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The analysis of event rates using intervals 
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AbstractAbstractAbstractAbstract � Event interval analysis had historical antecedents in the past century, but the analysis of rates of events has been 
largely performed using counts of events. When the information content of intervals and counts of the same events are compared, 
it is clear that the information content of counts is sensitive to the number of events in a counting interval. The reduced 
information content of counts where the number of events in a counting interval is small may affect the analysis of event rates. 
Both simulated and historical data are used to illustrate such effects. It is concluded that event interval analysis may be more 
appropriate for the analysis of event rates when the events in question are few in the counting intervals. 
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IntroductionIntroductionIntroductionIntroduction    

The rate at which specified events occur is often of 

interest to researchers. Whether this concerns the 

number of fatal road crashes in Iceland (Directorate of 

Health - Iceland, 2013) or the number of people who 

perish attempting to climb Mount Everest (Wikipedia, 

2013), both the estimate of rate over time and changes 

in the rate are often studied. Rates of events are usually 

expressed in frequency per unit time, and the typical 

method of statistical analysis of rates uses such counts 

as the basic data. As events are often recorded as the 

time or date at which the event occurred, it is possible 

to use the intervals between events to estimate rates, 

and this method achieved some popularity around the 

middle of the last century (Maguire, Pearson & Wynn, 

1952). Event history analysis, as it was then known, 

seemed to present a viable method for the analysis of 

event rates, but has received little attention since that 

time. 

The Sequential Event ModelThe Sequential Event ModelThe Sequential Event ModelThe Sequential Event Model    

A common model for studying the rate of certain events 

specifies that the occurrence of each event is 

independent of other such events and that the 

distribution for all events is the same. In the paper cited 

above (Maguire, Pearson & Wynn, 1952), fatal 

industrial accidents resulting in a specified minimum 

number of deaths were studied. Each accident was 

independent and assumed to be distributed uniformly 

in time. The temporal resolution of the occurrence of 

these accidents was such that no inter-accident 

intervals of zero were encountered. Sequences of 

events appropriate for analysis by intervals should 

consist in uniformly distributed independent events 

with no two events occurring at the same time. In 

practice, even if two or more events occur within the 

same time increment, typically a day, it can be assumed 

that the events did not occur simultaneously and equal 

fractions of a day separated them. 

Information content of counts and intervalsInformation content of counts and intervalsInformation content of counts and intervalsInformation content of counts and intervals    

When studying the rate of events, the times of 

occurrence are typically known to a certain accuracy. 

The information content of each datum can be specified 

as the minimum number of bits necessary to encode the 

event timing (Brillouin, 2004). Thus the number of time 

increments within the period of observation 

determines the minimum number of bits to encode 

each time.  

  

For example, if the period of observation is ten years 

and the accuracy of measurement is one day, each 

datum could be specified as one of the 3652 days in that 

interval. This would require twelve bits. 

When the events are transformed to counts, the 

number of counting intervals and the maximum count 

per interval determine the information content.  

  

In the above example, with ten counting intervals of 
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years and a maximum count per year of one hundred, 

eleven bits would be required to encode each datum. 

When the counts are small, however, the information 

content will be reduced. If a maximum of three events 

occurred per year, only six bits would be required to 

encode each datum. In general, the number of bits 

required to represent a number is the ceiling of the log 

of that number to the base 2. The relationship between 

the information content of the intervals and counts can 

be represented as a ratio: 

  

This ratio encapsulates the proportion of 

information available in the intervals that is expressed 

in the counts. It is possible for the ratio to exceed 1, if 

the number of events occurring within the counting 

intervals is greater than the number of time 

increments. It is clear from Figure 1 that the 

information content of the two types of data for ten 

years by days becomes equal at about nine events per 

year.. However, it is in cases where the number of 

events per counting interval is small that is of concern, 

and as will be shown below, very large counts present a 

different problem.  

Figure 1 illustrates the relationship between the 

information content of intervals measured at a 

resolution of days over ten years and the information 

content of counts per year for the same data for 

maximum counts per year from one to 100. While the 

information content of intervals is determined by the 

number of measurement increments within the period 

of observation, the information content of counts is 

strongly influenced by the number of events in a 

counting interval. 

Comparison of count and interval analysesComparison of count and interval analysesComparison of count and interval analysesComparison of count and interval analyses    

When examining changes in event rates, the typical null 

hypothesis is that the events are uniformly distributed 

within the period of observation. The number of events 

that occur in a given period of observation is inversely 

related to the mean interval between the events. 

  

To test for changes with counts, the count of all 

events observed is divided into counts for equal 

intervals of time. These counts are distributed as 

Poisson variates (Haight, 1967). The intervals between 

events can also be used, and these follow an 

exponential distribution (Whitworth, 1951). The major 

difference between these two approaches is that the 

sequence of counts loses a great deal of information 

about the variance of the inter-event intervals, which 

are proportional to the square of the range of values. As 

shown in Figure 1, the smaller the number of events per 

counting interval, the greater the loss of information. 

Generalized linear modeling (GLM) can deal with a 

number of distributions by using a link function to 

ensure that linear changes in the transformed response 

variable correspond to linear changes in the predictor 

variables (Dobson, 1999). For the Poisson distribution, 

the link function is the natural logarithm, and for the 

exponential, the inverse (negative of the reciprocal). 

The inverse link function cannot accept zeros, thus it is 

necessary to separate events occurring in the same 

time increment by fractions of that increment. These 

link functions will be referred to as “poisson” and 

“Gamma” in the conventional notation. The following 

examples have all been created using the R statistical 

language (R Core Team, 2013). 

Change in event rate with siChange in event rate with siChange in event rate with siChange in event rate with simulated datamulated datamulated datamulated data    

The information loss described above is one 

unavoidable consequence of applying a counting 

process to uncommon events. The first example is 

specifically constructed to demonstrate what can 

Figure 1 � Comparison of the information content of intervals 

and counts for ten years by number of events per year. 
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happen with uncommon events (Appendix, Listing 1). 

These data simulate events that happen about twice in 

a year. Using the method described above, we can 

calculate the information content of the intervals as 

twelve bits and the information content of the counts as 

six bits. As can be seen from the plot of the distribution 

of these events in Figure 2, the intervals gradually 

increase. The bold line is a smoothed estimate of the 

distribution of intervals (Friedman, 1984). However, 

the number of events per year remains almost the 

same.  

Using a fairly standard GLM approach to test for a 

change in event rate, there appears to be no effect of 

time with a poisson link function (z = -0.141, p = 0.89; 

see Appendix, Listing and output 2). 

However, these data are underdispersed (variance 

much smaller than the mean) with an index of 

dispersion of 0.09 and do not fit the assumptions of the 

Poisson distribution very well. Relaxing the 

assumptions by using a quasipoisson link may provide 

a better answer. 

While the underdispersion is detected, the result is 

virtually the same, with no change in rate evident (z = -

0.45, p = 0.66; see Appendix, Listing and output 3). 

Listing and output 4 shows the result of testing the 

intervals rather than the counts. Note that in all interval 

analyses, the first date is dropped, as the interval for 

that date is unknown. 

This test reveals the increase in the intervals 

between events over time that is apparent in Figure 2 

(z = 3.93, p = 0.001; see Appendix, Listing and ouptut 

4)). This change does not appear to be linear, but 

increases and then levels out. A test for quadratic trend 

using the squared number of days from the final 

observation shows an even stronger effect (z = 5.79, p 

= 0.00002; see Appendix, Listing and output 5). 

The decrease in the probability of the relationship 

over time given a constant rate as well as the 

corresponding decrease in the Akaike Information 

Criterion (AIC) value (Akaike, 1974) indicates that the 

change in rate is better modeled as non-linear. This 

example with simulated data illustrates the extent to 

which the loss of information incurred when using 

counts rather than event intervals can affect the 

outcome of a test for event rate change. 

Change in event rate using historical dataChange in event rate using historical dataChange in event rate using historical dataChange in event rate using historical data    

The example above is somewhat contrived, using 

data that were chosen to have increasing intervals but a 

fairly constant rate per year. To demonstrate how the 

event intervals can be useful with realistic data, those of 

recorded hurricanes making landfall in the state of 

Florida, USA, during the twentieth century are 

employed. Florida is one of the states most likely to be 

struck by a hurricane, and there are good records for 

these events during the last century. Sixty five 

hurricanes made landfall in Florida between 1900 and 

1999 according to Blake, Rappaport and Landsea, 2007 

(see Appendix, Listing 6). 

Figure 3 shows the intervals between these events 

over the twentieth century. While there is some 

clustering of hurricanes, the smoothed line (bold) 

appears to show a modest increase in the intervals over 

this time. Before looking for changes in the rate of 

hurricane landfalls, the distribution of these events can 

be examined. Figure 4 shows the distribution of 

intervals with a smoothed line of the actual 

distributions and a dotted line showing the theoretical 

exponential distribution for the estimated shape 

parameter of the observations. The fit appears to be 

acceptable. 

As above, the analysis using counts will be 

compared with that using intervals. Using equations 2 

and 3, the information content of the intervals in these 

data is sixteen bits, while that of the counts is nine bits. 

Listing and output 7 shows the result of the analysis of 

counts. There is no significant change in the rate (z = -

1.23, p = 0.24 see Appendix, Listing 6). 

In Listing and output 8, the same analysis is 

performed using the intervals. Here the apparent 

 
Figure 2 � Intervals between simulated events, 2000-2010 
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increase in intervals between hurricanes emerges as a 

significant relationship between the dates of the 

hurricanes and the intervals between them, suggesting 

that there was a decrease in rate (z = -2.51, p = 0.015; 

see Appendix, Listing and output 7). 

Loss of information and statistical powerLoss of information and statistical powerLoss of information and statistical powerLoss of information and statistical power    

To further illustrate the relationship between 

information content and event rates, a Monte Carlo 

simulation was conducted in which longer inter-event 

intervals and thus decreasing numbers of events occur 

during the period of observation. A function (Appendix, 

Listing 9) was written to uniformly distribute a 

specified number of events across a number of counting 

intervals (e.g. “years”) with a given time resolution (e.g. 

“days”). The function returns a list with three 

components, the time of occurrence of each event in 

units of the time resolution, the intervals between 

events and the number of events occurring in each of 

the counting intervals. A specified linear change can be 

added into the intervals to simulate an effect. One 

thousand repetitions of event generation and analysis 

using both counts and intervals were conducted for 20, 

40, 80, 160, 320 and 640 events during the period of 

observation. The “effect” added was an approximately 

one third increase in the inter-event intervals across 

the period of observation.  

Figure 5 shows the proportion of significant (p < 

0.05) tests for the count and interval models. As the 

counts of events increase, the information lost on the 

variance of intervals decreases. The index of dispersion 

for counts increases from about 0.3 to 2.4. The poisson  

distribution assumes an index of dispersion of 1, that is, 

the mean and variance should be approximately equal. 

Therefore the simulation with only two events per 

counting interval is very underdispersed, while the one 

with 640 events is overdispersed. The power of the 

count model to recognize a substantial linear change is 

very low with few events, but acceptable with many. 

The use of the negative binomial link function is 

typically recommended for dealing with overdispersion 

(Venables & Ripley, 2002) 

DiscussionDiscussionDiscussionDiscussion    

In both simulated and historical data, analysis by 

intervals rather than counts has revealed changes in 

rates that are apparent from graphical illustrations of 

the data. Both data sets were based on events that were 

uncommon, and thus led to small counts per counting 

interval. In this situation, the information content of 

intervals is considerably greater than that of counts per 

unit time.  

Event interval analysis using the generalized linear 

model may provide a better method for studying 

 
Figure 3 � Hurricanes making landfall in Florida 1900- Figure 4 � Empirical density of hurricanes 1900- 

1999, intervals between hurricanes by dates of  1999 with smoothed empirical density and 

hurricanes with smoothed interval curve. best-fit exponential density curves 

 



 ¦ 2014 � vol. 10 � no. 1 

 

 

 

 TTTThe QQQQuantitative MMMMethods for PPPPsychology 

  

  

  
  
  

T 
Q 
M 
P 

  
    

  

  

  
  
  

  
    

72 

changes in the rate of sequential events when they are 

relatively uncommon. The loss of information inherent 

in transforming intervals to counts per unit time would 

be expected to reduce the power of statistical tests and 

appears to have done so in the two examples and the 

Monte Carlo simulation presented here. This should be 

particularly important when interactions between 

predictor variables are studied and argues for the 

wider use of event interval analysis in studying the 

rates of uncommon events. 

A package for the R statistical language 

(eventInterval) has been created to demonstrate the 

methods for event interval analyses and to automate 

some of the procedures. 
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Appendix: Listing used in the articleAppendix: Listing used in the articleAppendix: Listing used in the articleAppendix: Listing used in the article    

Listing 1 ���� Dates, intervals and yearly counts for simulated events used in the first example. 

bddates <- as.Date("14/6/2000",format="%d/%m/%Y") 

bdints <- c(130,147,162,159,193,181,202,206,237,219,251,225,213,242,206,217,220,233,207) 

bddates <- c(bddates,bddates+cumsum(bdints)) 

bdcounts <- table(format(bddates,"%Y")) 

 

Figure 5 � Comparison of significant (p < 0.05) tests of 

simulated data by count and interval models 
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Listing and output 2 ���� Test for linear change in simulated event rate using the Poisson link. 

summary(glm(bdcounts~I(2000:2010),family="poisson")) 

 

Call: glm(formula = bdcounts ~ I(2000:2010), family = "poisson") 

Deviance Residuals:  

     Min        1Q    Median        3Q       Max   

-0.66323   0.07123   0.10587   0.16066   0.20133   

Coefficients: 

              Estimate Std. Error z value Pr(>|z|) 

(Intercept)   20.65141  141.81127   0.146    0.884 

I(2000:2010)  -0.01000    0.07073  -0.141    0.888 

(Dispersion parameter for poisson family taken to be 1) 

    Null deviance: 1.0398  on 10  degrees of freedom 

Residual deviance: 1.0198  on  9  degrees of freedom 

AIC: 32.543 

Number of Fisher Scoring iterations: 4 

 

Listing and output 3 ���� Test for linear change in simulated event rate using the quasipoisson link 

summary(glm(bdcounts~I(2000:2010),family="quasipoisson")) 

 

Call: glm(formula = bdcounts ~ I(2000:2010), family = "quasipoisson") 

Deviance Residuals:  

     Min        1Q    Median        3Q       Max   

-0.66323   0.07123   0.10587   0.16066   0.20133   

Coefficients: 

             Estimate Std. Error t value Pr(>|t|) 

(Intercept)  20.65141   44.57510   0.463    0.654 

I(2000:2010) -0.01000    0.02223  -0.450    0.663 

(Dispersion parameter for quasipoisson family taken to be 0.09880144) 

    Null deviance: 1.0398  on 10  degrees of freedom 

Residual deviance: 1.0198  on  9  degrees of freedom 

AIC: NA 

Number of Fisher Scoring iterations: 4 

 

Listing and output 4 ���� Test for linear change in simulated event rate using the Gamma link 

summary(glm(bdints~bddates[-1],family="Gamma")) 

 

Call: glm(formula = bdints ~ bddates[-1], family = "Gamma") 

Deviance Residuals:  

     Min        1Q    Median        3Q       Max   

-0.25998  -0.07860  -0.01345   0.07940   0.21579   

Coefficients: 

              Estimate Std. Error t value Pr(>|t|) 

(Intercept)  1.135e-02  1.659e-03   6.845 2.85e-06 

bddates[-1] -4.881e-07  1.244e-07  -3.925  0.00109 
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(Dispersion parameter for Gamma family taken to be 0.01662602) 

    Null deviance: 0.54105  on 18  degrees of freedom 

Residual deviance: 0.28554  on 17  degrees of freedom 

AIC: 181.5 

Number of Fisher scoring iterations: 4 

 

Listing and output 5 ���� Test for quadratic change in simulated event rate using the Gamma link 

# calculate the time from the end of the observation interval 

bddates2 <- as.numeric(bddates)-14972 

# square that to test for quadratic trend 

bddates2 <- bddates2*bddates2 

summary(glm(bdints~bddates2[-1],family="Gamma")) 

 

Call: glm(formula = bdints ~ bddates2[-1], family = "Gamma") 

Deviance Residuals:  

     Min        1Q    Median        3Q       Max   

-0.17855  -0.07028  -0.01690   0.06403   0.17485   

Coefficients: 

              Estimate Std. Error t value Pr(>|t|) 

(Intercept)  4.213e-03  1.579e-04  26.677 2.58e-15 

bddates2[-1] 1.580e-10  2.729e-11   5.789 2.18e-05 

(Dispersion parameter for Gamma family taken to be 0.01034407) 

    Null deviance: 0.54105  on 18  degrees of freedom 

Residual deviance: 0.17441  on 17  degrees of freedom 

AIC: 172.12 

Number of Fisher Scoring iterations: 4 

 

Listing 6 ���� Dates of hurricanes making landfall in Florida USA during the 20th century 

fh_dates <- as.Date(c( 

"1903-08-11","1904-10-17","1906-06-16","1906-09-27","1906-10-18","1909-10-11", 

"1910-10-18","1911-08-11","1912-09-14","1915-08-01","1915-09-04","1916-07-05", 

"1916-10-18","1917-09-29","1919-09-10","1921-10-25","1924-09-15","1924-10-21", 

"1926-07-27","1926-09-18","1926-10-21","1928-08-08","1928-09-17","1929-09-28", 

"1932-09-01","1933-07-30","1933-09-04","1935-09-03","1935-11-04","1936-07-31", 

"1939-08-11","1941-10-06","1944-10-19","1945-06-24","1945-09-15","1946-10-08", 

"1947-09-17","1947-10-11","1948-09-21","1948-10-05","1949-08-26","1950-09-05", 

"1950-10-18","1953-09-26","1956-09-24","1960-09-10","1964-08-27","1964-09-10", 

"1964-10-14","1965-09-08","1966-06-09","1966-10-08","1968-10-19","1972-06-19", 

"1975-09-23","1979-09-03","1985-09-01","1985-11-21","1987-10-12","1992-08-24", 

"1995-08-03","1995-10-04","1998-09-03","1998-09-25","1999-10-15" 

),"%Y-%m-%d") 

fh_days <- as.numeric(fh_dates) 

fh_ints <- diff(fh_days) 

fh_counts <- tabulate(as.numeric(factor(format(fh_dates,"%Y"),  

levels=as.character(1900:1999))),nbins=100 

) 
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Listing and output 7 ���� Test for linear change in hurricane landfall rate using the Poisson link 

summary(glm(fh_counts~I(1900:1999),family="poisson")) 

 

Call: glm(formula = fh_counts ~ I(1900:1999), family = "poisson") 

 

Deviance Residuals:  

    Min       1Q   Median       3Q      Max   

-1.3175  -1.1131  -0.9970   0.4776   2.2309   

 

Coefficients: 

              Estimate Std. Error z value Pr(>|z|) 

(Intercept)  11.560841   8.434690   1.371    0.170 

I(1900:1999) -0.006159   0.004337  -1.420    0.156 

 

(Dispersion parameter for poisson family taken to be 1) 

 

    Null deviance: 114.59  on 99  degrees of freedom 

Residual deviance: 112.56  on 98  degrees of freedom 

AIC: 218.13 

Number of Fisher Scoring iterations: 5 

 

Listing and output 8 ���� Test for linear change in hurricane landfall rate using the Gamma link 

summary(glm(fh_ints~fh_days[-1],family="Gamma")) 

 

Call: glm(formula = fh_ints~fh_days[-1], family = "Gamma") 

Deviance Residuals:  

    Min       1Q   Median       3Q      Max   

-2.3674  -1.4350  -0.2800   0.5792   1.2497   

Coefficients: 

              Estimate Std. Error t value Pr(>|t|) 

(Intercept)  1.544e-03  1.977e-04   7.810 8.46e-11 

fh_days -4.504e-08  1.798e-08  -2.505   0.0149 

(Dispersion parameter for Gamma family taken to be 0.7422684) 

    Null deviance: 87.814  on 63  degrees of freedom 

Residual deviance: 83.429  on 62  degrees of freedom 

AIC: 937.51 

Number of Fisher Scoring iterations: 6 

 

Listing 9 ���� Function to generate interval and count data for Monte Carlo simulation. 

# generate a sequence of simulated events for a period of observation 

# nevents = number of events (e.g. 20) 

# nci = number of counting intervals (e.g. 10 "years") 

# incr_ci = time increments per counting interval (e.g. 365 "days") 

# effect = change in mean interval from start to finish (e.g. 11 "days") 
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generate_event_seq <- function(nevents,nci,incr_ci,effect=0) { 

 # generate uniformly distributed events 

 # ranging from 1 (to avoid zeros) to the average interval 

 event_ints <- runif(nevents,1,nci*incr_ci/nevents) 

 # add in the effect if present 

 if(effect != 0) event_ints <- event_ints+seq(0,effect,length.out=nevents) 

 # adjust to fill the period of observation and 

 # remove fractions of time increments 

 event_ints <- round((event_ints*nci*incr_ci)/sum(event_ints),0) 

 # remove any zero intervals 

 event_ints[event_ints < 1] <- 1 

 # create the "times" of the events from the intervals 

 event_intc <- cumsum(event_ints) 

 # calculate the "times" of the ends of the counting intervals 

 ci_ends <- cumsum(rep(incr_ci,length.out=nci)) 

 # initialize the counts 

 event_counts <- rep(0,nci) 

 # begin with the first counting interval 

 ci <- 1 

 # accumulate the number of events per counting interval 

 for(event in 1:nevents) { 

  # if the next event is beyond the current "end of counting interval", 

  # advance the counting interval until it is within it 

  while(event_intc[event] > ci_ends[ci] && ci < nci) if(ci < nci) ci <- ci+1 

  # add the current event to its counting interval 

  event_counts[ci] <- event_counts[ci]+1 

 } 

 return(list(times=event_intc,ints=event_ints,counts=event_counts)) 

} 
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