 90° angle between the variables to make them positively 
correlated (and a complementary probability of increasing 
the angle for a negative correlation). Angular change 
between variables was uniformly distributed from 8° to 24° 
(for relatively strong correlations) or from 6° to 18° (for more 
moderate correlations), where each axis of a pair effected 
half the change. The two empirically derived distributions of 
expected pair-wise correlations are depicted in Figure 1. To 
insure the same expected distribution of correlations 
irrespective of the number of variables used, all axes 
changes were effected on a 30 x 30 matrix. For fewer than 30 
variables, random subsets of the 30 randomly correlated 
variables were chosen to represent the population 
correlation matrix for a given simulated study. This 
population matrix was then subjected to singular value 
decomposition to produce a transformation matrix to be 
applied to independent N(0,1) normally distributed 
variables in order to produce correlated variables with 
expected unit variance.  

For each simulated data set, observed values for a 
sample of 100 cases were first generated without any outlier 
and the two procedures, CP and combo in their modified 
rejection versions, were applied. Then one to five outliers of 
a given type were sequentially produced by suitably 
modifying the scores of the first one to five cases, this being 

repeated for each type of outliers starting from the same 
original data set. In a given simulated data set, outlier 
slippage on a single variable consisted in adding 5.0 to one 
of the variables. The same variable was used for all the 
single variable outliers in a given data set. The outliers 
whose slippage was distributed on many variables were 
actually outliers with the same total slippage evenly spread 
on the first five underlying independent variables (i.e. before 
multiplication by the transformation matrix), thus 
producing an equivalent effect from a multivariate point of 
view. Finally for pattern-only outliers, the sign of each odd 
numbered variable was inverted. There were no pattern-
only outliers with independent variables. 

In the combo procedure involving a sequence of outlier 
detection tests, i.e., p univariate tests followed by the 
multivariate test, cases flagged as outliers on any test were 
excluded from the later tests to optimize power. 

With 2 000 simulated studies, the 99% confidence 
interval for an expected FA rate of 5% ranges from 3.75% to 
6.25%. Simulated samples with at least one FA, before the 
introduction of outliers, were tallied to estimate the 
respective FA rates of the procedure with correlated data. 
Besides, their pair-wise divergent outcomes were tallied 
according to which method of the pair produced at least one 
FA. When true outliers were added, samples with at least 

 

Figure  1.  Distributions  of  correlation  coefficients  obtained  from  a  30  x  30  matrix  in  which  the  initially 
orthogonal angle between each pair of axes was modified by moving each axis toward (p = 0.7) or away from 
(p = .3) the other by a common random angle between 4 and 12 degrees (continuous line) or between 3 and 9 
degrees (dotted line). 
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one FA in their non-outlier portion were also tallied, in 
order to verify the behavior of each procedure when true 
outliers are present (although some could be missed). All FA 
tallies were thus done experiment-wise (i.e. simulated 
samples with at least one FA were counted). 

For true outlier detection, absolute counts and pair-wise 
divergent outcomes were tallied separately for each outlier 
in the sample, rather than experiment-wise, since the 
percentage of true outliers detected is here of interest. The 
divergent outcome tallies are used to test differences in 
sensitivity between the methods through a χ2 test of 
difference of proportions for paired data. Note that the 
outcomes of these tests will only be reported as p values, 
where the assigned fractional values will prevent any 
confusion with number of variables p. In these various 
tallies, the same simulated sample could give rise both to 
detection of some true outliers and to FAs in their non-
outlier portion.  

Results 

The preliminary simulation set with ten variables from 
three factors and which used both the original and the 
modified rejection rules confirmed the need for a revised 
rejection rule. With five outliers on the same variable 
present among the 100 cases, the CP procedure with the 
original rule gave 9.95% of the simulated studies with at 

least one FA, compared to 2.75% for the revised rule. For 
four or five outliers on the factor expressed in the first four 
variables, the FA rate was 7.4% and 13.6% respectively for 
the original CP rejection rule, but 3.1% and 2.6% with the 
modified rule. Without any outlier, the FA rate of the CP 
procedure was 5.35% (not affected by exclusion rule). The 
combo procedure expressed a similar tendency only with 
five outliers on a single variable, with a FA rate of 5.9%, 
which was reduced to 4.45% with the revised rejection rule. 
When no true outlier was present, the FA rate by the combo 
procedure was 5.05%. 

The detection rates of this preliminary set of simulations 
are depicted in Figure 2. The outliers on the factor score 
(dotted lines) were detected almost perfectly by the combo 
procedure (sic) and well detected by the CP procedure. For 
outliers on a single variable, the order is reversed although 
both procedure detected a large proportion (83% or more) of 
the outliers present. This order also prevails for pattern-only 
outliers, although the detection rates are relatively low, 
between 16.5 and 8.45%. All the difference are statistically 
significant with p < .001. 

Main simulation sets.  

False alarm rates. The anticipation that the actual FA rate 
in the multiple test combo procedure would be lower than 
the nominal rate when the variables are correlated was not 
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Figure 2. Detection rates in data sets with N=100 and ten variables depending on three factors, 
for the CP (blue) and combo (green) methods. Suffixes -1 and -4 indicate outliers on a single 
variables (one of those governed by the first factor) and on all four variables of the first factor, 
being outliers on the underlying factor score. Suffix -po indicates pattern-only outliers. 
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supported in the preliminary simulation, with its observed 
5.05% FA rate. This effect was observed in the main set of 
simulations, but only in the 30 strongly correlated variable 
condition. When no true outlier was present, this was the 
only condition with a FA rate outside the 99% confidence 
interval and it was not way below the lower limit of 3.75%. 
The observed combo procedure FA rate of 3.4% is also 
significantly less that that of 5.3% for the CP procedure on 
the same data (p = .0028). The neighbouring conditions of 15 
strongly correlated variables gave 4.25% FAs and that of 30 
moderately correlated variables gave 4.2% FAs, only 
expressing the anticipated effect as a mild trend. 

With at least one outlier present, of whatever type, the 
FA rate among non outlier cases was generally below the 5% 
nominal rate, often below the 99% confidence interval. This 
was especially so for the CP procedure with outliers on a 
single variable and for the combo procedure for outliers on a 
subset of five underlying variables. FA rates below 2% were 
observed only seven times, all in the strongly correlated 
variable condition. Only one such case was observed with 15 
variables, with 1.75% FA for CP with three outliers present. 
With 30 variables, 1.35% was observed for CP with four and 
five outliers on the same variable, 1.4% and 1.05% for CP 
with four and five pattern-only outliers and 1.95% and 1.7% 
for combo with four and five outliers on five underlying 
variables. If anything, thus, outliers make the tests 
conservative for the remaining non outlier cases. 

Outlier detection 

Only the revised exclusion rule is considered for 
comparing the CP and Combo procedures in the main set of 
simulations and true outlier detection is reported as 
proportion of detected outliers among true outliers present 
rather than as proportion of studies with some or all outliers 

detected. These detection rates are presented in Figures 3, 4 
and 5 for respectively independent variables, moderately 
correlated variables and strongly correlated variables, each 
for the three types of outliers (only two for independent 
variables). Each sub-figure depicts the single-test CP 
procedure as a single (continuous) line and the multiple-test 
combo procedure as a dotted line. Simulations with 6, 15 
and 30 variables are painted in increasing color darkness, 
namely green, blue and black. 

For completely independent variables, an unlikely 
situation in multivariate analyses, the results are as could be 
anticipated, namely that for outliers on a unique variable the 
single multivariate test of the CP procedure is much less 
efficient than the independent tests of the combo procedure. 
Furthermore, both tests loose power as the affected variable 
is diluted among more variables. For outliers on five 
variables, the single test CP procedure has more power, but 
its advantage decreases as the five variables become a 
smaller portion of the total set of variables, such that, with 
30 variables, the combo procedure takes the advantage 
when at least two outliers are present. All differences are 
highly significant (p < .0001), except for five outliers on five 
underlying variables out of 15 (p = .39) and for one or two 
outliers on five out of 30 variables, where CP has a slight 
advantage for a single outlier present (p = .0328) and the 
reverse holds for two such outliers (p = .016). 

For moderately correlated variables and outliers on a 

single variable, the CP procedure generally outperforms the 
combo procedure (p < .0001, but only p = .0079 and .0013 for 
one and two outliers respectively in the six variable 
condition), with the exception of the 30 variable case where 
the combo procedure outperforms CP in the presence of five 
outliers only (p < .0001). In this condition but with fewer 
outliers, the difference in favor of CP is significant only at 
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Figure 3. Outlier detection rates for 6 (green), 15 (blue) or 30 (black) independent variables by the CP (solid 
line) and combo (dotted line) procedures. Left graph: outliers on a single variable. Right graph: outliers on 
five variables. 
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two (p = .0082) and three outliers (p < .0001). For outliers on 

five (underlying) variables, the CP procedure is best in the six-
variable condition but the combo dominates with 15 and 30 
variables (p < .0001). The more diluted are the five involved 
variables among all variables, the lower the detection rates. 
Finally, for pattern-only outliers, CP dominates (p < .0001) 
and detection increases as number of variables increases, as 
half the variables are inversed in sign to create these outliers. 

For strongly correlated variables, the differences are in 
favor of CP with all three types of outliers in the six-variable 
condition, but for outliers on a single variable, the difference 
is significant only with four and five outliers present (each 
p = .0001). With 15 variables, CP dominates for outliers on 
one variable (p = .0023 for one outlier present, p < .0001 
thereafter) and for pattern-only outliers (p < .0001), but 
combo dominates for outliers on one third of the variables (p 
< .0001). For 30 variables, detection was perfect up to three 
outliers present on the same variable and favored combo 

thereafter (p < .0001). Combo outperformed CP (p < .0001) for 
outliers on one sixth of the underlying variables. The reverse 
holds for pattern-only outliers (p < .0001, except p = .0082 for 
a single outlier present). 

Discussion 

Although this second study aimed at documenting 
which approach is more sensitive to detect outliers under 
various conditions, an excess of FAs in the presence of true 
outliers (swamping) had to be controlled first. The solution 
adopted, namely a revised rejection rule for extreme cases 
before the last significant one, proved quite satisfactory. It 
must be said, however, that the conditions under which the 
corrected rule matters are elusive. Actually, the swamping 
problem was not seen in any main simulation condition. 
Documenting that the situation can arise therefore required 
a different example, similar to the more complex one that 
manifested the phenomenon in earlier explorations. 
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Figure 4. Outlier detection rates for 6 (green), 15 (blue) or 30 (black) moderately correlated variables by the 
CP (solid line) and combo (dotted line) procedures. Upper left graph: outliers on a single variable. Upper 
right graph: outliers on five variables. Lower graph: pattern-only outliers. 
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The simulations with the current preliminary condition 
indicated that CP, based on a multivariate test embracing all 
variables at once, was better for outliers on a single variable 
while the combo procedure, with its multiple univariate 
tests, was better for outliers expressed on four variables. To 
understand this apparent mismatch of test with outlier type, 
we must remember that the latter type of outliers were 
actually outliers on the underlying factor score. They thus 
conformed to the general pattern of correlations among the 
variables but with more extreme scores. Outliers on a single 
variable, on their part, did not conform as well to the pattern 
of correlations between the four variables expressing the 
factor, which presumably helped the CP procedure to detect 
them. Although generalizing from this particular data 
structure would be hazardous, the results at least indicate 
that no one technique is universally better than the other. 

For the main sets of simulations, the winner between the 
CP and combo procedures also depends on conditions. Even 
without claiming that the present conditions of simulation 
could be considered representative of most real data 

situations, it appears that the CP procedure could be 
preferred up to 10, perhaps 12, variables, more or less 
irrespective of the type of outliers to be detected. If however 
the data would only admit pattern-only outliers, as for data 
from Likert scales with reasonable spread on each item, 
obviously the CP method would also be preferred 
irrespective of the number of items. Otherwise, above 
twelve variables, the combo procedure could be preferable. 

Practical considerations 

As mentioned in the introduction, a convenient outlier 
detection method should preferably also be applicable to 
group data where the group means may differ. Simply 
applying the CP or combo procedure to each group 
separately does not need the assumption of homogeneity of 
covariance matrices but provides much less power, because 
of the fewer degrees of freedom available within a single 
group. Besides, for separate inspection of each group, each 
group size must exceed the number of variables plus k and 
some adjustment of the nominal alpha level for each group, 
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Figure 5. Outlier detection rates for 6 (green), 15 (blue) or 30 (black) strongly correlated variables by the CP 
(solid line) and combo (dotted line) procedures. Upper left graph: outliers on a single variable. Upper right 
graph: outliers on five underlying variables. Lower graph: pattern-only outliers. 
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preferably based on group size, is required in order to 
maintain to 5% the overall risk of falsely rejecting a case that 
is not an outlier. 

Caroni (1998) investigated the effect of various levels of 
heterogeneity of covariance due to several variables (diffuse) 
or a single variable (concentrated) and concluded that “the 
size of Wilks' [test for a single outlier in multivariate normal 
samples from different subpopulations] is acceptably robust 
to moderate heterogeneity in covariances (25-50% difference 
in total variation), especially if sample sizes are small (below 
20 per group)”. She concluded, with reference to the CP 
procedure, that “an exactly similar procedure should be 
applicable in the multiple-group case, with potential outliers 
being ordered by Mahalanobis distance from their group 
mean”. This suggestion is implemented, with the above 
correction to prevent inflated FA rates with relatively small 
samples, by using the original group size of each subject in 
place of n0, the original sample size, in  

  

defined earlier, while ni remains the total number of subjects 
remaining in the whole sample. 

When this was tested with independent variables and no 
outlier added, the FA rate generally lied within the 99% 
confidence interval of 4.44% to 5.56% for 10 000 simulated 
studies. The lower group size investigated was 10. The case 
of two groups of 10 subjects each on four variables gave, on 
three separate runs, 5.37%, 5.65% and 5.17% FAs. Two 
groups of 10 cases produced 5.18% FAs with two variables 
and successively 5.52% and 5.09% with eight variables. 
Groups of respectively 10 and 20 cases on four variables 
produced 5.4% FAs and, on replication, 5.32%. Two groups 
of 20 cases on four variables gave 5.41% and 5.46% FAs. Two 
groups of 30, again on four variables, gave 4.88% FAs. Four 
groups of 10 cases with either 2 or 8 variables gave FA 
counts within expected range. The respective advantages of 
the CP and combo methods were not investigated for more 
than one group, but there is no reason to doubt that similar 
results would be obtained. 

 
Figure 6. Illustration of the opening window of OutlierDetection.xls. Data in the background are from the 
SPSS example “Employee Data”, after some variables have been suitable log transformed and the dependent 
variables to be assessed have been regrouped into consecutive column. CATEMP is employee category; its 
dotted contour indicates that it has just been selected as the group ID column. 
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Two other practical considerations are relevant. One is 
the availability of a computer program to apply the 
procedure. This is here solved by Excel macros embedded in 
OutlierDetection.xls available on the journal's web site. The 
first time this file is opened, a message is displayed 
indicating that the security level must be lowered (from high 
to medium) in order for the macros to be activated. The data 
must be gathered in a separate Excel file with the dependent 
variables (in their transformed version is required) in 
consecutive columns. Optionally, the first row may contain 
text (variable heading). If the data are in groups, group 
membership is restricted to a single data column, but it does 
not matter that groups are specified by text or by numbers 
and, in the latter case, group numbers do not have to be 
consecutive. The Excel data file must be opened when 
OutlierDetection.xls is already opened. This provides access 
to its macros to the data file. Depending on Excel version, a 
menu item may be labeled “Complements” and clicking on 
this will provide access to a function labeled “Multivariate 

Outliers” (or “Étrangers multi-variables” if the operating 
system is in French) or, in older versions of Excel, a menu 
item will directly wear this label. Upon activating 
“Multivariate Outliers”, the window illustrated in Figure 6 
appears, which requires one to select the data columns and, 
if required, the group ID column. Default values are 
presented and may be modified if needed. The function 
applies the CP procedure by default (but combo may be 
selected instead). Cases with missing values are highlighted 
by a yellow background. Outliers on this procedure are 
flagged by changing to green the background color of all 
used data of the cases concerned. But it is important to 
identify why a case is labeled as outlier. For this purpose 
when CP is the selected procedure, the (modified) Rosner 
procedure is also applied descriptively to each variable, with 
per test α = global α/number of dependent variables, unless 
“Other user defined per test Alpha” was selected, which 
asks for the desired value. This CP approach differs from the 
combo procedure because the latter divides the global α by 

 

Figure 7. Screen print showing part of the data after the CP procedure highlighted in green the cases identified as outliers and 
the following descriptive Rosner’s procedure turned to red the values identified as outliers on their variable. Underlined 
values are cases with a different outcome when the corresponding procedure is applied separately to each group. 
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(p + ½) instead of by p, including for the multivariate test, 
while CP does the multivariate test at the nominal α level. 
Cases identified as outliers on any single variable are 
flagged by turning their data value to red. There is no 
restriction that the case involved was previously identified 
as a multivariate outlier. If no group is specified, a group 
variable with constant value is temporarily created and 
deleted at the end of the procedure. Should an error occur, 
this column might be seen remaining in the data file. 

When executed, the macro will either display a message 
to the effect that no outlier was detected or it will highlight 
the suspected outliers. Figure 7 illustrate a segment of the 
outcome. Cases with ID 24, 25, 40 and (not seen) 111 were 
flagged as outliers. All four cases flagged as outliers had 
9 000$ as initial salary. None of the seven cases with the next 
lowest initial salary level (9 750$) was identified as outlier 
even when the maximum number of outliers to be detected 
was raised to 15. 

The last of our practical considerations is that relatively 
severe lack of homogeneity of the group covariance matrices 
may bias the tests. In particular, subjects belonging to 
groups with larger dispersion run an inflated risk of being 
declared outliers when they are tested with the pooled 
covariance matrix, which underestimate their actual 
dispersion. When severe heterogeneity of covariance is 
suspected, the solution is to test each group separately. 
When data are in groups, OutlierDetection.xls assumes 
homogeneity of covariance but also checks the groups 
separately with an alpha level that maintains the overall 
experiment-wise FA rate at the nominal level (5% by 
default). The nominal alpha for group g is αg = , 
such that the products of all (1- αg) is 1-α. Cases with a 
different outcome in this group-wise and in the original 
sample-wise procedures are flagged by underlying their 
group ID value for a difference in outcome in the CP 
procedure or the individual value for a difference in 
outcome on a variable by variable test. The colors of the 
underlined values or of their background reflect the global 
test, not the tests performed on each group separately. 

In Figure 7, the underlined values of cases 24 and 25 for 
the group ID variable (CATEMP) and for the variable 
labeled LGSALEMB (log initial salary) indicate that these 
two cases would not have been detected if the testing had 
been done separately for each group. It remains the 
responsibility of the user to estimate if this could rather be a 
consequence of lack of power or of larger variance in the 
group labeled 1 than in the other groups. 

General discussion 

The original formulas provided by Rosner (1983) and by 
Caroni and Prescott (1992) tended to produce more than 

their nominal FA rate with sample size less than 25. With a 
single variable, a slight but significant excess of FAs was 
observed in the present simulations even for as many as 40 
cases. This bias could be satisfactorily corrected by a slight 
modification of the formula. Similarly, in the presence of 
four or five outliers in certain data configurations, the FA 
rate among the remaining cases truly belonging to the 
population could be inflated and this could be alleviated by 
a modification of the rejection rule. With these 
modifications, good control over the experiment-wise FA 
rate is achieved. 

Of the two approached investigated, namely only 
applying the multivariate based CP procedure or applying a 
test on each variable plus a multivariate test with a suitable 
correction for the number of tests (combo procedure), 
neither appears uniformly more powerful that the other at 
detecting true outliers. For sample size 100, the simulations 
suggest that CP is better up to perhaps 12 variables after 
which combo would provide more power. Since the combo 
procedure applies each test with a nominal α divided by 
number of variables plus one half, its superiority over CP 
must come from a more serious deterioration of the 
multivariate test when the outlying values are on a small 
portion of the variables. This obviously must depend on the 
data structure. It could also depend on sample size. Further 
studies would be required to establish whether the same 
relationship holds (CP better only up to 12 variables) in 
smaller or in larger samples. 

The procedures were tested with a maximum of five 
outliers when k, the maximum to be detected, was set to 10 
(as in Rosner, 1983, and Caroni & Prescott, 1992). The effect 
of specifying too small a value for k (i.e. having more than k 
outliers in the sample) might actually cause detecting much 
fewer that k outliers, because the remaining outliers would 
produce masking. If k outliers are actually reported, there is 
a clear indication that the iterative procedure might have 
stopped too early and the procedure could then be repeated 
with a larger k limit. But since k does not appear in the 
procedure formulas, it could have been set higher than 10, 
mostly at the cost of longer computing time (which matters 
almost only in the simulations of thousands of studies). 
Obviously, n-k must remain more that p, to ensure that the 
underlying matrix inversion can be done. Therefore k cannot 
exceed n-p. OutlierDetection.xls internally reduces k to n-p-1, 
if required, to prevent function failure. 

It seems unlikely that setting k to an arbitrary larger 
value would inflate the FA rate at all. During the verification 
of the FA rate for data in groups in the absence of true 
outliers, the cumulative number of studies with at least one 
FA was obtained as a function of iteration cycle (i.e. testing 
for 1, 2, … up to 10 outliers). The maximum of FAs in each 
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condition was always reached by the fourth cycle. In other 
words, the last six most extreme cases in the sample never 
met the current criterion to be falsely flagged as outliers. 
This is likely related to the increasing density of the tails of 
the distributions as extreme cases are removed. Therefore, 
the FA rates would very likely have been identical had k 
been set to a higher value. 

Finally, although this may sound off topic, it is 
important to insist that outlier detection must always be 
preceded by inspection of the distributions and that suitable 
transformations must be applied, particularly for skewed 
data distributions. If a variable is to be transformed (e.g., 
because its skewness is outside ±2 standard errors), then one 
should aim that the transformed variable skewness be 
within one standard error, to be confident that this new scale 
is close to symmetrical in the population. When a constant 
must be included before a logarithmic or a square root 
transformation, the choice of that constant is often crucial. 
For example, in the illustrative data, Current Salary (SalAct 
in Figure 7) was transformed into LgSalAct = LG10(SalAct-
14000), with a skewness of 0.058, the skewness standard 
error being 0.112. Using constant 10000 produced a 
skewness of 0.565 while a constant of 15000 inverted the 
skewness to -0.265. The often seen recommendation of 
adding a fixed 0.5 or 1 before taking the logarithm is much 
too restrictive and was clearly inappropriate here. 
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