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This tutorial describes a parameter estimation technique that is little-known in social 
sciences, namely maximum a posteriori estimation. This technique can be used in 
conjunction with prior knowledge to improve maximum likelihood estimation of the 
best-fitting parameters of a data set. The estimates are based on the mode of the 
posterior distribution of a Bayesian analysis. The relationship between maximum a 
posteriori estimation, maximum likelihood estimation, and Bayesian estimation is 
discussed, and example simulations are presented using the Weibull distribution. We 
show that, for the Weibull distribution, the mode produces a less biased and more 
reliable point estimate of the parameters than the mean or the median of the posterior 
distribution. When Gaussian priors are used, it is recommended to underestimate the 
shape and scale parameters of the Weibull distribution to compensate for the inherent 
bias of the maximum likelihood and Bayesian methods which tend to overestimate 
these parameters. We conclude with a discussion of advantages and limitations of 
maximum a posteriori estimation. 

 
 

*Parameter estimation techniques are used to estimate 
the parameters of a distribution model which maximizes the 
fit to a particular data set. The most commonly used 
technique in social sciences is maximum likelihood 
estimation (MLE, Edwards, 1992, Myung, 2000, but see Van 
Zandt, 2000, for alternatives). Software using this technique 
includes RTSYS (Heathcote, 1996), PASTIS (Cousineau and 
Larochelle, 1997), QMPE (Brown and Heathcote, 2003, 
Heathcote, Brown and Cousineau, 2004), DISFIT (Dolan, 
2000), and Mathematica (version 8 and above, Wolfram 
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Research inc., 2011); see Cousineau, Brown and Heathcote, 
2004, for a review and a comparison). In MLE, the likelihood 
of a set of parameters given the data is computed and a 
search for the parameters that maximize the likelihood is 
performed. This technique is very general and can be 
applied to any population distribution (e.g., ex-Gaussian, 
lognormal, Weibull, etc.; see Luce, 1986, Appendix A, for a 
review of some distribution functions).  

A more general technique used in mathematical statistics 
is Bayesian estimation (BE, Edwards, Lindman and Savage, 
1963). This technique returns the posterior distribution of 
the parameters given the data. By taking the mean of the 
posterior distribution, a point estimate of the best-fitting 
parameters can be obtained. Alternatively, the median or the 
mode of the posterior distribution can be used instead of the 
mean. One important advantage of BE over MLE is the 
possibility to inject prior knowledge on the parameters. 
Interval priors can be used to restrict one parameter within 
some given bounds, e.g., a parameter that can only be 
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positive. Likewise, if a distribution can be positively or 
negatively skewed, but the data are known to always be 
positively skewed, the parameter(s) that determine the skew 
could be constrained by the use of an interval prior.  

However, the use of priors is not limited to defining 
limits on the parameter domain: unbounded priors can also 
be used. For example, normal (Gaussian) priors are used 
when a parameter is believed to be normally distributed 
around a true population parameter. For instance, the γ 
parameter of the Weibull distribution applied to response 
time data is always found to be in the vicinity of 2 plus or 
minus 1 (Logan, 1992, Cousineau and Shiffrin, 2004, Huber 
and Cousineau, 2003, Rouder, Lu, Speckman, Sun, & Jiang, 
2005). This prior knowledge could be entered in a BE 
analysis using a normal distribution with mean 2 and 
standard deviation 0.5. 

As will be outlined in the following section, MLE is a 
special case of BE in which (1) the estimate is based on the 
mode of the posterior distribution, and (2) all the parameter 
values are equally likely (i.e., there is no priors). In the 
following section, we show how priors from BE can be 
inserted back into MLE, a technique called Maximum A 

Posteriori (MAP) estimation (Neapolitan, 2004). The MAP 
estimates are much faster to compute than BE, as they do 
not require the estimation of integrals (which are generally 
not available in closed form) or the use of Markov chains. In 
this tutorial, we explain how MAP estimation is related to 
MLE and BE, and we use the Weibull distribution as an 
example model to illustrate its use. The first important result 

is that the mode is the most accurate central tendency 
statistic of the posterior distribution to infer best-fitting 
(point estimate) parameters in the context of the Weibull 
distribution. As such, the full flexibility of BE is not required 
in the Weibull case. This presentation is followed by an 
examination of the impact of priors on the estimates. The 
second important result is that normal priors, even when 
inaccurate, are useful to avoid outlier estimates and thus 
improve parameter estimation. 

A primer on the Weibull distribution 

The present tutorial uses the Weibull distribution as an 
example application of MAP estimation. However, MAP 
estimation is a general technique and any parametric model 
can be used with any type of priors. The Weibull 
distribution was selected here because it is simple yet 
convenient for describing a data set (generally, response 
times). Moreover, the Weibull distribution is described by 
three parameters, and each parameter quantifies a different 
aspect of the data, which is useful in conveying simple 
explanations. In addition, many psychological models 
predict a Weibull distribution (Cousineau, 2004, Miller and 
Ulrich, 2003, Tuerlinckx, 2004, Cousineau, Goodman and 
Shiffrin, 2003, Marley, 1989). Figure 1 shows four probability 
densities with various levels of asymmetry. The probability 
density function (pdf) of the Weibull distribution is given 
by: 

  (1) 

 
Figure 1. Four examples of Weibull distribution densities. In all cases, α = 300 and β = 100, which correspond 
approximately to the shift and scale of well-trained participants in a simple task. When γ ≤ 1, the distribution 
is J-shaped; when γ = 3.6 (not shown), the distribution is almost symmetrical with a Fisher skew of 0.  
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where x is one datum and θ = {γ, β, α} is the set of 
parameters. The parameter α represents the shift of the 
distribution, the parameter β is related to the variance, and 
the parameter γ quantifies the degree of asymmetry (see 
Figure 1; Rouder et al., 2005, Cousineau and Shiffrin, 2004, 
Luce, 1986). 

The Weibull distribution does not meet the regularity 
conditions for MLE (see Kiefer, 2006, for a list of these 
conditions). In particular, the domain of one of its parameter 
(α) depends on the observed data (e.g., α has to be smaller 
than any of the data). As a result, it is not known whether 
the MLE technique (and more generally the mode of the 
posterior distribution) is the most efficient (least variable) 
approach to get point estimates (Rose and Smith, 2000). 

Rockette, Antle and Klimko (1974) showed that if the true 
shape parameter is below 1 (J-shaped distribution), MLE is 
an inconsistent technique because there may be more than 
one best-fitting set of parameters (i.e., more than one mode 
to the posterior distribution). Luckily, J-shaped distributions 
of response time data have never been observed (the main 
application of the Weibull distribution in psychology). Smith 
(1985) showed that for 1 ≤ γ ≤ 2, the posterior distribution is 
unimodal but is not symmetrically distributed so that the 
mean, the mode and the median (among other central 
tendency statistics) are not equal. Smith also showed that for 
γ > 2, the posterior distribution tends towards a normal 
distribution (as a consequence, the mean, mode and median 
are equal) as the sample size is large (here, large is generally 

Interval prior Normal prior 

 

 

 

 

 

 

 

 
Figure 2. The steps to obtain a posterior distribution of parameters. The top row shows priors over all the 
parameters. The left panel shows an interval prior while the right panel shows a normal prior. The middle 
row shows the likelihood surface. The sample in both case is X = {303, 320, 370, 407} so that the likelihood 
surfaces shown in the middle row are identical. The bottom row shows the posterior distributions obtained 
by multiplying the prior and the likelihood pointwise, and then dividing by the probability of the data P(X).  
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believed to be above 100). Because the shape of response 
time data is generally estimated to be near 2, the last two 
scenarios are relevant and the subsequent simulations will 
explore them separately. 

Bayesian estimates vs. Maximum likelihood estimates 

The BE technique works by updating the prior 
probability of some parameters following the acquisition of 
new information (Bishop, 1995; Edwards, Lindman & 
Savage, 1963; Jeffreys, 1961; Hastie, Tibshirani & Friedman, 
2001). The result is called a posterior probability 
distribution. In the present context, the new information is a 
sample X of size n. The posterior probability density of the 
parameters, noted P(θ | X), is given by applying Bayes' 
theorem: 

  (2) 

in which l(θ | X) is the likelihood of the data under the 
putative parameter set θ, and P(θ) models the prior 
knowledge available on the parameter θ (that is, {γ, β, α} in 
the case of the Weibull distribution). The priors can be of 
any type as long as they are a distribution model.  

The term P(X), called the probability of the observed 
data, is a normalizing constant ensuring that the posterior 
distribution has an area of 1. It is given by . 
The computation of this constant is sometimes cumbersome 
because it often involves solving multiple integrals that can 
only be estimated numerically (Bishop, 1995; Hastie et al., 
2001). The complexity of its calculation might explain why 
the Bayesian approach is rarely used in psychology and may 
explain the preference of social scientists for the simpler 
MLE method. 

Figure 2 illustrates the steps required to obtain a 
posterior distribution. The plots are a function of two 
parameters, γ and β. In the top left plot, an interval prior is 
shown where β is constrained within the interval [0.. 200] 
and γ is constrained within the interval [0..4]. Likewise, the 
parameter α (not seen) was constrained within the interval 
[200.. 400]. The prior assigns a probability of zero to the 
parameter values outside the intervals and a probability of 

 inside the intervals. The top right 
plot represents a normal prior centered at γ = 1.5 and β = 75. 
The second row of each column shows the likelihood of a 
small data set of size n = 4 as a function of β and γ  (in this 
plot, α was fixed at 300). If the data are all independently 
sampled and come from the same distribution (i. i. d. 
assumption), then the likelihood is given by: 

  (3) 

where f(xi|θ) is the pdf of the assumed distribution (e.g., Eq. 
1) and xi is the ith item in the sample. In the middle row of 
Figure 2, the mode – the maximum of the function – is 
located at γ = 1.42 and β = 79.3 (at γ = 1.45, β = 69.3, and α = 
289 if α is free to vary). This is the maximum likelihood 
estimator. 

By multiplying the two top surfaces and by dividing by 
P(X) (a real number), the third row is obtained. This is the 
posterior distribution. Note that the distribution in the left 
column has two long tails, one in the direction of increasing 
γ and the other in the direction of increasing β. By using a 
normal prior (right column), the tails are almost non-
existent. We will return to this when we examine the impact 
of priors in a later section. 

The posterior distribution can be summarized by 
computing central tendency statistics. Often, the mean is 
computed. However, the median and the mode are also 
potentially useful statistics and we will argue that the mode 
is the most reliable for a Weibull distribution. To locate the 
mode of the posterior distribution, a search for the 
maximum of the function over the three parameters θ can be 
performed: 

 . 

Because P(X) is a constant independent of the parameters, it 
can be dropped, so that the mode is equally well localized 
by 

  
(4)

 

where Θ is the domain of the parameters (i.e., R+ × R+ × R) for 
the parameters γ, β and α respectively). Eq. 4 is called the 
MAP estimator. In the case where there is no prior, i.e., 
when all the parameter values are equally likely, P(θ) 
becomes a constant and therefore can be dropped from the 
equation as well: 

  
(5)

 

This last equation is exactly the MLE solution. It is a special 
case of BE if the mode is extracted from the posterior and if 
there is no prior. 

More interesting is Eq. 4, the MAP estimator, which is a 
search for the mode of the likelihood weighted by the priors. 
If we consider a search for the logarithm of  
l(θ | X) × P(θ), we get 

  
(6) 

Because the log of a probability is a negative number, the 
quantity log P(θ) can be interpreted as a penalty term. In 
particular, when the estimated parameters fall outside an 
interval prior, the penalty becomes log(0), that is, -∞. Since 
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there cannot be worse penalty, the search returns inside the 
prior interval. However, whenever the estimated parameters 
fall near the center of mass of the prior, the penalty term 
plays only a marginal role in the estimation process. Hence, 
parameter values far away from the center of mass would be 
pushed back toward the center of mass (an effect termed 
shrinkage in Rouder et al., 2005) to increase the MAP 
estimation. The push (given by the penalty term) is stronger 
whenever the parameter value is unlikely according to the 
prior. 

Unlike in BE, using the MAP estimator (Eq. 4) does not 
require the computation of the normalizing constant P(X). 
One consequence is that the computation times are 
decreased by a factor of 1000 when using the MAP 
technique. However, unlike BE, only a point estimate is 
possible, and it can only be the mode. This is because 
computing the mean (or the median) requires integrating the 
posterior, a slower and more complex process achieved with 
numerical integration techniques (e. g. the Gauss-Kronrod 
algorithm or the Gibbs sampling algorithm). Nonetheless, 
MAP estimation is useful when the additional flexibility of 
BE is not strictly necessary. In the following section, we 

compare parameter point estimates of BE obtained using the 
mean, mode, and median in the context of the Weibull 
distribution. 

Mean, Mode or Median? 

The usefulness of the mode of the posterior distribution 
in recovering the true parameter values is assessed in this 
section in two ways. First, we examine how the mode 
compares with the mean and median to recover the true 
parameters of the expected posterior distribution. Second, 
simulations are run to estimate the best-fitting parameters 
describing individual samples of data using the mean, 
median, and mode of the posterior distributions. These 
estimates are then used to compute the bias and the 
efficiency of the point estimations obtained using the three 
central tendency statistics. 

The expected posterior distribution 

We propose using the Expected Posterior Distribution in 
order to have a mean to visualize the ideal posterior 
distribution. For large n, this notion is not required as the 
posterior distribution will be smooth. However, for small 

Figure 3. The expected posterior distribution estimated using 1,000 samples of size 8. The top row shows a 
true shape parameter γT = 1.5 and bottom shows a true shape parameter of γT = 2.5. Because the parameters 
are located in a three-dimensional space, the three projections on a plane are illustrated. The green dot 
shows the estimation obtained by using the mean of the expected posterior distribution, the blue dot shows 
the estimation obtained by using the median of the expected posterior distribution, and the magenta dot 
shows the estimation obtained by using the mode of the expected posterior distribution. The cross indicates 
the position of the true parameters {γT, β = 75, α = 300}. 
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sample sizes, the posterior distribution depends on the 
specifics of the sample and its appearance changes 
considerably from one sample to the other. To remedy this 
problem, we generated a large number of posterior 
distributions based on many different samples of the same 
size and then averaged the densities. Formally, the expected 
posterior distribution is given by a mixture: 

  

where jX is the jth sample (j = 1..m). In the limit, we would 
get: 

  

that is, the ultimate posterior based on all the possible 
samples from the sample space. However, we restricted 
ourselves to m = 1,000 in the simulations. We used a very 
small sample (n = 8) because we wanted the differences 
between the mean, the median and the mode to be easy to 
detect. 

To build the expected posterior, we generated a 
thousand samples (m) each of size 8 (n). For each sample, we 
generated the posterior distribution using the interval prior 
of the top left plot seen in Figure 2. These posterior 
probabilities were evaluated and averaged at the 
intersections of a grid subdividing the 3D parameter space 
in 30 × 30 × 30 = 27,000 points. In one set of simulations, the 
true shape parameter was γT = 1.5; in the other, γT = 2.5. The 
former case corresponds to situations where the posterior is 
not normally distributed and the latter, to situations where 
the posterior should be normally distributed when the 
sample size is large. However, the difference between the 
mean, the median and the mode is smaller in the second 
case but still not zero, suggesting that for a small sample size 
(n = 8), the posterior distribution is not yet normal. 

Figure 3 shows the projections on the three planes of the 
three dimensional expected posterior distribution. In both 
cases the distribution is elongated, suggesting the presence 
of parameter correlations (Bates and Watts, 1988). We also 
see that the distribution is truncated at γ = 4 by the interval 
prior. As noted by Rouder et al. (2005), the asymmetry 
changes very slowly when γ >> 3.602 so that a Weibull 
distribution with γ equals to, e.g., 10, does not differ much 
from a Weibull distribution with γ equals to 10,000. Rouder 
et al. suggested limiting the allowable γ < 5. 

We also obtained point estimates of the parameters of 
the expected posterior distribution using the mean, median 
and mode. None of the estimates was equal to the true 
parameter values. For all three statistics (i.e., mean, median, 
mode), the estimated shift α was underestimated whereas 

the other two parameters were overestimated. More 
specifically, the bias was much smaller when using the 
mode than when using the mean or median when γT = 1.5. 
However, the differences in bias between the central 
tendency statistics was smaller when γT = 2.5. Note that the 
posterior estimates are constrained to be below γ = 4 by the 
interval prior. Had the shape parameter be allowed a larger 
range, the estimation bias when using the mean and the 
median would have increased correspondingly. 

To assess the magnitude of the biases, as well as the 
general precision of the estimates, we now turn to 
simulations in which the parameters are estimated for each 
sample individually. 

Bias and efficiency of the estimates 

Three series of simulations were run to examine the 
quality of the parameter estimates obtained by using the 
mean, the median and the mode of the posterior 
distribution. As in the previous section, we used a small 
sample size (n = 8). Three shape parameters were explored: 
γT = 1.5 and γT = 2.5 as previously, but also an intermediate 
case, γT = 2.0. In each simulation, a random sample of size 8 
was generated with true parameters {γT, β, α}. The 
parameters β and α are scaling parameters and were fixed at 
100 and 300 respectively. The resulting sample was then 
analyzed using BE and point estimates of the distribution 
parameters were obtained using the mean, the median and 
the mode of the posterior distribution. This procedure was 
repeated a thousand times. The prior used in BE was an 
interval prior {1 ≤ γ ≤ 4}, {0 ≤ β ≤ 200} and {0 ≤ α ≤ 400}. 
Additionally, because α cannot exceed the smallest item in 
the sample, the upper bound was the smallest of 400 and the 
smallest of the sample. 

The mode was located using the Simplex (Nelder and 
Mead, 1965). The mean of the posterior distribution was 
obtained by extracting the marginal distribution of a single 
parameter (integrating out the other two) and then 
computing the mean value of that univariate distribution. 
For instance, the mean of the shift parameter was obtained 
by getting its marginal distribution 

 and then the mean was 
obtained with . The 
limits of the integral correspond to the intervals of the 
priors. The median of a single parameter was obtained by 
first getting its marginal distribution as above, then the 
cumulative density function (cdf, e.g., 

), and finally searching for the value 
at which the cdf equals 1/2. (e.g., 

Md
α̂ such that 

). 
We summarized the results by first computing the mean 

of the estimated parameters obtained using the mean, mode, 
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and median. The results are shown in the three leftmost 
columns of Table 1. As seen, the parameters γ and β were 
always overestimated and α was always underestimated 
(although negligibly so in one condition). For the mode, the 
bias was small but tended to increase with increasing γT. For 
the mean and median, the bias was very large but 
diminished as γT increases. Remember that the parameter γ 
was bounded from above at 4, favoring fewer 
overestimation and therefore smaller biases. 

Next, we computed (a) the three-dimensional bias, i.e., 
the distance between the mean of the estimated parameters 
and the true parameters in a 3D space and (b) the three-
dimensional efficiency of the estimates, i.e., the variability in 
the distance between the individual estimates and the mean 
estimate in a 3D space. Formally: 

  

  

where  is the mean estimated parameter vector, θT is the 
true parameter vector, and θi is the estimated parameter 
vector from the ith sample (i = 1 .. m, with m = 1000). The 
symbol •  denotes the Euclidian distance. From these 
definitions, the global error of prediction, i.e., the Root Mean 
Squared Error (RMSE) is equal to: 

  

These results are shown in the three rightmost columns 
of Table 1. First, we note that efficiency is smaller (i.e. the 
estimates are more stable) when the mean posterior 
distribution is computed. This was a predictable result since, 
for any distribution, the standard deviation about the mean 
is smaller than the standard deviation about any other value 
(Cramèr, 1947). Further, as γT increased, the advantage in 
efficiency of the mean over the mode became more 
important. This advantage in efficiency is however 
accompanied by an important bias (the bias is nearly five 
times as important for small γT compared to the modal 
estimates’ bias). The RMSE reflects this fact: for small γT, the 
advantage of the modal estimates is important. For large γT, 
the differences tend to reverse. However, the empirical data 
generally do not show large γT (the largest mean γT in Logan, 
1992, was 2.264). So, for the kind of RT data typically 
obtained in social sciences, the mean estimates are the most 
biased and this is caused by the long tail of the posterior 
distribution in the particular case of the Weibull 
distribution. Using an interval prior presumably reduced the 
impact of this long tail. We examine in the next section the 
impact of more aggressive priors. Finally, the bias and 
efficiency of estimates obtained using the median tended to 
be somewhere between those obtained with the mean and 
mode, but the median’s middle of the road scores sometimes 
resulted in smaller RMSE.  

Impact of priors, right or wrong 

In this section, we examine the influence of normal 
priors on the estimates. A good set of priors (e.g., that model 

Table 1. Parameter estimates for three central tendency measures as a function of the true shape parameter. 

                          

Mean parameter estimates      Reliability     

True scale 
 

Statistics 
 

 

 

 

 

 

 
Bias 

 
Eff 

 
RMSE 

Mode 1.63 106.5 299.9 6.5 34.0 34.6 
 

 

Median 2.05 133.9 283.8 37.6 29.9 48.0 

Mean 2.09 133.3 275.7 41.2 21.8 46.6 

Mode 2.57 110.2 290.9 13.7 35.0 37.6 
 

 

Median 2.60 126.5 281.6 32.3 21.1 38.5 

Mean 2.59 127.9 276.9 36.2 18.4 40.6 

  
Mode 

 
3.21 

 
115.9 

 
285.0 

 
21.9 

 
32.4 

 
39.1 

 

 

Median 2.96 119.6 287.0 23.5 21.1 31.6 

    Mean   2.90   122.6   281.4   29.3   18.2   34.5 

Note: the true parameters are {γT, 100, 300} 
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the parameters of the population accurately) should increase 
the precision of the estimates (smaller bias and hence, 
smaller RMSE, as shown next). Another advantage of a 
normal prior with a reasonably small variance is that it will 
“truncate” the long tails of the likelihood function (as was 
seen in Figure 2, second row). This in turn reduces the 
probability of outlier estimates so that the efficiency will be 
improved (smaller variance of the estimates). However, one 
risk of using a normal prior is that it could determine the 
outcome entirely. Figure 4 illustrates this last danger (in a 
format similar to that of Figure 2). The top row shows a 
normal prior centered at {γ = 2.5, β = 125} (the parameter α, 
not shown, is modeled by an interval prior on [200..400]). As 
in Figure 2, the middle row shows the likelihood function 
for three samples of increasing sizes. These samples were 
taken from a Weibull-distributed population with true 
parameters {γ = 1.5, β = 75, α = 300}. In all three cases, the 
likelihood function is reasonably well centered above the 
true parameters of the population. The bottom row shows 
the posterior distributions. As seen, the smaller the sample 
size, the more similar the posterior is to the prior. 

This influence of the prior on the estimate is best 
understood with Eq. 6. In that equation, log P(θ) is a penalty 
term that increases with the distance between the point 
estimates and the mode of the prior distribution. However, 
the magnitude of the penalty term is independent of sample 
size. The log of the likelihood, on the other hand, becomes 

more peaked with increasing sample sizes so that in the 
limit (n � ∞), the area surrounding the peak is zero. As 
such, the prior no longer has any influence on the estimates. 
In practical applications, however, it is not known if there is 
a critical sample size beyond which the prior has no 
influence anymore. The effects of biased priors and sample 
size are explored next. 

Simulation method 

We ran simulations to explore the effect of sample size 
and biased priors. We used three priors: two normal priors 
centered on θLow = {γ = 1.5, β = 75, α = 300} and θHigh = {γ = 2.5, 
β = 125, α = 300}, and the interval prior used in the previous 
section. In half of the simulations, the true parameters used 
to sample random deviates were θLow; in the other half, θHigh 
was used. The sample size was also varied from a very small 
sample size (n = 1) to a very large sample size (n = 128). The 
sample sizes used were 1, 8, 16, 32, 64, 80, 96 and 128. In all 
the conditions of true parameters by sample size (2 × 8 
conditions), we generated 1000 (m) samples from which 
estimates were obtained using the three priors (for a total of 
48 estimates). In all simulations, we estimated the 
parameters from the mode of the posterior distribution 
using MAP estimation. The results were then summarized 
using the (three-dimensional) bias and efficiency as in the 
previous section. 

 
Figure 4. The steps to obtain a posterior distribution using the same format as in Figure 2. Here, the prior is a normal 
distribution centered on {γ = 2.5, β = 125} with variances of {0.5, 1250} and no covariation. The prior on the parameter α
was an interval [200..400]. The posterior distribution is more similar to the prior for small samples than for large samples. 
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Hypothesis on sample size 

Figure 4 suggests that, with small sample sizes, the 
priors determine the estimates. Hence, when the prior is not 
based on the true parameters, the three-dimensional bias 
should equal the distance between θHigh and θLow, that is 

 which is equal in this case to 50.01. In 
addition, the efficiency of the estimates should equal the 
total variation found in the priors. Because the priors were 
modeled with a variance on γ of 0.5 and a variance on β of 
1,250, the total variation of the priors should be 49.5. These 
predictions should occur for very small sample sizes. The 
first goal of the simulations is to verify this hypothesis. 

Hypothesis on biased priors 

Figure 4 also suggests that biased priors can be harmful 
with small sample sizes. However, biased priors may be 
helpful with known biased estimators. For instance, we have 
shown earlier that the estimates obtained from BE (or its 
special case, MAP estimation) are biased upward for γ and β. 
Keeping this bias in mind, it may be possible to use priors 
for γ and β that are smaller than the true γ and β to 
compensate for this bias. The second goal of these 
simulations is to test this possibility. 

Simulation results 

The results of the simulations are shown in Figure 5. The 
most striking aspect of the plots is the leveling of the curves 
for sample sizes 80 and above. Both bias and efficiency 
became nearly flat with no influence of the priors injected in 
the process. Hence, answering the first question above, there 
is a critical sample size past which the priors stop affecting 
the MAP estimate. This critical sample size is n = 80. This is 
rather small and would suggest that all the asymptotic 
properties of the MLE apply past n = 80 (remember that, 
following Smith, 1985, the Weibull distribution has the usual 
MLE properties only when the true population shape 
parameter γ exceeds 2).  

Interestingly, Figure 5 also suggests an interaction 
involving the location of the prior. First, correct priors 
(centered at the true parameter values) improve bias 
markedly. The bias is the smallest in our simulations for a 
sample size of 8. Second, incorrect priors do not necessarily 
produce bad estimates: when the prior accentuate the 
tendency of MLE to overestimate γ and β, the results are 
very biased. For a sample size of 1, the bias is 50.0, equal to 
the distance between the true parameters and the 

parameters of the prior, suggesting in this case that the prior 
uniquely determines the estimates. However, when the prior 
is opposing the tendency of BE and MLE to overestimate γ 
and β, bias is bad for very small samples (n = 1 or n = 8) but 
much reduced for medium sample sizes (n = 32 or n = 64). 
Figure 5 suggests that at n = 64, the pull of the prior is equal 
(in the opposite direction) to the push of the bias inherent to 
BE and MLE so that they nearly cancel each other out. The 
optimal sample size in our simulations (n = 64) is however 
certainly dependent on the distance between the true 
parameters and the parameters of the priors. Had the 
distance been larger (or smaller), the minimum of the 
function would have occurred at a smaller (respectively 
larger) sample size. Hence, for all practical application, 
when devising priors, the modeler should be very 
conservative and underestimate the parameters γ and β in 
proportion to the uncertainty on their true values and in 
proportion to the smallness of the available sample. 

Regarding efficiency, any normal prior is preferable to 
an interval prior. Such priors diminish the influence of long 
tails, resulting in less variable (i.e., more efficient) estimates. 
Also, efficiency was not affected much by the quality of the 
priors (among normal priors). As such, RMSE mainly 
reflected the bias term in the estimates. 

Discussion 

In this tutorial, we reviewed a seldom-used technique for 
parameter estimation in social sciences, namely MAP 
estimation. MAP estimation is an extension of the regular 
MLE technique which can be used in conjunction with priors 
of any types. Likewise, it is a special case of the Bayesian 
estimation technique from which only the modal value of 
the posterior distribution can be obtained. The results of the 
example simulations included in this tutorial suggest that 
the full capabilities of BE technique is unnecessary for the 
case of the Weibull distribution. Modal estimates were 
accurate and priors could be injected into the MLE technique 
directly. This conclusion is useful because BE is difficult to 
implement and slow to operate: It requires the numerical 
estimation of a large number of nested integrals (none 
available in closed form when the Weibull distribution is 
assumed) or the use of Markov Chain Monte Carlo 
techniques. Such calculations are slow (estimating the mean 
of the posterior distribution is approximately 1,000 times 
slower than estimating the mode using MLE or MAP) and 
become a real concern in models involving convolved 
stages. 
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However, by using MAP estimation instead of BE, it is 
no longer possible to compute the posterior distribution of 
the parameters, only a point estimation is returned. This lost 
of information follows from the maximization procedure 
which summarizes the entire distribution using its mode. 
Because the mode of the posterior distribution is used, the 
amount of information lost is a negative function of the 
sample size. It is well-known in Bayesian statistics that the 
precision of a measurement is the reciprocal of the posterior 
distribution’s variance, and that this measure often 
diminishes as new data is made available (Edwards et al., 
1963; Jeffreys, 1961). While there is no general formula to 
describe the diminution of the posterior distribution’s 
variance following Bayesian updating, it is usually very fast 
so that the posterior mode can adequately summarize the 
posterior distribution as soon as a fairly small amount of 
data is available. This result was confirmed by the included 
simulations which showed that modal estimates are less 
biased than the mean (or the median) of the posterior 
distribution. Overall, errors of estimation (measured by 
RMSE) were favorable to modes when γT was smaller than 2 
and comparable when γT was larger than 2.  

A limitation of MAP estimation that was not discussed 
previously concerns the construction of confidence intervals. 
Because BE provides a full distribution, the posterior can be 
used to infer confidence intervals and standard errors. Such 

quantities cannot be derived directly for MLE or MAP. 
However, it is possible to estimate standard errors using the 
Hessian matrix of the MAP estimators, as with regular MLE 
(see Dolan and Molenaar, 1991, Rose and Smith, 2001). It is 
our hope that this tutorial will increase the use of MAP 
estimation in social sciences, and future work should be 
devoted to testing the efficacy of the posterior mode in 
estimating parameters for other common parametric models 
in psychology. 
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