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AbstractAbstractAbstractAbstract � Although a mainstay of psychometric methods, several reviews suggest factor analysis is often applied without testing 
whether data support it, and that decision-making process or guiding principles providing evidential support for FA techniques 
are seldom reported. Researchers often defer such decision-making to the default settings on widely-used software packages, and 
unaware of their limitations, might unwittingly misuse FA. This paper discusses robust analytical alternatives for answering nine 
important questions in exploratory factor analysis (EFA), and provides R commands for running complex analysis in the hope of 
encouraging and empowering substantive researchers on a journey of discovery towards more knowledgeable and judicious use 
of robust alternatives in FA. It aims to take solutions to problems like skewness, missing values, determining the number of 
factors to extract, and calculation of standard errors of loadings, and make them accessible to the general substantive researcher. 
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IntroductionIntroductionIntroductionIntroduction    

Exploratory factor analysis (EFA) entails a set of 

procedures for modelling a theoretical number of latent 

dimensions representing a parsimonious approx-

imation of the relationship between real-world 

phenomena and measured variables. Confirmatory 

factor analysis (CFA) implements routines for 

evaluating model fit and factorial invariance of 

postulated latent dimensions (MacCallum, Browne, & 

Cai, 2007; Thompson, 2004; Tucker & MacCallum, 

1997). Factor analytic methods trace their history to 

Spearman's (1904) seminal article on the structure of 

intelligence, and were eagerly adopted and further 

developed by other intelligence theorists (e.g. 

Thurstone, 1936). In celebration of a century of factor 

analysis research, Cudek (2007) proclaimed “factor 

analysis has turned out to be one of the most successful 

of the multivariate statistical methods and one of the 

pillars of behavioral research” (p. 4). Kerlinger (1986) 

describes factor analysis as “the queen of analytic 

methods … because of its power, elegance, and 

closeness to the core of scientific purpose” (p. 569). 

Systematic reviews report that between 13 and 29 

percent of research articles in some psychology 

journals make use of EFA, CFA or principal components 

analysis (PCA) with this number continuing to increase 

(Fabrigar, Wegener, MacCallum, & Strahan, 1999; 

Russell, 2002; Zygmont & Smith, 2006). This popularity 

is partly due to the advent of personal computers and 

increased accessibility to FA calculations afforded 

substantive researchers by statistical software allowing 

complex calculations to be done “in only moments, and 

in a user-friendly point-and-click environment” 

(Thomson, 2004, p. 4). Nedler (1964) predicted that “ 

'first generation' programs, which largely behave as 

though the design did wholly define the analysis, will be 

replaced by new second-generation programs capable 

of checking the additional assumptions and taking 

appropriate action” (p. 245). This has not taken place – 

the onus still rests on researchers to make judicious 

choices between analytical procedures at their disposal. 

Yuan and Lu (2008) caution against relying solely on 

default output of popular software packages for FA. 

However, researchers are often unaware of powerful 

robust alternatives to inefficient analytical options 

appearing as defaults in standard statistical packages or 

modern trends in the judicious use of statistical 

procedures (Erceg-Hurn & Mirosevich, 2008; Preacher 

& MacCallum, 2003). 

Reviews of articles in prominent psychology 

journals (Fabrigar, Wegener, MacCallum & Strahan, 
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1999; Russell, 2002; Zygmont & Smith, 2006), animal 

behavior research (Budaev, 2010), counseling 

(Worthington & Wittaker, 2006), education 

(Schönrock-Adema, Heinje-Penninga, van Hell, & 

Cohen-Schotanus, 2009), and medicine (Patil, 

McPherson, & Friesner, 2010) have all noted that FA 

options being used in substantive research are often 

inconsistent with statistical literature, and authors 

often fail to adequately report on the methods being 

used. Numerous powerful robust procedures are 

available, but often remain in the realm of academic 

curiosities (Horsewell, 1990). Dinno (2009) implores 

“as there are a growing number of fast free software 

tools available for any researcher to employ, the bar 

ought to be raised” (p. 386).  

Towards this end this paper presents a sequence of 

nine empirical questions, together with suggested 

alternatives for exploring answers, which can be used 

by researchers in the process of conducting robust EFA 

under a wide range of circumstances. The authors' 

intention is not to provide detailed expositions on each 

method, but rather to present options, allowing for 

researchers to make informed decisions regarding their 

analysis. Together with the theoretical discussion and 

example, an R script is provided allowing for replication 

of these analyses using the R statistical environment. R 

provides FA relevant functions and the largest 

collections of statistical tools of any software – all for 

free (Klinke, Mihoci, & Härdle, 2010; R Development 

Core Team, 2008).  

Question 1: Is my sample size adequate?Question 1: Is my sample size adequate?Question 1: Is my sample size adequate?Question 1: Is my sample size adequate?    

Generally methodologists prioritize a large sample 

when designing a factor analytic study, especially for 

recovery of weak factor loadings (Ximénez, 2006).  A 

sufficient sample size for factor analysis is generally 

considered to be above 100, with 200 being considered 

a large sample size although more is always better, and 

50 an absolute minimum (Boomsma, 1985; Gorsuch, 

1983). However, absolute rules for sample size are not 

appropriate, seeing as adequate sample size is partly 

determined by sample–variable ratios, saturation of 

factors, and heterogeneity of the sample (Costello & 

Osborne, 2005; de Winter, Dodou, & Wieringa, 2009). 

Proposed sample-variable ratios range from 5:1 as an 

absolute minimum to 10:1 as the commonly used 

standard (Hair, Anderson, Tatham, and Grablowsky, 

1995; Kerlinger, 1986). An inverse relationship 

between commonalities of variables and sample size 

exists (Fabrigar et al., 1999). High commonalities (≥ 

.70) suggest adequate factor saturation for which 

sample sizes as low as 60 could suffice. Low 

commonalities (≤ .50) suggest inadequate factor 

saturation for which sample sizes between 100 and 200 

are recommended (MacCallum, Widaman, Zhang, and 

Hong, 1999). However, these values are typically not 

available prior to conducting EFA and are difficult to 

estimate. Item reliability coefficients could provide a 

useful guideline. Kerlinger (1986) recommend sample 

ratios of 10:1 or more when item reliability and item 

inter-correlations are low. 

Question 2: Does the data support factor analysis?Question 2: Does the data support factor analysis?Question 2: Does the data support factor analysis?Question 2: Does the data support factor analysis?    

Data should be screened prior to analysis so that 

informed decisions can be made regarding the most 

appropriate statistics and data cleaning (for example, 

scrubbing obvious input errors). Important properties 

to examine include distribution assumptions, impact of 

outliers, and missing values.  

Distribution assumptions. 

The assumption of multivariate normality (MVN) forms 

the basis for correlational statistics upon which FA and 

various procedures (e.g. χ2 goodness-of-fit) used in 

maximum-likelihood (ML) analysis rests (Rowe & 

Rowe, 2004). In testing this assumption, first examine 

for univariate normality (UVN). Violation of UVN 

increases the likelihood that MVN has been violated. 

However, MVN can be violated even though no 

individual variables were found to be non-normal. The 

Skewness and Kurtosis statistics – with critical values 

for maximum likelihood (ML) methods set at 2 and 7 

respectively (Curran, West & Finch, 1996; Ryu, 2011) – 

and Kolmogorov-Smirnov statistic are most commonly 

used to investigate UVN. Erceg-Hurn and Mirosevich 

(2008) caution that these tests can be susceptible to 

heteroscedasticy. Srivastava and Hui (1987) 

recommended the Shapiro-Wilk W-test as a more 

powerful alternative, and rated it as possibly the best 

test for UVN. Keeping in mind that one test is unlikely to 

detect all possible variations from normality, Looney 

(1995) suggested that decisions regarding normality 

should be based on the aggregate results of a battery of 

different tests with relatively high power.  

Mecklin and Mundfrom (2005) categorised MVN 

tests into four groups: Graphical and correlational 

approaches (e.g. chi-squared plot), Skewness and 

kurtosis approaches (e.g. Mardia's tests of skewness 

and kurtosis), Goodness of fit approaches (e.g. 

Anderson-Darling and Shapiro-Wilk multivariate 
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omnibus tests), and Consistent approaches (e.g. Henze-

Zirkler test utilizing the empirical characteristic 

function). Of the fifty or so procedures available, 

Mecklin and Mundfrom (2005) recommended two for 

their high power across a wide range of non-normal 

situations: Royston's (1995) revision of a goodness of 

fit multivariate extension to the Shapiro-Wilks W test 

for smaller samples and the Henze-Zirkler (1990) 

consistent test for larger samples. The former estimates 

the straightness of the normal quantile-quantile (Q-Q) 

probability plot whereas the latter measures the 

distance between the hypothesized MVN distribution 

and the observed distribution (Farrell, Salibian-

Barrera, & Naczk, 2006). As recommended above, the 

results of these and other MVN test statistics should be 

interpreted in unison to make meaningful decisions 

about normality. It is also advisable to look for outliers, 

and see whether they may be impacting on normality of 

your data. 

Impact of outliers. 

A single outlier can potentially distort correlation 

estimates (Stevens, 1984), measures of item-factor 

congruence such as Cronbach's alpha (Christmann & 

Van Aeist, 2006), and FA model parameters and 

goodness-of-fit estimators (Mavridis & Moustaki, 

2008). Outliers may eventually lead to incorrect models 

being specified (Bollen, 1987; Pison et al., 2003). 

Conversely, good leverage points – outliers with very 

small residuals from the model line despite lying far 

from the center of the data cloud – can actually lower 

standard errors on estimates of regression coefficients 

(Yuan & Zhong, 2008). Start investigating the impact of 

outliers by examining univariate distributions (e.g. box-

plots or values furthest from the mean), then bivariate 

distributions (e.g. standardized residuals more than 

three absolute values from the regression line), and 

finally scores that stray significantly from the 

multivariate average of all scores.  

Mahalanobis' D2 (distance of a score from the 

centroid of all cases) and Cooks distance (estimate of 

an observation's combined influence on both predictor 

and criterion spaces expressed as the change in the 

regression coefficient attributable to each case) are the 

most common statistics used to identify multivariate 

outliers (Stevens, 1984). Despite their popularity they 

suffer from masking (the presence of outliers makes it 

difficult to estimate location and scatter), are 

vulnerable to heteroscedasticy, and distributional 

variations (Wilcox & Keselman, 2004). Improved 

multivariate outlier detection methods that utilize 

robust estimations of location and scatter, have high 

breakdown points (can handle more outliers before 

estimates are compromised), and are differentially 

sensitive to good and bad leverage points have been 

developed (Mavridis & Moustaki, 2008; Pison, 

Rousseeuw, Filzmoser, & Croux, 2003; Rousseeuw & 

van Driessen, 1999; Yuan & Zhong, 2008). Examples of 

affine-equivariant estimators (invariant under 

rotations of the data) that achieve a breakdown point of 

approximately .05 include: 1) the minimum-volume 

elipsoid (MVE) estimator, which attempts to estimate 

the smallest ellipsoid to encapture half of the available 

data; 2) the minimum-covariance determinant (MCD), 

which searches for the subset of half of the data with 

the smallest generalized variance; 3) the translated-

biweight S-estimator (TBS), which seeks to empirically 

determine how much data should be trimmed and 

minimize the value of scale of the data; 4) the minimum 

generalized variance (MGV), which iteratively moves 

the data between two sets working out which points 

have the highest generalized variance from the center 

of the cloud, and 5) projection methods, which consider 

whether points are outliers across a number of 

orthogonal projections of the data (Wilcox, 2012). Of 

the robust procedures available, no single method 

works best in all situations – their performance varies 

depending on where a given outlier is located relative 

to the data cloud and other outliers, how many outliers 

there happen to be, and the sample size and number of 

variables (Wilcox, 2008). MVE works well if the 

number of variables is less than 10, MCD and TBS when 

there are at least 5 observations per dimension, and 

MGV that has the advantage of being scale invariant. 

When there are 10 or more variables, MGV or 

projection algorithms with simulations used to adjust 

the decision rule to limit the number of outliers 

identified to a specified value are suggested (Wilcox, 

2012).  

Missing values. 

Burton and Altman (2004) found that few 

researchers consider the impact of missing data on 

their models, viewing it as a non-issue or merely a 

nuisance best ignored. Best practice guidelines suggest 

that every quantitative study should report the extent 

and nature of missing data, as well as the rationale and 

procedures used to handle missing data (Schlomer, 

Bauman, & Card, 2010). Little and Rubin (2002) 

propose three possibilities regarding the nature of 
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missing data: Completely random missing data (MCAR), 

where missing data are unrelated to predicted or 

observed values; Randomly missing values (MAR), 

where missing values may be related to other observed 

values, but not to missing values; or Non-random 

missing data (MNAR), where missing data are 

dependent on the value which would have been 

observed. The mechanism by which data is missing is 

very important when determining the efficacy and 

appropriateness of imputation strategies. The default 

techniques for dealing with missing values in most 

statistical packages are listwise and pairwise deletion. 

Listwise excludes the entire case and will lead to 

unbiased parameter and standard error estimates if 

data are MCAR, but may yield biased parameter 

estimates in MAR, and is likely to result in reductions to 

power.  Pairwise deletion estimates moments for all 

pairs of cases in which all data is present. Although 

allowing for greater power, pairwise analysis may 

result in more sampling variance than listwise deletion, 

produce biased standard error estimates, and a 

covariance matrix that is not positive definite (Allison, 

2003; Jamshidian & Mata, 2007).   

A few missing values need not signal the decimation 

of your degrees of freedom, these values can often be 

imputed. The simplest method is simply imputing the 

mean for that variable, although this method is almost 

never appropriate as it leads to severely 

underestimated variance (Jamshidian & Mata, 2007; 

Little & Rubin, 2002). Nonstochastic regression 

methods are easily computed, but should be avoided as 

biases in variance and covariance estimates may result, 

and accurate standard errors cannot be calculated 

(Lumley, 2010; Schlomer, Bauman, & Card, 2010). If the 

missing data mechanism is not modeled, Yuan and Lu 

(2008) recommend a two stage ML procedure. 

However, when samples sizes are small to moderate 

and the asymptotic assumptions of ML are violated, 

Bayesian approaches are favored over EM based ML 

estimates (Tan, Tian, & Ng, 2010). The preferred 

approach at present is multiple imputation (MI), which 

can be used in almost any situation (Allison, 2003; 

Ludbrook, 2008). MI works by constructing an initial 

model to predict the missing data that has good fit to 

the observed data. The missing data are then sampled a 

number of times from the predicted distribution 

resulting in a number of potential complete datasets 

(higher numbers result in better estimates of 

imputation variance). The same analysis can then be 

run on each imputed dataset, and an average of all 

analyses used for the overall estimate. A special 

formula is used to estimate variance from the imputed 

data, as these tend to have smaller variance than actual 

data (Rubin, 1987). It is important to realize that MI 

will not remove bias completely, but will reduce bias to 

a greater extent than listwise deletion or mean 

imputation, simply because non-responders are likely 

to be different (Lumley, 2010).  

There are a number of packages available for 

performing imputation in R (Horton & Kleinman, 

2007). For example, Amelia II (Honaker, King, & 

Blackwell, 2006) can impute combinations of both 

cross-sectional and time series data using a 

bootstrapping-based EM algorithm, and does provide a 

user-friendly GUI. Multiple imputation of mixed-type 

categorical and continuous data using different 

methods is available in the mix package (Schafer, 

1996). Similarly missForest (Stekhoven & Buehlmann, 

2012) allows for imputation of mixed-type data and is 

useful when MVN is violated as it uses non-parametric 

estimators. The mi package, and associated mitools 

package (Su, Gelman, Hill, & Yajima, 2010), impute 

missing data using an iterative regression approach and 

calculate Rubin's standard errors respectively. 

Multivariate Imputation by Chained Equations (MICE) 

allows for imputation of multivariate data using 

multiple imputation methods including predictive mean 

matching, Bayesian linear regression, logistic and 

polytomous regression, and linear discriminant 

analysis (van Buuren & Groothuis-Oudshoorn, in 

press). Fully conditional specification (FCS), as 

implemented in MICE, has demonstrated better 

performance than two-way imputation in maintaining 

structure among items and the correlation between 

scales under the MCAR assumption, and should work 

well under the MAR assumption (van Buuren, 2010). 

Allison (2003) recommends a sensitivity analysis 

following imputation to explore the consequences of 

different modeling assumptions.  Seeing as MICE allows 

users to program their own imputation functions, this 

theoretically allows for sensitivity analysis of different 

missingness models (Horton & Kleinman, 2007). This 

can be done after choosing a model and estimation 

method by 1) calculating parameter estimates with 

complete cases (nc), 2) sample nc cases randomly from 

the complete imputed dataset, calculating sample 

estimates each time, 3) repeat step 2 a number of times 

to capture variation in parameter estimates, 4) 

compare the complete case parameter estimate to those 

obtained from subsamples. If the parameter estimates 
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vary significantly, the missingness mechanism is 

unlikely to be MCAR (Jamshidian & Mata, 2007).   

Researchers should carefully evaluate, and report to 

readers, their decision-making process in dealing with 

distributional assumptions, outliers, and missing data. 

Gao, Mokhtarian, and Johnston (2008) suggest that 

researchers identify and remove outliers that most 

impact on a sample's multivariate skewness and 

kurtosis; finding an appropriate balance between full 

data that could generate an untrustworthy model, and a 

trustworthy model with limited generalizability due to 

excluded values. Various estimation methods should be 

used when trying to identify outliers, and triangulated 

analysis is recommended when potential outliers are 

identified not resulting from gross human error 

involving: analysis of data as collected, analysis using a 

scalable robust covariance matrix with high breakdown 

point, and analysis in which suspected outliers are 

excluded. Furthermore, when distributional 

assumptions have been violated FA estimators with 

greater robustness like the Minimal Residuals 

(MINRES), Asymptotically Distribution Free (ADF) 

generalized least-squares for large sample sizes, or 

Continuous/Categorical Variable Methodology (CVM) 

techniques should be compared to the performance of 

the default ML procedure (Jöreskog, 2003; Muthén & 

Kaplan, 1985). 

Question 3: Are separate analyses on different groups Question 3: Are separate analyses on different groups Question 3: Are separate analyses on different groups Question 3: Are separate analyses on different groups 

indicated?indicated?indicated?indicated?    

Fabrigar et al. (1999) suggest that the sample should be 

heterogeneous in order to avoid inaccurate low 

estimates of factor loadings. However, reduced 

homogeneity attributable largely to group differences 

may artificially inflate the variance of scores. 

Researchers should examine for significant differences 

in performance between homogeneous groups within 

the sample, and perform separate factor analyses for 

significantly different groups before attempting FA on 

the entire sample group. When distributional 

assumptions have been met, an analysis of variance 

(ANOVA) may be performed with different groupings. 

Erceg-Hurn and Mirosevich (2008) recommend the 

ANOVA-type statistic (ATS), also called  Brunner, Dette, 

and Munk (BDM) method, as a robust alternative when 

distribution assumptions are violated. ATS tests the 

null hypothesis that the groups being compared have 

identical distributions, and that their relative treatment 

effects are the same (Wilcox, 2005). McKean (2004), 

and Terpstra and McKean (2005), suggest R routines 

for the weighted Wilcoxon techniques (WW) providing 

a useful option for testing linear models when 

normality assumptions are violated or there are 

outliers in both the x- and y-spaces. When the question 

of a priori group analysis has been resolved adequately, 

the ensuing FA will be more robust and empirically 

supported.  

Question 4Question 4Question 4Question 4: Do correlations support factor analysis?: Do correlations support factor analysis?: Do correlations support factor analysis?: Do correlations support factor analysis?    

The correlation matrix should give sufficient evidence 

of mild multicollinearity to justify factor extraction 

before FA is attempted. Mild multicollinearity is 

demonstrated by significant moderate correlations 

between each pair of variables. Field (2009) suggests 

that if two variables correlate higher than .80 one 

should consider eliminating one from the analysis. The 

Kaiser-Meyer-Olkin (KMO) measure of sampling 

adequacy for the R-matrix can be used to examine 

whether the variables are measuring a common factor 

as evidenced by relatively compact patterns of 

correlation. The KMO provides an index for comparing 

the magnitude of observed correlation coefficients to 

the magnitude of partial correlation coefficients with 

acceptable values ranging from 0.5 to 1 (Hutcheson & 

Sofroniou, 1999). Bartlett’s test of sphericity is used to 

test whether the correlation matrix resembles an 

identity matrix, where off diagonal components are 

non-collinear. A significant Bartlett’s statistic (χ2) 

suggests that the correlation matrix does not resemble 

an identity matrix, that is correlations between 

variables are the result of common variance between 

variables. Good practice suggests that the correlation 

matrix should routinely be used as a prerequisite 

indicator for factor extraction. Though many 

researchers already include FA as the method of data 

analysis at the proposal stage, it remains a theoretical 

supposition that has to be supported empirically by the 

data. Using this particular guiding question will assist 

researchers in applying FA more judiciously.  

Question 5: Is FA or PCA more appropriate?Question 5: Is FA or PCA more appropriate?Question 5: Is FA or PCA more appropriate?Question 5: Is FA or PCA more appropriate?    

Principle components analysis (PCA) is one of the most 

popular methods of factor extraction, appearing as the 

default procedure in many statistical software 

packages. However, PCA and FA are not simply 

different ways of doing the same thing. FA has the goal 

of accurately representing off-diagonal correlations 

among variables as underlying latent dimensions, has 

indeterminate factor scores, and generates parameter 

estimates that should remain stable even if batteries of 
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manifest variables vary across studies. PCA, on the 

other hand, has the goal of explaining as much of the 

variance in the matrix of raw scores in as few 

components as possible, has determinate component 

scores, systemically uses overestimates of communality 

(i.e. unity, all standardized variance), and emphasizes 

differences in the qualities of scores for individuals on 

components rather than parameters, which in PCA do 

not generalize beyond the battery being analyzed 

(Widaman, 2007). They may produce similar results 

when the number of manifest variables and pairwise 

differences between unique variances relative to the 

lengths of the loading vectors are small (Schneeweiss, 

1997). But empirical evidence suggests they often lead 

to considerably different numerical representations of 

population estimates (Widaman, 1993). In most 

psychological studies researchers are interested in 

defining latent variables generalizable beyond the 

current battery, and acknowledge that latent 

dimensions are likely to covary in the sample even if 

not in the population; in such cases FA is more 

appropriate than PCA (Costello & Osborne, 2005; 

Preacher & MacCallum, 2003; Widaman, 2007).  

Question 6: Which faQuestion 6: Which faQuestion 6: Which faQuestion 6: Which factor extraction method is best ctor extraction method is best ctor extraction method is best ctor extraction method is best 

suited?suited?suited?suited?    

Factor analysis models are approximations of reality 

susceptible to some degree of sampling and model 

error. Different models have different assumptions 

about the nature of model error, and therefore perform 

differently relative to the circumstances under which 

they are used (MacCallum, Browne, & Cai, 2007). The 

ML method of factor extraction has received good 

reviews as it is largely generalizable, gives preference 

to larger correlations than weaker ones, and the 

estimates vary less widely around the actual parameter 

values than do those obtained by other models 

(Fabrigar et al., 1999). However, ML is sensitive to 

skewed data and outliers (Briggs & MacCallum, 2003). 

Ordinary Least Squares (OLS) and Alpha factor analysis 

(extracts factors that exhibit maximum coefficient 

alpha) have a systematic advantage over ML in being 

proficient in recovering weak factors even when the 

degree of sampling error is congruent with ML 

assumptions, or when the amount of such error is large, 

and produce fewer Heywood cases [borderline 

estimations] (Briggs & MacCallum, 2003; MacCallum, 

Tucker, & Briggs, 2001; MacCallum et al., 2007).  Two 

other methods that have received favorable reviews for 

coping with small sample sizes and many variables 

while not being as limited by distributional 

assumptions are Minimum Residuals (MINRES) and 

Unweighted Least Squares (ULS), which are in most 

accounts equivalent (Jöreskog, 2003). The MINRES 

algorithm is similar in structure to ULS except that it is 

based on the principle of direct minimization of the 

least squares, rather than the minimization of 

eigenvalues of the reduced correlation matrix in ULS. 

Finally, image analysis is useful when factor score 

indeterminacy is a problem, and reduces the likelihood 

of factors that are loaded on by only one measured 

variable (Thompson, 2004). Multiple analyses should 

be performed using different extraction techniques, and 

differences in outcomes interpreted based on the 

assumptions and statistical properties of each method. 

However, avoid data torturing - selecting and reporting 

only those results that meet favored hypothesis (Mills, 

1993). 

Question 7: How many dimensions should I retain?Question 7: How many dimensions should I retain?Question 7: How many dimensions should I retain?Question 7: How many dimensions should I retain?    

This question has possibly generated the most heated 

critique and comment by factor analytic theorists, and 

is often implemented using poor decision-making 

criteria (Thompson, 2004). Kaiser is cited by Revelle 

(2006) as saying “solving the number of factors 

problem is easy, I do it everyday before breakfast. But 

knowing the right solution is harder.” The most 

common methods for deciding the number of factors to 

extract are “Kaiser’s little jiffy” and the scree test. 

“Kaiser’s little jiffy”, or the eigenvalue greater than one 

rule, became the default option on many statistical 

software packages because it performed well with 

several classic data sets and because of its easy 

programmability on the first generator computer, Illiac 

(Gorsuch, 1990; Widaman, 2007). It is unreliable, 

sometimes leading to over-extraction and at other 

times under-extraction (Thompson, 2004). Cattell 

(1966) proposed the “scree test” as a subjective 

method of identifying the number of factors to extract. 

A scree plot graphs eigenvalue magnitudes on the 

vertical axis and factor numbers on the horizontal axis. 

The values are plotted in descending sequence and 

typically consist of a slope that levels out at a certain 

point.  The number of factors is determined by noting 

the point above a corresponding factor number at 

which the line on the scree plot makes a sharp 

demarcation or ‘elbow’ towards horizontal. It has been 

criticized mostly for poor reliability, as even among 

experts, interpretations have been found to vary widely 

(Streiner, 1998). In an effort to remedy this Nasser, 
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Benson, and Wisenbaker (2002) suggested regression 

analyses as a less subjective method of determining the 

position of the elbow on the scree plot. 

A number of statistically based alternatives for 

determining the number of factors are available. 

Parallel Analysis, originally proposed by Horn (1965), 

has been described by several authors as one of the 

best methods of deciding how many factors to extract, 

particularly with social science data (Hoyle & Duvall, 

2004). Parallel analysis creates eigenvalues that take 

into account the sampling error inherent in the dataset 

by creating a random score matrix of exactly the same 

rank and type of variables in the dataset. The actual 

matrix values are then compared to the randomly 

generated matrix. The number of components, after 

successive iterations, that account for more variance 

than the components derived from the random data are 

taken as the correct number of factors to extract 

(Thompson, 2004). Velicer’s Minimum Average Partial 

(MAP) test has also been received well (Stellefson & 

Hanik, 2008). It progresses through a series of loops 

corresponding to the number of variables in the 

analysis less one. Each time a loop is completed, one 

more component is partialed out of the correlation 

between the variables of interest, and the average 

squared coefficient in the off-diagonals of the resulting 

partial correlation matrix is computed. The number of 

factors to be extracted equals the number of the loop in 

which the average squared partial correlation was the 

lowest. As the analysis steps through each loop it 

retains components until there is proportionately more 

unsystematic variance than systematic variance 

(O’Connor, 2000). These procedures are 

complementary in that MAP averts over-extraction 

(Gorsuch, 1990), while Parallel Analysis avoids under-

extraction (O’Connor, 2000). Another approach is to 

maximize interpretability of the solution. The Very 

Simple Structure (VSS) criterion works by comparing 

the original correlation matrix to one reproduced by a 

simplified version of the original factor matrix 

containing the greatest loadings per variable for a given 

number of factors. VSS tends to peak when the solution 

produced by the optimum number of factors is most 

interpretable (Revelle & Rocklin, 1979). Lastly, 

calculating and comparing the goodness-of-fit statistics 

calculated for FA models from 1 to the theoretical 

threshold number of factors provides a post hoc 

method of determining the best number of factors to 

extract (Friendly, 1995; Moustaki, 2007). There are 

currently a number of well supported model fit indexes 

available (Hu & Bentler, 1998). This approach can also 

be used to select variables for factor analysis models 

(Kano, 2007). Fabrigar et al. (1999) argue that many of 

the model fit indexes currently available have been 

extensively tested using more general covariance 

structure models, and there is a compelling logic for 

their use in determining number of factors in EFA.  

Gorsuch (1983) recommended that several analytic 

procedures be used and the solution that appears 

consistently should be retained. To this end, Parallel 

Analysis, Velicer’s MAP test, the VSS criterion, and post 

hoc analysis of the goodness-of-fit statistics should be 

used side-by-side to determine the appropriate number 

of factors to extract. 

Question 8: Which type of rotation is most approQuestion 8: Which type of rotation is most approQuestion 8: Which type of rotation is most approQuestion 8: Which type of rotation is most appropriate?priate?priate?priate?    

Rotation is used to simplify or clarify the unrotated 

factor loading matrix, which allows for theoretical 

interpretation but does not improve the statistical 

properties of the analysis in any way (Lorenzo-Seva, 

1999). Orthogonal rotation methods, such as Varimax, 

Quartimax and Equamax, do not allow factors to 

correlate (even if items do in reality load on more than 

one factor). They produce a simple, statistically 

attractive and more easily interpreted structure that is 

unlikely to be a plausible representation of the complex 

reality of social science research data (Costello & 

Osborne, 2005). Oblique rotation approaches, such as 

Direct Quartimin, Geomin, Promax, Promaj, Simplimax, 

and Promin, are more appropriate for social science 

data as they allow inter-factor correlations and cross-

loadings to increase, resulting in relatively more diluted 

factor pattern loadings (Schmitt & Sass, 2011). As an 

artifact of the days of performing rotation by hand, 

some oblique procedures, such as Promax, attempt to 

indirectly optimize a function of the reference structure 

by first carrying out a rotation to a simple reference 

structure using an approach such as Varimax. Such 

orthogonal-dependant procedures struggle when there 

is a high correlation between factors in the true 

solution. Other approaches, such as Direct Quartimin 

and Simplimax, are able to rotate directly to a simple 

factor pattern, can deal with varying degrees of factor 

correlation, and give good results even with complex 

solutions (Browne, 2001). Two of the most powerful of 

these are Simplimax and Promin (Lorenzo-Seva, 1999). 

Jennrich (2007) suggests that to a large extent the 

rotation problem has been solved, as there are very 

simple, very general, and reliable algorithms for 

orthogonal and oblique rotation. He states “In a sense 
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the Browne and Cudeck line search and the Jennrich 

gradient projection algorithms solve the rotation 

problem because they provide simple, reliable, and 

reasonably efficient algorithms for arbitrary criteria” (p. 

62). Seeing as several orthogonal and oblique rotation 

objective functions from several different approaches 

are available, and different rotation criteria inversely 

affect cross-loadings and inter-factor correlations, 

researchers should investigate and compare results 

from several rotation methods (Bernaards & Jennrich, 

2005; Schmitt & Sass, 2011). 

Question 9: How should I interpret the factors, what Question 9: How should I interpret the factors, what Question 9: How should I interpret the factors, what Question 9: How should I interpret the factors, what 

should I name them?should I name them?should I name them?should I name them?    

The process of naming factors involves an inductive 

translation from a set of mathematical rules within the 

FA model into a conceptual, grammatical, linguistic 

form that can be constitutive and explanatory of reality. 

The common FA model allows for an infinite number of 

latent common factors, none of which is mathematically 

incorrect, and is therefore fundamentally 

indeterminate. Most factor-solution strategies have 

been specifically developed to detect structure which 

can be interpreted as  explaining common sources 

(Rozeboom, 1996). For some this process is 

reminiscent of the most suggestive practices in 

psychometrics (Maraun, 1996), while others describe it 

as a poetic, theoretical and inductive leap (Prett, 

Lackey, & Sullivan, 2003).  Tension between these 

camps can be significantly reduced when researchers 

understand and use language that explains factors as 

similes, rather than metaphors, of reality. Researchers 

must be aware that factors are not unobservable, 

hypothesized, or otherwise causal underlying variables, 

but rather explanatory inductions that have a particular 

set of relationships to the manifest variates.  

Factor names should be kept short, theoretically 

meaningful, and descriptive of the relationships they 

hold to the manifest variates. The factor loadings of the 

known indicators are used to provide a foundation for 

interpreting the common properties or attributes that 

these indicators share (McDonald, 1996). The items 

with the highest loadings from the factor structure 

matrix are generally selected and studied for a common 

element or theme that represents the theoretical or 

conceptual relationship between those items. Rules of 

thumb suggest suggest between 0.30 and 0.40 for the 

minimum loading of an item, but such heuristics fail to 

take the stability and statistical significance of 

estimated factor pattern loadings into account (Schmitt 

& Sass, 2011). For this reason standard errors and 

confidence intervals of rotated loadings should be 

 
Figure 1 � Map of missing data in the original dataset  
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calculated when interpreting (Browne, Cudeck, 

Tateneni, & Mels, 2008). Standard errors of rotated 

loadings can be used in EFA to perform hypothesis tests 

on individual coefficients, test whether orthogonal or 

oblique rotations fit data best, and compute confidence 

intervals for parameters (Cudeck & O'Dell, 1994). For 

example it is possible for a larger loading derived using 

a rotation criteria producing small cross-loadings to be 

statistically non-significant (could be 0 in the 

population) but a smaller loading on a criterion 

favoring smaller inter-factor correlations to be 

statistically significant (Schmitt & Sass, 2011). A 

number of asymptotic methods based on linear 

approximations exist for producing standard errors for 

rotated loadings (Jennrich, 2007). Work is also 

underway in developing algorithms without alignment 

issues using bootstrap and Markov-chain-Monte-Carlo 

(MCMC) methods (eg. Zientek & Thompson, 2007). 

When using MI, either the EFA model can be calculated 

on the pooled correlation matrix of imputations, or 

separate EFA loading estimates are calculated for each 

imputation, and these estimates then pooled together. 

The standard errors calculated from these parameter 

estimates must be corrected to take into account the 

variation introduced through imputation (van Ginkel & 

Kiers, 2011). Although a highly subjective process, 

interpretation is guided by both the statistical, and 

theoretical or conceptual context of the analysis.  

A Research Example A Research Example A Research Example A Research Example     

The data used in this example was collected by 

community psychology students using a self-report 

questionnaire designed during an intervention aimed at 

increasing the sense of community among students at a 

small Christian College. A selection of thirteen seven-

point Likert-type items from the survey used to 

measure sense of community and one demographic 

variable were used for this example. The distribution of 

responses on a number of items was significantly 

skewed, prejudicing the use of parametric statistics. As 

is common in social science research there were a 

number of questionnaires with a few missing 

responses. The greatest fraction missing for any one 

variable was 0.037, and seven of the fourteen variables 

had absolutely no missing values. Listwise deletion 

would result in a sample size of 141, compared to 158 

when missing values are imputed. Figure 1 

demonstrates the pattern of missing data across 

participants and variables. 

In addition to missing values, a number of 

multivariate outliers were detected. Using various 

methods the number of outliers identified ranged from 

1 to 32. Seeing as MCD, MVE and similar methods break 

down and overestimate the number of outliers with 

high dimension data, a projection algorithm was used 

with restrictions on the rate of outliers identified.  

 
Figure 2 ���� Distance-Distance plot used to identify multivariate outliers 
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After comparing a number of methods, seven 

outliers were identified and correlation matrices 

computed using Pearson correlation coefficients with 

listwise deletion, polychoric and robust estimators 

using imputed data, and the same set of estimators with 

imputed data where outliers had been excluded prior to 

imputation.  Pearson correlation matrices correlated 

strongly with polychoric correlations using imputed 

data (r = 0.98), but not as strongly with robust 

correlation estimates for imputations using mice and 

mi (r = 0.83) or missForest (r = 0.81). All methods 

resulted in stronger correlation estimates on average 

than Pearson listwise estimates, with robust 

procedures using data with missing values imputed 

using the non-parametric missForest being strongest 

(mean difference of 0.06). For example, between 

variables nine and eleven the Pearson correlation was 

only slightly larger in the imputed datasets (r = 0.32, p 

< 0.001) than when listwise deletion was used (r = 

0.28, p < 0.001), but did increase significantly when a 

robust estimator was used (r = 0.59, p < 0.001). Using 

these alternatives resulted in a slight  improvement in 

the overall measure of sampling adequacy (KMO = 0.82 

vs 0.79).  

If run using defaults in most software, namely “little 

jiffy”, one would be tempted to only extract one factor 

when using listwise data. However, analytical tools 

suggest more factors should be retained. The RMSR fit 

index suggested a poorer fit for the imputed datasets 

(0.08 at 2 factors) than the listwise estimate (0.07 at 2 

Table 1 � Suggested number of factors to retain 

 

Method   Pearson listwise MI Robust outliers excl. Forest Robust  

“Little Jiffy” *  1 2 2 

PA  4 3 3 

MAP  1 2 3 

VSS  3 1 1 

RMSR  3 Factors = 0.05 3 Factors = 0.05 3 Factors = 0.05 

* Number of factors with eigenvalues greater than 1 (Not recommended) 

 

 

Figure 3 � Comparison of scree plots produced by parallel analysis using correlations from different methods 
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factors) when the number of factors was 2 or less, but 

equal fit when 3 or more factors are retained (RMSR = 

0.05). Estimates of the numbers of factors to extract 

using three correlation matrix estimates provided 

varying solutions summarized in table 1 and figure 3. 

A three factor solution was chosen and the results of 

various rotation criteria inspected. As shown in Figure 

4 below, the three oblique solutions produce a very 

similar loading pattern, but differ from orthogonal 

Varimax rotation that is set as a default in many 

statistical software programs (Varimax switches F1 and 

F2). When the performance of the rotation criteria are 

inspected by means of sorted absolute loading (SAL) 

plots (Jennrich, 2006; Fleming, 2012) as shown in 

figure 5, it appears that Simplimax delivers the best 

performance. 

Although a three factor solution is suggested by 

MAP and PA and produces the highest fit indices, 

bootstrap standard error estimates across a number of 

missing value imputations suggest that loadings 

produced by the variables loading highly on this factor 

are not stable. The standard errors for the two 

variables loading highest on this factor were 

approximately 0.22 and absolute sample to population 

deviations over 0.15. All the other variables with a 

loading higher than .32 on factor one and/or two 

(except “ShareSameValues”) had standard errors lower 

than 0.153 and absolute sample to population 

deviations smaller than 0.08. 

ConclusionConclusionConclusionConclusion    

This paper provides substantive researchers, even 

those without advanced statistical training, guidance in 

performing robust exploratory factor analysis. These 

analysis can easily be replicated using the R script 

provided. The theoretical discussion emphasizes the 

importance of approaching statistical analysis using an 

informed reasoned approach, rather than relying on the 

default settings and output of statistical software.  The 

consensus arrived at in the literature reviewed is that a 

triangulated approach to analysis is of value. In the 

example provided, it was shown that while imputation 

had only a slight effect on the estimated correlations, 

using robust estimators with imputed data did increase 

correlation estimates overall, resulted in better 

sampling adequacy, a different model being specified, 

and a superior model fit. Combining this with estimates 

of rotated loading standard errors allowed the 

researchers to identify inconsistent structure not 

evident in the initial sample statistics. 

 

 

 

 

 

 

Figure 4 � Rotated factor loadings compared across four rotation criteria  
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