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This paper presents an introduction into Bayesian evaluation of informative 

hypotheses, that is, hypotheses representing explicit expectations about multiple 

group means (Hoijtink, 2011; Hoijtink, Klugkist & Boelen, 2008). The authors begin by 

discussing some limits of exploratory methods before presenting a non-technical 

overview of the Bayesian approach. References are provided for the technical details. 

A particular effort is made to illustrate the method with an example from psychology. 

References to software, more elaborate textbooks and tutorials enable researchers to 

apply this novel method to their own data. 

 

 
*  Comparisons among multiple groups are frequent in 

the context of behavioral research. For example, a researcher 

can be interested to know if a difference exists between three 

groups of students or patients that have received different 

treatments. Classical hypothesis testing is based on the 

evaluation of a null hypothesis, H0, where all group means 

μj  (j = 1,…, J groups) are stated to be equal: 

  

This hypothesis can be conceived as a highly constrained 

hypothesis because it provides a lot of information about the 

means under investigation: the μj  are all equal. On the other 

hand, the alternative hypothesis, Ha, can be written as 

  

The alternative Ha is an unconstrained hypothesis because 

we don’t make any assumptions about the means μj. This 
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hypothesis is not very informative because it states that 

something is happening but without any specification about 

what is going on. 

In a situation where the researcher wants to evaluate H0 

against Ha it is common to apply a J group analysis of 

variance (ANOVA). The model can be written as 

  (1) 

where yi is a dependent variable of interest, μj  denotes the 

mean of group j, dji is one if person i is a member of group j, 

and zero otherwise, and . The F-statistic, 

, where  is the between group means 

variance and  is the within groups or residual variance, 

and associated F-distribution are used to test H0 against Ha. 

The resulting p-value is sometimes called a measure of 

surprise, that is, it represents the incompatibility of data 

with the null hypothesis. 

A significant ANOVA is usually followed by multiple 

pair wise comparisons. Using a traditional approach like, for 

instance, pair wise comparisons with a Bonferroni correction 

can lead to some methodological problems that will be 

discussed in the next section. The aim of this article is to 

present an alternative method based on a Bayesian approach 

that can evaluate specific expectations about multiple group 
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means directly. Hypotheses expressing these expected 

patterns of means are called informative hypotheses and 

contain combinations of equality (=) and inequality (< or >) 

constraints; e.g., Hinf1: μ1 > μ2 > μ3 or Hinf2: (μ1 = μ3) > μ2.  

The remainder of this paper is organized as follows. 

Section 1 discusses an exploratory approach for the 

evaluation of informative hypotheses and some of its 

disadvantages. Section 2 presents the Bayesian approach. 

Then, an example from psychology is provided in Section 3 

and the paper is concluded with some reference material in 

Section 4. 

Evaluating informative hypotheses  

through multiple comparisons 

Many exploratory strategies are available to produce 

comparisons between groups to test a hypothesis. These 

approaches are based on pair wise comparisons between the 

groups under investigation. For example, a hypothesis 

concerning four means can be followed by a total of six pair 

wise tests. For each comparison, a t test can be used with a 

pre-specified α level; usually 0.05. This strategy does, 

however, not allow for family-wise error control. Here, the 

family-wise probability of having one or more false 

discoveries is ; that is, much larger 

than the pre-specified level of 0.05. A well-known strategy 

to control family-wise error is to use the Bonferroni 

correction where the α level is divided by the number of 

comparisons. For example, in the case of six tests, the α level 

per test becomes 0.05/6 = 0.0083. Unfortunately, the control 

of the family-wise error through a Bonferroni correction also 

causes a great loss of power. Although other strategies that 

are less conservative than the Bonferonni correction have 

been developed, finding a balance between proper control 

over the type I error and power remains problematic 

(Maxwell, 2004). 

Another limitation of using multiple comparisons for the 

evaluation of informative hypotheses is that the test results 

can be inconclusive (i.e., the hypothesis is partially but not 

completely supported) or logically inconsistent (e.g., H0: μ1 = 

μ2 and H0: μ1 = μ3 are not rejected (i.e., not statistically 

significant), while H0: μ2 = μ3 is rejected (p<.05)).  

Finally, researchers may have multiple, competing 

informative hypotheses. While with significance (multiple) 

testing it is not possible to compare them against each other, 

with the Bayesian approach presented in this paper this is 

straightforward, irrespective of the hypotheses to be 

compared being nested or non-nested. A hypothetical 

example of two competing hypotheses, Hinf1 and Hinf2, was 

provided in the introduction and in Section 3 we will 

present a real data example with three informative 

hypotheses. But first, in the next section, we will present the 

Bayesian method that was specifically designed for the 

evaluation of one or more informative hypotheses. 

Bayesian evaluation of informative hypotheses  

Hoijtink (2011) and Hoijtink, Klugkist & Boelen (2008) 

presented a method for the evaluation of informative 

hypotheses that (i) does not suffer from such multiple 

testing issues, (ii) has the capacity to test more informative 

hypotheses than the traditional H0 and Ha, and (iii) can be 

used as a confirmatory method to mutually compare two or 

more hypotheses of interest. In the next subsection, the 

Bayes factor, a Bayesian model selection tool, is presented. 

This is followed by some remarks about the prior and 

posterior distributions in Section 2.2, and a presentation of 

the sampling based estimation of the Bayes factor in Section 

2.3. 

The Bayes factor 

Bayesian model selection is a procedure that can be used 

to mutually evaluate two competing hypotheses. The Bayes 

factor comparing the support in the data for a hypothesis Ht 

relative to Ht' is defined as: 

 ,  (3) 

that is, it is the ratio of two marginal likelihoods (Kass & 

Raftery, 1995). Loosely stated, a marginal likelihood is the 

likelihood of observed data given a specific model or 

hypothesis, taking both the fit and the complexity/size (also 

known as parsimoniousness) of the hypotheses into account. 

A resulting Btt' > 1 implies more support for Ht than for Ht' 

whereas a Btt' < 1 implies the opposite. A resulting Bayes 

factor of, for instance, 4 can be interpreted as four times 

stronger support for Ht than for Ht'.  

Klugkist, Laudy & Hoijtink (2005) derived a simplified 

formulation of the Bayes factor for the comparison of a 

constrained hypothesis against its unconstrained 

counterpart. This simplification can be made because an 

informative hypothesis as, for instance, Hinf1: μ1 > μ2 > μ3, is 

nested in the encompassing unconstrained hypothesis Ha: μ1, 

μ2, μ3. The Bayes factor Binf,a is, in this context, defined as: 

 ,  (4) 

where finf is the proportion of the posterior distribution of 

the unconstrained hypothesis that is in agreement with the 

constraints of Hinf, and cinf is the proportion of the 

unconstrained prior in agreement with the constraints.  The 

role of priors and posteriors in the Bayesian approach will 

be further elaborated in the following section. Note finally, 

that the constant cinf can be interpreted as the complexity or 

size of the constrained hypothesis relative to the 

unconstrained hypothesis, and finf as the fit of Hinf. 
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Prior and posterior distributions 

In Bayesian statistics, a prior distribution must be 

specified for the parameters of each model under 

investigation. The prior represents the knowledge about the 

model parameters before observing the data and can be 

informative (i.e., “knowledge” is based on experts opinions, 

historical data, or any acceptable assumption from theory) 

or non- or low-informative (specifying as little prior 

information about the parameters as possible). For a mean μ 

a low-informative prior is, for instance, a normal 

distribution with a very large variance, which is almost 

equal to stating that any value for μ is, a priori, equally 

likely.  

Updating the prior distribution with observed data 

provides the posterior distribution. The posterior, therefore, 

represents the knowledge about the model parameters after 

seeing the data while taking the prior information into 

account. With low-informative priors, the posterior is 

dominated by the data and Bayesian parameter estimates 

will, in this case, provide results that are very similar to non-

Bayesian estimators. Low-informative priors can, however, 

strongly affect Bayesian model selection results and should 

therefore be used with great care in those applications (e.g., 

Berger & Pericchi, 1996). 

In the context of evaluating informative hypotheses, 

Klugkist, Laudy & Hoijtink (2005) formulated general 

criteria for the specification of the prior for the 

unconstrained hypothesis. Due to the nesting, priors for the 

constrained hypotheses follow automatically by truncation 

according to the constraints (see Klugkist & Hoijtink (2007) 

for an elaborate explanation). They showed that for 

hypotheses containing order constraints (i.e., < or >) it is 

possible to define low-informative priors that do not affect 

the resulting Bayes factor. However, as soon as equality 

constraints (i.e., =) are present this is not the case and the 

choice of priors becomes more complicated. How this is 

done in the proposed method and accompanying software is 

extensively described in, for instance, Hoijtink (2011) and 

Hoijtink, Klugkist & Boelen (2008). 

Sampling based estimation of the Bayes factor 

In the ANOVA context, a low-informative prior for J 

means μj and the residual variance σe2 is specified. To obtain 

Table 1: Prior estimation for means μ1, μ2 and μ3 using the Gibbs sampler 

Prior 

Iteration  μ1   μ2  μ3  Hi  Ha  

1 0.57 0.41 0.20   1 0 

2 0.48 0.69 0.29 0 1 

3 0.49 0.95 0.16 0 1 

4 0.28 0.49 0.30 0 1 

5 0.67 0.90 0.81 0 1 

6 0.73 0.48 0.22 1 0 

...  ...  ...   … ...  ...  

1000 0.51 0.34 0.41   0 1 

Sum           163   837  

 

Table 2: Posterior estimation for means μ1, μ2 and μ3 using the Gibbs sampler 

 

Posterior 

Iteration  μ1   μ2  μ3  Hi  Ha  

1 0.55 0.47 0.12   1 0 

2 0.44 0.12 0.22 0 1 

3 0.50 0.37 0.11 1 0 

4 0.21 044 0.25 0 1 

5 0.52 0.89 0.86 0 1 

6 0.75 0.62 0.23 1 0 

...  ...  ...   … ...  ...  

1000 0.47 0.35 0.25   1 0 

Sum           659 341   
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an estimate for cinf, that is, the proportion of the 

unconstrained prior in agreement with the constraints of 

any Hinf we use we Markov Chain Monte Carlo (MCMC) 

sampling to obtain a sample of parameter values from the 

unconstrained prior. In a similar vein, finf is estimated by 

taking an MCMC sample from the unconstrained posterior.  

For both prior and posterior, a Gibbs sampler (see also, 

for instance, Casella & George, 1992; Jackman, 2009) 

consisting of the following steps is applied:  

step 1:  specification of initial values for the parameters μ1, 

…, μJ, σe2. 

step 2:  sample a new value for each parameter μ1, …, μJ, σe2 

conditional on the current values of all other 

parameters (and in the case of the posterior also 

conditional on the data) in a fixed order. 

step 3:  repeat step 2 many times. 

With the Gibbs sampler, many values for each of the 

parameters are obtained and together provide the marginal 

posterior distribution of each parameter and subsequently of 

all posterior estimates of interest. Note, however, that some 

important issues always need to be considered, that is, burn-

in and convergence (initial values of the sampler need to be 

discarded because the chain is still ‘starting up’) and 

sufficient total number of iterations. Several diagnostics and 

plots are available to monitor this; see for a general 

overview, for instance, Cowles & Carlin (1996).  

To illustrate how the sampled values provide an 

estimate for Binf,a we present, for a 3 means ANOVA, (part 

of) a sample of 1000 iterations from an unconstrained prior 

and posterior in Table 1 and 2, respectively. On each row in 

both tables, it is determined if the sampled values for μ1, μ2, 

μ3 are in agreement with the hypothesis of interest: 

Hinf1: μ1 > μ2 > μ3. Consider, for instance the first row of Table 

1 with means μ1 = 0.57, μ2 = 0.41, μ3 = 0.20. These means are 

indeed increasing and therefore in the last column “1 hit” is 

recorded. Likewise, on the next row the last column lists a 

“0” because the means violate the order stated in Hinf1. 

Overall, Table 1 shows that the estimate for the complexity 

cinf1 is 163 / 1000 = 0.163 and Table 2 shows an estimate of 

659 / 1000 = 0.659 for the fit finf.  

In this hypothetical illustration, the resulting Bayes 

factor is Binf1,a = 0.659 / 0.163 = 4.04, that is, the constrained 

hypothesis is supported by the data. In the next section an 

analysis based on a real data set from a psychological 

clinical trial is discussed.  

Analysis of a real data set 

A recent study by Van den Hout et al. (2012) aimed to 

investigate the efficacy of the use of tones as the source of 

bilateral stimulation in the treatment of posttraumatic stress 

disorder (PTSD). Interventions using Eye Movement and 

Desensitization and Reprocessing (EMDR), and not tones, 

have repeatedly proven to be effective. In the clinical 

practice, however, eye movements have been replaced by 

tones; apparently it is assumed that tones are equally or 

more effective.  

In a clinical study, 12 patients were asked to recall their 

most upsetting memory while making eye movements (EM 

condition), or while hearing beep tones (tones condition), or 

without bilateral stimulation (recall only condition). The 

researchers formulated three competing hypotheses: 

  

For the theoretical motivation of the informative hypothesis 

and all details of the study we refer to the original 

publication and references therein. Here, we will summarize 

how the Bayesian approach provides direct answers to the 

question about the effectiveness of using tones: if tones are 

equally effective as the (evidence-based) EM intervention, 

Hinf1 should receive the strongest support. Hinf2 represents 

the possibility that tones are not effective at all, and support 

for the third hypothesis would suggest some effect of tones 

but inferiority to EM. 

In Table 3, the results for two outcome measures are 

provided; reduction in emotionality and reduction in 

vividness of trauma memories. For both measures the 

findings clearly show that there is no support for Hinf1 (Bs < 

1), that is, there is reason to believe that tones are not as 

effective as EM. Furthermore, the Bayes factors for the 

second and third informative hypothesis indicate stronger 

evidence for no effect at all (2.07 and 2.50) than for a smaller 

effect of tones compared to EM (1.12 and 1.24). Note that, 

Table 3: Bayes factor comparing the informative hypothesis against the unconstrained hypothesis for two 

outcome measures. 

 

 Emotionality Vividness 

Hinf1: (EM = tones) > recall 0.24 0.16 

Hinf2: EM > (tones = recall) 2.07 2.50 

Hinf3: EM > tones > recall 1.12 1.24 
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the goal of this illustration is to demonstrate the usefulness 

of the Bayesian approach for researchers with explicit 

expectations about multiple group means. Readers that have 

an interest in the particular study are referred to Van den 

Hout et al. (2012) for an elaborate discussion of the 

interpretation (much more careful than presented here) of 

the results.  

Conclusion 

In this paper we shortly introduced the Bayesian model 

selection approach to the evaluation of informative 

hypotheses. With this approach a powerful tool is provided 

that can directly evaluate specific expectations about the 

outcomes of a study. As was shown in the psychological 

illustration, it is also possible to mutually compare different 

competing hypotheses on the same data set.  

In Section 2, the methodology was introduced for a 

simple (between subjects) ANOVA. In this context, a 

FORTRAN program called confirmatoryANOVA (Kuiper, 

Klugkist and Hoijtink, 2010) can be used. The illustration in 

Section 3 concerned a within subjects design and therefore 

requires other software. Mulder et al. (2009, 2010) developed 

the FORTRAN program BIEMS that can evaluate 

informative hypotheses for (multivariate) normal models 

(AN(C)OVA, MAN(C)OVA, (multivariate) multiple 

regression, and repeated measures analysis). The interested 

reader can (freely) download both software packages from: 

http://vkc.library.uu.nl/vkc/ms/research/ProjectsWiki/Softw

are.aspx. 
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