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Crossing Language Barriers: Using Crossed Random Effects 

Modelling in Psycholinguistics Research 

Robyn J. Carson and Christina M. L. Beeson 

University of Ottawa 

 

The purpose of this paper is to provide a brief review of multilevel modelling (MLM), 

also called hierarchical linear modelling (HLM), and to present a step-by-step tutorial 

on how to perform a crossed random effects model (CREM) analysis. The first part 

provides an overview of how hierarchical data have been analyzed in the past and 

how they are being analyzed presently. It then focuses on how these types of data have 

been dealt with in psycholinguistic research. It concludes with an overview of the 

steps involved in CREM, a form of MLM used for psycholinguistics data. The second 

part includes a tutorial demonstrating how to conduct a CREM analysis in SPSS, using 

the following steps: 1) clarify your research question, 2) determine if CREM is 

necessary, 3) choose an estimation method, 4) build your model, and 5) estimate the 

model’s effect size. A short example on how to report CREM results in a scholarly 

article is also included. 

 

 
  Many statistical techniques, such as analysis of variance 

(ANOVA) and ordinary least-squares (OLS) multiple 

regression, assume that observations are not correlated with 

one another. However, this is not always the case. Within 

many areas of psychology, measurements are not fully 
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independent of one another, but are instead nested, or 

hierarchical, in nature. 

Data from both cross-sectional and longitudinal studies 

can be fully nested. In a cross-sectional design, for example, 

students (level-1) can be nested within classrooms (level-2), 

which can be further nested within schools (level-3). One 

could expect that students in the same classroom are more 

similar to one another than they are to students in a different 

classroom, and classrooms within the same school should be 

more similar to each other than to classrooms in a different 

school (Field, 2009; Peugh, 2010). In a longitudinal design, 

depression scores (level-1) can be nested within patients 

(level-2), which can be nested within therapists (level-3; 

Field, 2009). Again, one could expect that depression scores 

within the same patient will be more similar to one another 

across time than to those of a different patient, and that 

patients of the same therapist will have scores more similar 

to one another than to those of a different therapist. 

Alternatively, cross-sectional and longitudinal data can be 

partially nested, where lower levels are still nested within 

higher levels, but higher levels are independent of one 

another, not nested one within the other. For example, 

students (level-1) can be nested within middle schools 
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(level-2), as well as within high schools (level-3; Beretvas, 

2011). Students who attended a particular middle school will 

not all attend the same high school; similarly, students 

attending the same high school did not all attend the same 

middle school. Thus, although students are nested within 

the two higher levels, the higher levels are not nested within 

the other; they are independent of one another. 

Hierarchical Data Analysis: Past and Present 

Until recently, hierarchical data were often analyzed 

using aggregation or disaggregation, simple linear 

regression techniques wherein parameters are fixed and the 

hierarchical nature of the data is cast aside (Woltman, 

Feldstain, MacKay, & Rocchi, 2012). In aggregation, all of the 

variables are collapsed across a higher hierarchical level, 

where data from the lower level(s) are ignored and 

transformed into averages for the higher level variable(s) 

(Snijders & Bosker, 1999). This leads to the assumption that 

individuals within a group are one entity, resulting in a loss 

of individual, or within-group, variance (Woltman et al., 

2012). Further, aggregated data can only be properly 

interpreted in the context of the higher level variable(s) of 

interest (Snijders & Bosker, 1999), which is often not ideal. In 

disaggregation, all of the variables are collapsed across the 

lowest hierarchical level, and the group data from the higher 

level(s) are ignored. This leads to the assumption individual 

results are not influenced by the group(s) within which the 

lower level data are nested and results in a loss of between-

group variation (Woltman et al., 2012). Moreover, the risk of 

committing Type II and Type I errors, for aggregation and 

disaggregation respectively increases substantially (Bovaird 

& Shaw, 2012; Heck & Thomas, 2009; Peugh, 2010; Snijders 

& Bosker, 1999). 

Another way hierarchical data were analyzed was by 

running separate analyses on each data level, known as the 

slopes-as-outcomes approach. In this approach, groups are 

analyzed one at a time for each level of data, and the 

estimates from each analysis are combined into a group 

level matrix (Hox & Roberts, 2011). The problem with 

analyzing hierarchical data in this manner is that levels are 

not considered simultaneously in relation to one another, 

but individually, which gives inaccurate results and leads to 

inferential errors (Bovaird & Shaw, 2012; Raudenbush & 

Bryk, 1986). 

The more traditional ways in which hierarchical data 

have been analyzed are not adequate at reflecting the non-

independence of the data, as well as the potential 

interactions between, or across, levels. Since the early 1980s, 

multilevel modeling (MLM) has been introduced as a 

solution to these problems (Janssen, 2012; Woltman et al., 

2012). The theory behind MLM has developed 

simultaneously within a number of disciplines, resulting in 

many different, albeit synonymous, statistical terms. 

Specifically, multilevel models are also known as 

hierarchical linear models, mixed-effect models, mixed 

linear models, random coefficient models, and multilevel 

covariance structure models (Heck & Thomas, 2009; 

Woltman et al., 2012). Since MLM is the term predominantly 

used in psycholinguistics literature, which is our focus, this 

is the term we will employ. 

Essentially, MLM is an extension of OLS multiple 

regression, except that instead of being confined to fixed 

coefficients, it allows for one or more random coefficients to 

exist within the same model (Field, 2009; Raudenbush & 

Bryk, 1986). Intuitively, MLM has the same assumptions as 

traditional OLS multiple regression. The only assumption 

that differs between OLS multiple regression and MLM is 

that MLM does not require observations to be independent 

of one another, which allows for the analysis of hierarchical 

data. Additionally, since there can be more than one random 

coefficient, a final assumption unique to MLM is that the 

random coefficients are normally distributed around the 

model (Field, 2009). 

In OLS multiple regression, the parameters (i.e., slope 

and intercept) are fixed and are estimated based on the 

sample data. Because the coefficients are fixed, it is assumed 

that the regression model is accurate across all of the data. 

However, in MLM, these parameters can vary, resulting in 

three possible models. For the random intercept model, the 

assumption is that the intercepts vary across the higher level 

groups. That is, the relationship between the predictor and 

the outcome is the same across all groups, or has the same 

slope, but the groups have a different intercept. 

Alternatively, the random slope model assumes that the 

slopes vary across the groups. That is, the groups have the 

same intercept, but the relationship between the predictor 

and the outcome differs across the groups, or has a different 

slope. Finally, there is the random intercept and slope 

model, which is the most realistic, where both the slopes and 

the intercepts vary across the groups (Field, 2009). 

Based on the arguments provided above, it should be 

evident that using MLM to analyze hierarchical data has a 

number of benefits. First, because slopes can be random, 

homogeneity of regression slopes does not need to be 

assumed. In the likely event that individuals (level-1) in a 

group (level-2) are more similar to one another than they are 

to those in another group (i.e., the slopes vary across 

groups), MLM can be used to account for this, whereas OLS 

multiple regression cannot. Second, because level-specific 

parameters can be incorporated into one model, 

independence does not need to be assumed (Field, 2009; 

Peugh, 2010; Woltman et al., 2012). This allows for the 
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analysis of a sample where variables are related 

contextually, as is the case with hierarchical data. Finally, 

whereas OLS multiple regression will provide inaccurate 

results when there are missing data or when group sizes are 

not equal, MLM can accommodate missing values at the 

individual level, as well as discrepant group sizes, and still 

provide accurate results (Field, 2009; Woltman et al., 2012). 

Multilevel modelling does not have any limitations (Field, 

2009); however, it does require large sample sizes for 

adequate power (Woltman et al., 2012). 

Introduction to Multilevel Modelling in Psycholinguistics 

Research 

In psycholinguistics research, experiments involving 

word recognition or lexical decision tasks are common 

(Locker, Hoffman, & Bovaird, 2007). In these tasks, 

participants are shown a list of words, and must decide 

whether or not each word is a true word or a non-word. 

Instead of focusing on participants’ accuracy, which is 

usually near ceiling, researchers often focus on participants’ 

reaction time (RT), or how long it takes them to identify the 

stimulus as a true or non-word. In this type of experiment, 

there are two random effects impacting the dependent 

variable, RT. Participants are randomly selected from the 

larger population, and words are also randomly selected 

from a larger list of total potential words. 

In the past, researchers analyzed this type of data using 

an ANOVA, including the participants as the random unit of 

analysis while holding the items (i.e., words) constant. In 

doing so, however, they were ignoring the fact that words 

were also randomly selected from a larger population. They 

generalized their findings to all words, when they should 

have only been drawing conclusions based on the sample of 

words used (Field, 2009). This problem was coined the 

“language-as-fixed-effects fallacy” (Clark, 1973). 

Although there is some debate in the literature as to 

whether items should be considered randomly selected (see 

Raaijmakers, 2003; Raaijmakers, Schrijnemakers, & 

Gremmen, 1999; Wike & Church, 1976), the majority of 

researchers no longer use one ANOVA to analyze their 

psycholinguistic data. Two alternative statistical 

approximations were developed to try and address the 

fallacy, the Quasi-F Ratio, denoted as F’ (Clark, 1973), and, 

the more commonly used, F1 x F2 subjects and items 

repeated measures ANOVAs (Clark, 1973; Janssen, 2012; 

Locker et al., 2007). In this technique, two ANOVAs are 

performed. The first analyzes the data with participants as 

the random factor while holding the items constant. The 

second analyzes the data with items as the random factor 

while holding the participants constant. Only if both F1 and 

F2 reach significance can a researcher entertain generalizing 

the results to both the population of participants and the 

total items (Locker et al., 2007). Only when both ANOVAs 

are statistically significant can both samples be considered 

random, and the results generalizable. Whereas this 

technique has become the norm in psycholinguistics 

research, neither ANOVA treats the data properly, both 

ignore the second random factor and do not reflect the true 

results (Locker et al., 2007). 

How to Perform a Crossed Random Effects Model 

Analysis 

A crossed random effect model (CREM) is a type of 

MLM that can encompass one or more random factors 

within the same model, a requirement when analyzing 

psycholinguistic data. There are a number of steps to follow 

in order to perform a CREM analysis. In this section of our 

paper, we will briefly outline the five main steps, as well as 

their key theoretical considerations. 

1. Clarify your research question. Although clarifying the 

research question seems like an obvious step, it is important 

because it will guide the decisions made in subsequent steps 

(Peugh, 2010). By specifying the research question, it 

clarifies at which hierarchical level the variable(s) of interest 

lie. Specifically, in a dataset with two levels, the question can 

focus on level-1 variables, on level-2 variables, or on the 

interaction between them. A question focusing on level-1 

examines the relationship between lower level (individual) 

predictors and the outcome variable. A question focusing on 

level-2 examines the relationship between higher level 

(group) predictors on a higher level outcome variable. When 

focusing on an interaction, the research question examines 

whether the relationship between a lower level predictor 

and an outcome variable is moderated by a higher level 

variable. To illustrate these scenarios using an adapted 

example from above, suppose we have the math 

achievement scores of students (level-1) grouped within 

classrooms (level-2). If we were interested in looking at the 

impact of level-1, we would simply look at student 

differences to explain math achievement scores. If we were 

interested in looking at the impact of level-2, we would look 

at classroom differences to explain overall classroom math 

achievement scores. Finally, if we were interested in looking 

at the interaction between levels we would look at how 

classroom differences moderate, or interact with, student 

differences to explain math achievement scores (Peugh, 

2010). 

2. Determine if crossed random effects modelling is 

necessary. A dataset that is hierarchical does not 

automatically require MLM. Specifically, if no variation 

exists across higher level variables (i.e., if an individual’s 

group association does not influence the outcome), a 
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traditional OLS multiple regression could be sufficient. In 

order to quantify if the use of MLM is warranted, the 

intraclass correlation (ICC) is used. The ICC is defined as 

both the proportion of the outcome variation that is due to 

higher level variables, as well as the expected correlation 

between scores of individuals nested within the same group. 

It measures how much variance can be attributed to higher 

level variables (Field, 2009; Peugh, 2010). When the ICC is 

small, the higher level variable has little influence on the 

outcome, and most of the variation is due to lower level 

variables. In this case, traditional techniques can be used 

(Field, 2009; Peugh, 2010). As the ICC increases, the higher 

level variables are explaining more variability, with less 

variability being explained by the lower level variables 

(Field, 2009; Peugh, 2010). In this case, the use of MLM is 

warranted (see Hayes, 2006 for a debate on whether a small 

ICC negates the use of MLM). In addition to the ICC, some 

researchers also take the design effect, which evaluates the 

effect of independent violations on standard error estimates, 

into consideration when evaluating the need for MLM 

(Peugh, 2010). 

There are two important additional questions to ask 

when deciding whether or not to conduct a CREM analysis: 

1) Do you have more than one random effect in your 

dataset?, and 2) Is CREM supported by current theories or 

knowledge in your area of research? (Peugh, 2010; Snijder & 

Bosker, 1999). If the answer is yes to both of these questions, 

you should use CREM. 

3. Choose an estimation method. There are two possible 

maximum likelihood (ML) estimations to choose from, full 

information maximum likelihood (FIML) and restricted 

maximum likelihood (REML; Peugh, 2010). In FIML, the 

assumption is that the MLM regression coefficients are 

known, so these parameters are fixed in the likelihood 

estimation. The resulting between group variance is often 

underestimated, however the difference becomes negligible 

when the sample size is large (Peugh, 2010, see also Maas & 

Hox, 2005 and Paccagnella, 2011 for a discussion on sample 

size and ML estimation). In REML, regression coefficients 

are treated as unknown quantities; therefore, the parameters 

are estimated based on sample data. For smaller sample 

sizes, REML is the preferred estimation method (Heck & 

Thomas, 2009). 

In both ML estimation methods, a chi-square log-

likelihood value is used to measure the probability that the 

estimated model adequately accounts for the data. To obtain 

the deviance value, which compares the fit of two successive 

models, you multiply the log-likelihood by -2 (-2LL). For 

FIML, the deviance calculates the fit of both the regression 

coefficients and the variance estimates, whereas for REML, 

the deviance calculates only the fit of the variance estimates 

(Peugh, 2010). 

4. Build your model. Building a one-level CREM 

encompasses several steps: 1) testing an “empty” model, 2) 

adding and testing the random effects, and 3) adding and 

testing the fixed effects. There are additional steps for two-

level models, where random and fixed effects need to be 

tested on both levels (see Raudenbush & Bryk, 2002 and 

Snijders & Bosker, 1999 for a thorough review). 

It is helpful to begin by testing an “empty” model which 

is free of any random or fixed predictors. This model is also 

known as the “null,” “baseline,” or “unconditional” model 

and provides a baseline comparison for subsequent models 

being tested. 

One way to account for the variation found in the empty 

model is to add random predictors one at a time and test the 

fit of each subsequent model. To compare models, the chi-

square likelihood test is used. The -2LL of the new model is 

subtracted from the old one, with a positive difference 

indicating a better fit for the new model (Field, 2009). Once 

all of the random variables have been added and tested, 

fixed variables of interest can be added and tested. 

However, before you do this, you need to choose and apply 

a centring method to each of the fixed variables. 

Centring involves rescaling variables around a fixed 

point, which allows for a meaningful interpretation of a 

score of zero (Field, 2009; Peugh, 2010). There are two 

methods of centring that can be used, grand mean centring 

and group mean centring. Grand mean centring, which is 

the most common method, takes an individual’s score on the 

predictor variable and subtracts the grand mean for that 

variable (i.e., the mean across all groups) from their score 

(Field, 2009; Peugh, 2010). Alternatively, group mean 

centring takes an individual’s score on the predictor variable 

and subtracts the group mean for that variable (i.e., the 

mean for the individual’s specific group) from their score 

(Field, 2009). The centring method chosen should reflect the 

research question. If the research question is focused on a 

level-1 variable or if it is focused on an interaction, then 

grand mean centring should be used. However, if the 

research question focused on a level-2 variable, then group 

mean centring should be used (Heck & Thomas, 2009). Once 

all of the centred level-1 variables of interest have been 

added to the model, if your dataset includes level-2 

variables, you can build a level-2 model. If your research 

question indicates an interest in an interaction, the level-2 

variables must also be added to the level-1 model (Peugh, 

2010). 

5. Estimate the model’s effect size. Since both fixed and 

random coefficients are estimates in MLM, determining a 

multilevel effect size is complex (Field, 2009). Consequently, 

there is currently no agreement as to which type of 
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estimated effect size is the most appropriate (Peugh, 2010). 

Currently, effect sizes can be defined as either global or 

local. Global effect sizes measure the outcome that can be 

explained by all of the predictors in the model. They 

resemble R2, measuring the variance in the outcome variable 

explained by all of the predictors in the model. Local effect 

sizes resemble “change in R2,” or ΔR2, measuring the effect 

of level-1 variables on the outcome variable (Peugh, 2010). 

They also resemble a squared semi-partial correlation 

coefficient (Hayes, 2006; Radenbush & Bryk, 2002).While it is 

possible to compute both types of effect size, it is important 

to keep in mind that all MLM effect sizes are estimates 

(Snijders & Bosker, 1999). 

A Tutorial on Crossed Random Effects Modelling in SPSS 

The following tutorial section will demonstrate how to 

use CREM for psycholinguistic data in lieu of the standard 

F1 x F2 subjects and items repeated measures ANOVAs. All 

analyses are performed using SPSS, version 19.0. 

Sample Dataset Content 

The dataset for this tutorial contains results from an 

experiment involving 49 undergraduate students who 

completed a French lexical decision task (LDT). Specifically, 

we are interested in how participants’ pre-exposure to 

stimuli (0 = no pre-exposure, 1 = pre-exposure), word 

frequency, word gender (1 = masculine, 2 = feminine), and 

word animacy (0 = inanimate, 1 = animate) related to 

participants’ response times for the 400 real words 

presented. 

The dataset was screened for invalid and impossible 

values. Several impossible values were found due to a 

computer error in registering response times. In addition, 

response time data were severely and positively skewed. 

Extreme outliers were removed from the dataset to reduce 

the skew to a more acceptable level. In all, 729 response time 

data points were removed, resulting in a total of 3.7% 

missing data for this variable. For this tutorial, we assume 

that all MLM assumptions (explained in detail above) have 

been met. 

Data File Set-Up 

To conduct multilevel analyses, you create a single SPSS 

data file containing all the possible variables of interest. 

Figure 1 provides a snapshot the tutorial dataset. Note that 

participant variables (part_ID and pre-exposure) are 

repeated across word variables (word_ID, frequency, 

gender, and animacy) and vice versa. 

Figure 1. A snapshot of the tutorial dataset in SPSS. 
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Performing a Crossed Random Effects Modelling Analysis 

We will follow and apply each of the steps outlined 

above to our dataset. It is important to note that although we 

are presenting a one-level CREM, CREMs can include 

several levels, with the potential for random and fixed 

effects at each level (see Beretvas, 2011; Hoffman & Rovine; 

Raudenbush & Bryk, 2002; and Snijders & Bosker, 1999 for 

examples of two-level MLM analyses). 

1. Specify your research question. Our research question is: 

Do participant pre-exposure, word frequency, word gender, 

and word animacy predict observed response times for real 

words in a lexical decision task? 

2. Determine if crossed random effects modelling is 

necessary. In our design there are two random effects: 

participants and words. Additionally, several researchers 

(Baayen, Davidson, & Bates, 2008; Baayen, Tweedie, & 

Schreuder, 2002; Janssen, 2012; Locker et al., 2007; Quené & 

van den Bergh, 2008) advocate that CREM is the best option 

for psycholinguistic data analyses. As a result, we will 

demonstrate a CREM with two random effects and four 

fixed effects. 

For this tutorial, the ICC will be used to test the 

proportion of variance accounted for by our two random 

effects in Step 4 below. 

3. Choose an estimation method. Our research question 

requires that we compare models with varying regression 

coefficients, which is not possible with REML. Our words 

sample size is large (n = 400) while our participant sample 

size is moderate (n = 49). Based on recent maximum 

likelihood simulation studies (Maas & Hox, 2005; 

Paccagnella, 2011), our sample sizes are large enough to use 

a FIML estimation without an unreasonable 

underestimation of the variance standard error. Thus, we 

will implement the FIML estimation method (referred to as 

ML in SPSS). 

4. Build a crossed random effects model.1 

                                                                 
1 The syntax for all the CREM models discussed in this 

section can be found in the Appendix. Please note that if you 

are using SPSS version 11 or earlier, the provided syntax 

may not work. If you are using the SPSS menus, ensure that 

Table 1. Regression Coefficient Estimates and Variance-Covariance Estimates for CREMs Predicting 

Observed Response Time 

 

Parameters Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 

Regression coefficients (fixed effects) 

 Intercept (γ0) 
714.26 

(1.92)*** 

717.25 

(17.00)*** 

719.91 

(18.23)*** 

719.92 

(17.49)*** 

719.92 

(17.44)*** 

719.91 

(17.43)*** 

719.90 

(17.40)*** 

 
Part. Pre-

exposure (γ1) 
   

-71.93 

(33.24)* 

-71.94 

(33.24)* 

-71.94 

(33.24)* 

-71.94 

(33.24)* 

 

Word 

Frequency 

(γ2) 

    
-.34 

(0.07)*** 

-.35 

(0.07)*** 

-.34 

(0.07)*** 

 
Word Gender 

(γ3) 
     

27.72 

(10.96)* 

27.69 

(10.76)* 

 
Word 

Animacy (γ4) 
      

-41.60 

(10.77)*** 

Variance components (random effects) 

 Residual (σ2) 
69884.36 

(719.44)*** 

56090.33 

(578.19)*** 

44552.59 

(464.24)*** 

44552.61 

(464.24)*** 

44552.48 

(464.23)*** 

44552.30 

(464.23)*** 

44552.21 

(464.23)*** 

 
Participants 

(τ0s) 
 

14012.23 

(2860.86)*** 

14704.64 

(2994.89)*** 

13410.46 

(2733.58)*** 

13409.89 

(2733.44)*** 

13410.40 

(2733.53)*** 

13409.66 

(2733.37)*** 

 Words (τ0i)   
11906.36 

(912.60)*** 

11905.89 

(912.55)*** 

11246.74 

(865.67)*** 

11056.55 

(852.03)*** 

10625.14 

(821.35)*** 

Model summary 

 

Deviance 

statistic (-

2LL) 

264051.98 260126.89 256835.20 256830.73 256809.67 256803.32 256788.68 

 
# of estimated 

parameters 
2 3 4 5 6 7 8 

Parameter estimate standard errors listed in parentheses. 
* p < 0.05   *** p < 0.001   
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Test “empty” model. The first model fit when estimating 

a CREM is the “empty” model. This model, shown in the 

equation below, does not include any random effects or 

predictors; it serves as a point of comparison for later 

models which will include parameters of interest. 

  (1) 

where: 

 is the observed response time for subject s and item i 2 

                                                                                                            

you change the maximum number of iterations default of 

100 to 150. This was done in to match the estimation values 

that would be obtained using R with the lme4 package.  

 
2 Subject is interchangeable with participant and item is 

�� is the intercept, or expected mean response time for the 

overall sample, and 

��� is the residual deviation from the sample mean response 

time for subject s and item i 

This model assumes that the residuals (���) are 

uncorrelated, meaning that no systematic effects of subjects 

or items are present (Beretas, 2011; Snijders & Bosker, 1999). 

Running the analysis for Model 1, we generate an output 

with several tables (see Figure 2, see also Table 1, Model 1). 

The Model Dimension table displays which variables have 

been included in the model tested. For Model 1, no variables 

                                                                                                            

interchangeable with word in our example. This is to keep the 

denotations of s and i in the CREM equations consistent with the 

recent literature on this topic. 

Figure 

2. SPSS output for Model 1. 
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were entered, so none appear in the table. The Information 

Criteria table provides deviance estimates that can be used 

to calculate how well the model fits the dataset using a chi-

square likelihood ratio test (see Field, 2009 for information 

on the distinction between the different criteria). For the 

purposes of this tutorial we will use the -2LL results, where 

a smaller value indicates a better fit to the dataset. The 

Estimates of Fixed Effects table displays the estimated 

regression coefficient, or mean, for each of the model’s fixed 

effects along with their associated standard error. The t-test 

indicates whether the estimated intercept is statistically 

different from zero. A significant grand mean response time 

score is observed, γ0 = 714.26, p < .001. Finally, the Estimates 

of Covariance Parameters table displays the estimated 

variance for each of the model’s random effects along with 

their associated standard error. The Wald Z test indicates 

whether the estimated variance is statistically different from 

zero (Hayes, 2006). A non-zero residual variance is 

observed, σ2 = 69884.36, p < .001. 

Add and test random effects. The next step is to add any 

random effect parameters to your model. Based on our 

research question and dataset, we will be adding two, the 

random effect for participants and the random effect for 

words. 

Random effect for participants (subjects). The equation 

below is equivalent to the “empty” model, with the addition 

of the random effect for participants. 

  (2) 

where ��� is  the random effect for subject s, or the deviation 

of subject s’s mean response time from the grand mean 

response time 

This model assumes that the residuals (��� and ���) are 

uncorrelated across observations after taking into 

consideration which participant generated the observation 

(Beretas, 2011; Snijders & Bosker, 1999). 

Running the analysis for Model 2, we generate a new 

output (see Figure 3) with four notable results (see also 

Table 1, Model 2). First, an adjusted, yet still significant, 

grand mean response time score is observed, γ0 = 717.25, p < 

.001. Second, an adjusted non-zero residual variance is 

observed, σ2 = 56090.33, p < .001. Third, a new non-zero 

variance for the random effect of participants is observed, 

τ0s2 = 14012.23, p < .001, indicating that the random effect for 

participants is significant. Fourth, we can test whether 

Model 2 fits the dataset better than Model 1 via the chi-

 
Figure 3. SPSS output for Model 2. 
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square likelihood ratio test. The -2LL deviance of Model 2 is 

subtracted from that of Model 1.3 The significance is 

determined by the chi-square distribution, with degrees of 

freedom calculated based on the difference in the number of 

parameters in each model (Locker et al., 2007). We find a 

difference of χ2 (1) = 3925.09, p < .001, indicating that Model 

2 fits the dataset significantly better than Model 1. 

Random effect for words (items). The equation below adds 

the random effect for words. 

  (3) 

where ��� is  the random effect of item i 
This model assumes that the residuals (���, ���, and ���) 

are uncorrelated across observations after taking into 

consideration which participant and which word generated 

the observation (Beretas, 2011; Snijders & Bosker, 1999). 

Running the analysis for Model 3, we generate a new 

output (see Figure 4) with five notable results (see also Table 

                                                                 
3 SPSS does not calculate this difference for you, you need to do 

this calculation by hand. 

1, Model 3). First, an adjusted, yet still significant, grand 

mean response time score is observed, γ0 = 719.91, p < .001. 

Second, an adjusted non-zero residual variance is observed, 

σ2 = 44552.59, p < .001. Third, an adjusted non-zero variance 

for the random effect of participants is observed, τ0s2 = 

14704.64, p < .001. Fourth, a new non-zero variance for the 

random effect of words is observed, τ0i2 = 11906.36, p < .001, 

indicating that random effect for words is significant. Fifth, 

we find that Model 3 fits the dataset significantly better than 

Model 2, χ2 (1) = 3291.69, p < .001. 

Using the estimated parameter variances from Model 3 

we can determine the proportion of response time variance 

explained by participants versus that explained by words 

through means of the ICC (Locker et al., 2007). The ICC is 

calculated as the proportion of variance of the random 

effects (participant variance or word variance) over the total 

variance (participant variance + word variance + residual 

variance). Using the variance parameters in Table 1, the total 

proportion of response time variance explained by 

participants is 20.7%, by words is 16.7%, and the remaining 

unexplained variance is 62.6%. Thus, the random effects 

Figure 4. SPSS output for Model 3. 
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together explain 36% of the model variance. 

Add and test fixed effects. Now that we have validated 

the inclusion of our random effects in a CREM, we need to 

test whether our predictors add anything. Based on our 

research question, we want to test how participant pre-

exposure, word frequency, word gender, and word animacy 

predict observed response time. 

Choose a centring method. Before predictors can be entered 

into the model as fixed effects, they need to be centred. For 

our tutorial we are interested in what is happening at level-1 

so we will use grand-mean centring. We computed new 

centered variables to be used in our CREM analysis. 

Fixed effect for participant pre-exposure. The equation below 

adds participant pre-exposure to the random effects model. 

  (4) 

where  is the main effect of participant pre-

exposure 

Running the analysis for Model 4, we generate a new 

output (see Figure 5) with six notable results (see also Table 

1, Model 4). First, an adjusted, yet still significant, grand 

mean response time score is observed, γ0 = 719.92, p < .001. 

Second, a new and significant regression coefficient for the 

main effect of participant pre-exposure is observed, γ1 = -

71.93, p < .05. Third, an adjusted non-zero residual variance 

is observed, σ2 = 44552.61, p < .001. Fourth, an adjusted non-

zero variance for the random effect of participants is 

observed, τ0s2 = 13410.46, p < .001. Fifth, an adjusted non-zero 

variance for the random effect of words is observed, τ0i2 = 

11905.89, p < .001. Sixth, we find that Model 4 fits the dataset 

significantly better than Model 3, χ2 (1) = 4.47, p < .05. 

Fixed effect for word frequency. The equation below adds 

the second predictor of word frequency to the CREM. 

  (5) 

where  is the main effect of word frequency 

Running the analysis for Model 5 we generate a new 

output (see Figure 6) with six notable results (see also Table 

1, Model 5). First, an adjusted, yet still significant, non-zero 

regression coefficient for the main effect of participant pre-

exposure is observed, γ1 = -71.94, p < .05. Second, a new and 

significant regression coefficient for the main effect of word 

 
Figure 5. SPSS output for Model 4. 
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frequency is observed, γ2 = -.34, p < .001. Third, an adjusted 

non-zero residual variance is observed, σ2 = 44552.48, p < 

.001. Fourth, an adjusted non-zero variance for the random 

effect of participants is observed, τ0s2 = 13409.89, p < .001. 

Fifth, an adjusted non-zero variance for the random effect of 

words is observed, τ0i2 = 11246.74, p < .001. Sixth, we find 

that Model 5 fits the dataset significantly better than Model 

4, χ2 (1) = 21.06, p < .001. 

Fixed effect for word gender. The equation below adds the 

third predictor of word gender. 

 

 (6) 

where  is the main effect of word gender 
Running the analysis for Model 6, we generate new 

output (see Figure 7) with six notable results (see also Table 

1, Model 6). First, an adjusted, yet still significant, regression 

coefficient for the main effect of word frequency is observed, 

γ2 = -.35, p < .001. Second, a new and significant regression 

coefficient for the main effect of word gender is observed, γ3 

= 27.72, p < .05. Third, an adjusted non-zero residual 

variance is observed, σ2 = 44552.30, p < .001. Fourth, an 

adjusted non-zero variance for the random effect of 

participants is observed, τ0s2 = 13410.40, p < .001. Fifth, an 

adjusted non-zero variance for the random effect of words is 

observed, τ0i2 = 11056.55, p < .001. Sixth, we find that Model 6 

fits the dataset significantly better than Model 5, χ2 (1) = 6.35, 

p < .025. 

Fixed effect for word animacy. The equation below adds the 

fourth, and final, predictor of word animacy to the CREM. 

Models are often termed “full” once all the predictors have 

been added. 

  
 (7)

 

where  is the main effect of word animacy 
Running the analysis for Model 7 we generate a new 

output (see Figure 8) with seven notable results (see also 

Figure 6. SPSS output for Model 5. 
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Table 1, Model 7). First, an adjusted, yet still significant, 

regression coefficient for the intercept is observed, γ0 = 

719.90, p < .001. Second, an adjusted but still significant, 

regression coefficient main effect of word gender is 

observed, γ3 = 27.69, p < .05. Third, a new and significant 

regression coefficient for the main effect of word animacy is 

observed, γ4 = -41.60, p < .001. Fourth, an adjusted non-zero 

residual variance is observed, σ2 = 44552.21, p < .001. Fifth, 

an adjusted non-zero variance for the random effect of 

participants is observed, τ0s2 = 13409.66, p < .001. Sixth, an 

adjusted non-zero variance for the random effect of words is 

observed, τ0i2 = 10625.14, p < .001. Seventh, we find that 

Model 7 fits the dataset significantly better than Model 6, χ2 

(1) = 14.64, p < .001. 

5. Estimate the model’s effect size  

For this tutorial we will calculate an estimated local 

effect size since we are interested in level-1 variables. The 

estimated local effect size is calculated by determining the 

proportional reduction in variance using the equation 

below. Therefore, using the information from Table 1, we 

calculate the estimated local effect size to be .36 or 36%. 

  (8) 

This is the same percentage we obtained above when we 

calculated the proportion of variance explained by the 

random effects in our model using the ICC. At first glance, 

then, it appears that the predictors that we added to our 

model did not explain any of the variance accounted for. 

However, this is not the case. To determine the variance 

explained by the predictors over and above that explained 

by the random effects, we can compare the total variance of 

Model 3 to Model 7 using the equation below. We find that 

the predictors account for .036, or 4% of the total variance. 

 (9) 

Therefore, overall, we find a 36% change in the 

 
Figure 7. SPSS output for Model 6. 
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proportion of total variance explained when we compare 

Model 1 to Model 7. Four percent of this variance is 

explained by the predictors we added after Model 3; the 

proportion of total variance explained by our random effects 

decreased for Model 7 in relation to Model 3. 

Reporting the Results 

Now that we have concluded our analyses, we need to 

summarize our findings. Below is one example of how this 

can be done (see Kärnä, Voeten, Poskiparta, & Salmivalli, 

2010 and Konishi, Hymel, Zumbo, & Li, 2010 for additional 

examples on how to report MLM findings). 

Analyses. We examined whether participant pre-exposure, 

word frequency, word gender, and word animacy predicted 

observed response times in a lexical decision task. A one-

level CREM was used in order to encompass the random 

effects of both participants and words. All four predictor 

variables were grand mean centered. 

Results. The results are organized in two sections. First, we 

present the CREM that tested the validity of labelling 

participants and words as random effects. Second, we 

present the CREM that tested the whether the predictor 

variables, in addition to the random effects, explain 

observed response times. An estimated effect size is also 

calculated to measure the amount of variance the full model 

explains. 

Random effects alone model. We used the CREM below 

to test whether participants and words should be considered 

random effects.  

  

This model states that observed response times (���) can 

be explained by the general intercept (��), the random effect 

of participants (���, which allows response time to vary 

Figure 8. SPSS output for Model 7. 
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across participants), the random effect of words (���, which 

allows response time to vary across words), and finally, by a 

certain amount of random error (���). 

The results of this model are summarized in Table 1, 

Model 34. Both random effects were highly significant, 

indicating that observed response times differed across 

participants and words, which was expected; participants 

���, Z = 4.91, p < .001, and words ���, Z = 13.05, p < .001,. 

Thus, these effects will be included in the predictor model as 

random effects. 

Predictor model. We used the CREM below to test 

whether participant pre-exposure, word frequency, word 

gender, and word animacy helped predict observed 

response times. Predictors were entered one at a time to test 

their contribution to the model. All predictors were 

significant, therefore we only present the results of the final 

model. 

  

The model states that, in addition to the general intercept 

(��), the random effect of participants (���), the random 

effect of words (���), and the random error (���), observed 

response times (���) can be predicted by participant pre-

exposure (�	(��

��)�), word frequency (��(��
�)�), word 

gender (��(�
��
�)�), and word animacy (��(����)�). 

The results of this model are summarized in Table 1, 

Model 7. As mentioned above, all of the fixed effects were 

significant; participant pre-exposure, F(1,495) = 4.69, p = .035, 

word frequency, F(1, 396) = 21.55, p < .001, word gender, F(1, 

397) = 6.62, p = .010, word animacy, F(1, 397) = 14.91, p < .001. 

Additionally, both random effects remained highly 

significant; participants (���), Z = 4.91, p < .001, and words 

(���) Z = 12.94, p < .001. These findings indicate that all the 

parameters included in the model help explain observed 

response times. However, the magnitude of this relationship 

also needs to be tested. 

In order to determine an estimated effect size, we 

calculated the proportion of variance explained by the 

predictor model using the formula below. The “empty” 

model contained only the general intercept and random 

error; no predictors or random effects were included. 

                                                                 
4 To preserve space we did not create a new table with the 

regression coefficient and variance estimates for the three 

models discussed in this section. Typically this table would 

be found in an article’s results section. 
5 The denominator degrees of freedom are computed by 

SPSS using the Satherthwaite method; they do not 

correspond to the number of cases or items (Janssen, 2012). 

We have rounded them to the nearest whole integer. 

 

  

Using the information from Table 1, we found that the 

estimated effect size for the predictor model was .036 or 

36%. Therefore, it explains 36% of the variance for the 

observed response times. 

Summary and Conclusion 

This paper had two goals. The first was to provide an 

overview of MLM and CREM. The second was to provide a 

step-by-step tutorial on how to apply and report CREM 

analyses for psycholinguistic data that researchers familiar 

with SPSS could reference. 

As was discussed early on in our paper, the analysis of 

hierarchical data has come a long way. There has been a 

clear transition away from ignoring the hierarchical 

structure of the data or ignoring the possibility of 

interactions among the hierarchical levels towards the use of 

MLM techniques. This is supported by the fact that several 

areas of research now use MLM where more traditional 

statistical techniques were used in the past. These include 

developmental research (Cheung, Goodman, Leckie, & 

Jenkins, 2011), educational research (Pustjens, Van de gaer, 

Van Damme, Onghena, & Van Landeghem, 2007), health 

research (Chen, Modin, Ji, & Hjern, 2011), personality 

research (West, Ryu, Kwok, & Cham, 2011), and romantic 

relationship research (Teachman, 2011), to name a few. The 

benefits of using MLM are numerous; it provides superior 

methods for dealing with problems that arise when 

applying more traditional statistical methods to hierarchical 

data. In addition, the limitations are virtually non-existent. 

The CREM, a type of MLM ideal for psycholinguistic data 

analysis, was introduced. The discussion surrounding the 

benefits of CREM over more traditional ANOVA based 

methods makes its value evident. We outlined the five basic 

steps required for performing a CREM analysis, along with 

the choices and theories behind each step. 

To facilitate the use of CREM, we demonstrated the step-

by-step process in SPSS in tutorial format. We provided a 

detailed explanation of the logic applied to each step of the 

analysis process. Important results were highlighted with 

supporting figures of the SPSS output. Furthermore, we 

presented an example of how to report your CREM findings 

in a research article. 

In summary, we hope to have provided adequate 

evidence supporting the benefits of using CREM in 

psycholinguistics research, along with a clear applied 

statistical example through the tutorial to facilitate its 

implementation by researchers in the field. 
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Appendix: SPSS Syntax for Estimating Crossed Random Effects One-Level Models 

*Empty model – Model #1. 
MIXED Stimulus_RT WITH P_Preexp_GMC W_Freq_LL_GMC W_Gender_GMC W_Animacy_GMC 
 /CRITERIA=MXITER(150) 
 /FIXED=| SSTYPE(3) 
 /METHOD=ML 
 /PRINT=G  SOLUTION TESTCOV 
 /EMMEANS=TABLES(OVERALL). 
 
*Add random effect for participant ID – Model #2. 
MIXED Stimulus_RT WITH P_Preexp_GMC W_Freq_LL_GMC W_Gender_GMC W_Animacy_GMC 
 /CRITERIA=MXITER(150) 
 /FIXED=| SSTYPE(3) 
 /METHOD=ML 
 /PRINT=G  SOLUTION TESTCOV 
 /RANDOM=INTERCEPT | SUBJECT(Part_ID) COVTYPE(ID) 
 /EMMEANS=TABLES(OVERALL). 
 
*Add random effect for word ID – Model #3. 
MIXED Stimulus_RT WITH P_Preexp_GMC W_Freq_LL_GMC W_Gender_GMC W_Animacy_GMC 
 /CRITERIA=MXITER(150) 
 /FIXED=| SSTYPE(3) 
 /METHOD=ML 
 /PRINT=G  SOLUTION TESTCOV 
 /RANDOM=INTERCEPT | SUBJECT(Part_ID) COVTYPE(ID) 
 /RANDOM=INTERCEPT | SUBJECT(Word_ID) COVTYPE(ID) 
 /EMMEANS=TABLES(OVERALL). 
 
*Add fixed effect for participant pre-exposure – Model #4. 
MIXED Stimulus_RT WITH P_Preexp_GMC W_Freq_LL_GMC W_Gender_GMC W_Animacy_GMC 
 /CRITERIA=MXITER(150) 
 /FIXED=P_Preexp_GMC | SSTYPE(3) 
 /METHOD=ML 
 /PRINT=G  SOLUTION TESTCOV 
 /RANDOM=INTERCEPT | SUBJECT(Part_ID) COVTYPE(ID) 
 /RANDOM=INTERCEPT | SUBJECT(Word_ID) COVTYPE(ID) 
 /EMMEANS=TABLES(OVERALL). 
 
*Add fixed effect for word frequency –Model #5. 
MIXED Stimulus_RT WITH P_Preexp_GMC W_Freq_LL_GMC W_Gender_GMC W_Animacy_GMC 
 /CRITERIA=MXITER(150) 
 /FIXED=P_Preexp_GMC W_Freq_LL_GMC | SSTYPE(3) 
 /METHOD=ML 
 /PRINT=G  SOLUTION TESTCOV 
 /RANDOM=INTERCEPT | SUBJECT(Part_ID) COVTYPE(ID) 
 /RANDOM=INTERCEPT | SUBJECT(Word_ID) COVTYPE(ID) 
 /EMMEANS=TABLES(OVERALL). 
 
*Add fixed effect for word gender – Model #6. 
MIXED Stimulus_RT WITH P_Preexp_GMC W_Freq_LL_GMC W_Gender_GMC W_Animacy_GMC 
 /CRITERIA=MXITER(150) 
 /FIXED=P_Preexp_GMC W_Freq_LL_GMC W_Gender_GMC | SSTYPE(3) 
 /METHOD=ML 
 /PRINT=G  SOLUTION TESTCOV 
 /RANDOM=INTERCEPT | SUBJECT(Part_ID) COVTYPE(ID) 
 /RANDOM=INTERCEPT | SUBJECT(Word_ID) COVTYPE(ID) 
 /EMMEANS=TABLES(OVERALL). 
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*Add fixed effect for word animacy – Model #7. 
MIXED Stimulus_RT WITH P_Preexp_GMC W_Freq_LL_GMC W_Gender_GMC W_Animacy_GMC 
 /CRITERIA=MXITER(150) 
 /FIXED=P_Preexp_GMC W_Freq_LL_GMC W_Gender_GMC W_Animacy_GMC | SSTYPE(3) 
 /METHOD=ML 
 /PRINT=G  SOLUTION TESTCOV 
 /RANDOM=INTERCEPT | SUBJECT(Part_ID) COVTYPE(ID) 
 /RANDOM=INTERCEPT | SUBJECT(Word_ID) COVTYPE(ID) 
 /EMMEANS=TABLES(OVERALL). 

 

 


