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AbstractAbstractAbstractAbstract � Characteristics of a population are often unknown. To estimate such characteristics, random sampling must be used. 
Sampling is the process by which a subgroup of a population is examined in order to infer the values of the population's true 
characteristics. Estimates based on samples are approximations of the population's true value; therefore, it is often useful to know 
the reliability of such estimates. Standard errors are measures of reliability of a given sample's descriptive statistics with respect 
to the population's true values. This article reviews some widely used descriptive statistics as well as their standard error 
estimators and their confidence intervals. The statistics discussed are: the arithmetic mean, the median, the geometric mean, the 
harmonic mean, the variance, the standard deviation, the median absolute deviation, the quantile, the interquartile range, the 
skewness, as well as the kurtosis. Evaluations using Monte-Carlo simulations show that standard errors estimators, assuming a 
normally distributed population, are almost always reliable. In addition, as expected, smaller sample sizes lead to less reliable 
results. The only exception is the estimate of the confidence interval for kurtosis, which shows evidence of unreliability. We 
therefore propose an alternative measure of confidence interval based on the lognormal distribution. This review provides easy 
to find information about many descriptive statistics which can be used, for example, to plot error bars or confidence intervals. 
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IntroductionIntroductionIntroductionIntroduction    

Sampling is the basis for empirical research. Since it is 

generally impossible to measure all possible subjects 

from a population, a sample is forcibly used as a 

substitute. Sampling is the process by which a 

population's subgroup is used in order to infer the 

population's actual characteristics (for a review of 

sampling strategies, see Barreiro & Albandoz, 2001; 

hereafter we suppose that random sampling is used). 

But, how representative is a sample with respect to the 

general population? In other words, to what degree does 

a sample of  observations truly represent the entire 

population's scores? Since experimental research does 

not have the luxury to generate an infinite number of 

samples to answer this question, estimation methods 

are used with indicators meant to quantify the reliability 

of the estimates. One such indicator is the standard 

error.  

The standard error is a statistical indicator of the 

reliability of a descriptive statistic estimated from a 

sample. Descriptive statistics include, for example, the 

mean, the median, the variance, etc. The standard error 

represents the typical amount of error that can be 

expected from an estimator. Hence, the smaller the 

standard error, the better the estimate is likely to be. 

Standard errors can be used to delineate an interval 

likely to contain the population's true characteristic. 

Such intervals are called confidence intervals (Streiner, 

1996). 

Sadly, standard errors and standard deviations are 

often confused in the literature. It was shown in a 

review article (Olsen, 2003) that 14% of the 

publications in a medical journal failed to specify their 

measure of dispersion (whether the standard deviation 

or the standard error). Whereas the standard deviation 

is a measure of variability of individual scores within a 

sample, the standard error is a measure of variability 

between samples if an infinite number of samples could 

be drawn from a population (Altman & Bland, 2005; 

Streiner, 1996).  

The standard error of a certain sample statistic is 

formally defined as the standard deviation of that 

statistic, assuming that a large number of samples is 

gathered (Kendall & Stuart, 1977). For example, given 

the mean score for groups of  students on a 

statistics exam, the standard error would be given by the 

standard deviation of all sample means (i.e. means of 
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groups). Two factors determine the precision of most 

descriptive statistics. Firstly, the standard errors are 

proportional to the population’s variability; a less 

variable population leads to more reliable estimates. 

Consequently, the standard error that is measured 

should be small as well. Secondly, the measure of 

standard error is inversely proportional to sample size: 

larger sample sizes leads to more reliable estimates (to 

be precise, standard error is inversely proportional to a 

function of sample size, often .  

The main objective of this article is to review the 

standard error estimators associated with widely used 

descriptive statistics. The present article covers 

statistics of central tendency, statistics of dispersion, as 

well as statistics of distribution shape (skewness and 

kurtosis). These equations give an estimated value to 

the standard error because they are based on a single 

sample. In other words, the standard error estimators 

we present here are estimates of the true standard 

error; hence a second objective of this article is to 

compare the sample's standard error to the population's 

standard error. To estimate the latter, we will rely on 

Monte-Carlo simulations. For simulations used in the 

following sections, 10,000 samples are taken from a 

normal distribution with parameters , and   
for every sample size varying from  (a very small 

sample) to  (a fairly large sample) by increments 

of 5. The sample's descriptive statistics are computed, 

recorded and another sample is then taken. Finally, the 

mean of the descriptive statistics simulated is compared 

to the population's true value. The third objective of this 

article is to review the confidence interval equations 

based on standard errors and evaluate them with the 

above simulations. To do so, we compared the span 

containing 95% of the 10,000 estimates to the 95% 

confidence intervals.  

The following sections examine the most commonly 

used descriptive statistics: the central tendency 

statistics (Section 1), the dispersion statistics (Section 

2), and the statistics of distribution shape (Section 3). 

Within each section, the descriptive statistics, the 

estimates of their standard error, as well as the 

estimates of the confidence intervals are defined. As we 

point out, most of these estimates assume a normally 

distributed population. In these cases, using standard 

error estimates from samples taken from non-normal 

populations is detrimental to the inference made about 

the population's parameters. We return to this issue in 

Appendix B. For convenience, Table 1 (last page of the 

article) summarizes the relevant equations and 

information given in the article regarding the 

descriptive statistics, standard error and confidence 

intervals. 

    Statistics of Statistics of Statistics of Statistics of CentralCentralCentralCentral    TendencyTendencyTendencyTendency    

Statistics of central tendency are estimates that aim to 

describe the population with a single value that 

represents the typical "central" score. Widely used 

measures of central tendency include the Pythagorean 

means: the arithmetic mean (often referred to as simply 

the mean), the harmonic mean, and the geometric mean. 

Other measures include the median and the mode.  The 

mode will not be presented in this review as it has no 

agreed-upon estimate (see Robertson & Cryer, 1974) 

and no known standard error. 

Arithmetic Mean 

The arithmetic mean, or mean, represents the center of 

gravity of the dataset such that the data is balanced on 

both sides of the mean (Watier, Lamontagne & Chartier, 

2010). The mean is affected by outliers and is therefore 

not a robust statistic. See Daszykowski, Kaczmarek, 

Heyden & Walczak (2007), Daszykowski, Kaczmarek, 

Stanimirova, Vander Heyden & Walczak (2007) and 

Walczak & Massart (1998) for a discussion on robust 

statistics. The mean of a dataset, noted , is calculated 

using the following equation:  

   (1) 

where  represents the  value of the sample and  

represents the sample size. The standard error of the 

mean ( ) is given by the following equation (Ahn & 

Fessler, 2003; Kendall & Stuart, 1977):  

   (2) 

where  is the standard error of the mean and  

represents the population's standard deviation. In 

practical applications, as the population’s standard 

deviation is often unknown, an estimated standard 

deviation is used, as shown in Equation (3):  

  (3) 
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where  is the sample standard deviation and  is 

the estimated standard error of the mean. The standard 

error of the mean is not based on the assumption of a 

normally distributed population (Kendall & Stuart, 

1977) and is therefore applicable whatever the shape of 

the population's distribution. To obtain a confidence 

interval about the mean, a critical value must be taken 

from Student’s t distribution, based on a confidence 

level, . As the confidence interval is two tailed, the  

value is divided by two. For this article, all simulations 

used a confidence interval of 95% so that . The 

confidence interval equation for the  is given by 

Equation (4) (Ahn & Fessler, 2003; Kendall & Stuart, 

1977):  

  (4) 

where  is based on  degrees of 

freedom. It returns both left ( ) and right ( ) 

critical values. As the t values are symmetrical about 

zero, we could equivalently write 

. However, this is 

not true of all the CIs presented next.  We will therefore 

use the more accurate notation of Equation (4). 

Figure 1A presents the simulated and estimated 

standard error of the mean for increasing sample sizes. 

As seen, the results show that the confidence intervals 

obtained from an estimated standard error are very 

reliable estimates of the actual standard error. For 

smaller sample sizes (below ), the 95% 

confidence interval for Equation (3) slightly 

overestimates the actual confidence interval.  

Median 

The median is defined as the point of a distribution 

where the number of data on each side of the median is 

equal. It is a robust alternative to the mean as it is little 

influenced by outliers. The value of the median is 

represented by . The median can be found using the 

following equation (Kendall & Stuart, 1977):  
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  (5) 

where  is the sample size,  is  datum when the 

sample is sorted in increasing order. The standard error 

of the median ( ) is estimated using the following 

equation: 

  (6) 

where  is the sample's standard deviation. As seen 

when comparing (6) with (3) the,  is

 larger than the . In other words, the 

median tends to be less reliably estimated than the 

mean (by 25%). This is one of the reasons that the mean 

is usually preferred over the median. 

Unlike the mean, the standard error of the median 

assumes a normal distribution. To calculate confidence 

intervals, critical values must be taken from Student’s  

distribution. The confidence interval is given by the 

following equation: 

 .  (7) 

Figure 1B presents the simulated and estimated 

standard error of the median for increasing sample 

sizes. As seen, the results show that the estimated 

standard error using Equation (6) and (7) are very 

reliable estimates of the actual standard error. For 

smaller sample sizes (below ), the 95% 

confidence interval from Equation (7) slightly 

overestimates the actual confidence interval.  

Harmonic Mean 

The harmonic mean is the reciprocal of the sum of 

reciprocals divided by . With this descriptive statistic, 

effects of larger numbers are reduced as the reciprocal is 

inversely proportional to the datum’s size. Conversely, 

numbers below 1 make for a large reciprocal due to the 

fact that numbers tending towards 0 have reciprocals 

tending towards infinity. A limitation to the harmonic 

mean, however, is that the data must be entirely 

positive. The harmonic mean is generally recommended 

to average rates. The harmonic mean, , is calculated 

using Equation (8) (Limbrunner, Vogel, Brown, 2000; 

Lam, Hung & Perrier, 1985): 

   (8) 

The standard error of the harmonic mean  is 

given by the following equation (Norris, 1940):  

  (9) 

where  is the standard deviation of the sample's 

reciprocals. The confidence intervals are given by 

Equation (10). Again, the critical value must be taken 

from the Student  table (Norris, 1940): 

  (10) 

Figure 1C presents the simulated and estimated 

standard error of the harmonic mean for increasing 

sample sizes. Results show a similar tendency as the 

mean where smaller  lead to overestimated width of 

the actual CI for the harmonic mean. Sample sizes that 

are larger than  seem to lead to reliable estimates.  

Geometric Mean 

The geometric mean is another statistic of central 

tendency. It is represented by the  root (as opposed 

to the quotient by n) of the product (rather than the 

sum) of its parts. It is useful when the range of measures 

spans many magnitudes. Just like the harmonic mean, 

values in the dataset must be positive for the geometric 

mean to be calculated. The geometric mean, noted by 

 is given by the following equation (Norris, 1940; Alf 

& Grossberg, 1979):  

  (11) 

The standard error of the geometric mean ( ) is 

given by the following equation (Norris, 1940; Alf & 

Grossberg, 1979): 
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   (12) 

where  is the standard deviation of the logarithm 

of the data. The confidence interval is calculated using 

Equation (13), where again, the critical value must be 

taken from the  table: 

  (13) 

Figure 1D presents very similar results as the 

arithmetic mean and the harmonic mean where smaller 

sample sizes lead to overestimated estimates. For  

larger than 10, Equation (13) leads to reliable estimates.  

    Statistics of DispersionStatistics of DispersionStatistics of DispersionStatistics of Dispersion    

The statistics of central tendency quantify the 

approximate central location of the distribution but do 

not describe the spread of the data. Unlike those 

indicators, statistics of data dispersion are used to 

describe the extent to which values are located around 

the center of the distribution. In this section we will 

assess the standard errors for variance, the standard 

deviation, the median absolute deviation and the 

interquartile range, with a small detour by the quantile.  

Variance 

The variance is a measure of dispersion that describes 

the extent to which values of a dataset are located 

around the mean. A large variance means that the 

dataset is widely dispersed across its values whereas a 

lower variance indicates that the dataset is spread 

tightly around the mean. Variance of a sample, noted as 

, is estimated with the following equation:  

   (14) 

The standard error of variance, ,  is given by (Ahn 

& Fessler, 2003; Kendall & Stuart, 1977): 

   (15) 

where  is the variance of a given sample and  is the 

sample size. Note that this estimator is derived from the 

assumption of a normally distributed population. 

The sampling distribution of the variance is 

asymmetrical; the right tail tends to be longer than the 

left tail, owing to the squaring. For that reason, critical 

values cannot be taken from a  distribution as the 

distribution is not symmetrical about zero. To calculate 

confidence intervals, the critical values are taken from a 

 distribution at a specified  level. The confidence 

intervals are computed using a ratio with the following 

equation: 

   (16) 

in which  is read on a  table with 

 degrees of freedom. The mean value of a  

distribution with  degrees of freedom is  so that  

returns numbers around 1. For example, a 95% 

confidence interval for a sample of 10 subjects would 

have an , , and 

 so that 

 (i.e. the 

lower bound is about 50% of the observed variance and 

the upper bound is 3.3 times larger than the observed 

variance).  

Figure 2A presents the simulated and estimated 

standard error of the variance for increasing sample 

sizes. Results show that estimates found with Equation 

(15) are unreliable for sample sizes smaller than  

where the equation highly overestimates the upper 

bound of the CI and slightly underestimates the lower 

bound. Therefore, Equation (16) should not be used for 

sample sizes smaller than 20. 

Standard Deviation 

The standard deviation is calculated by taking the 

squared root of the variance. The standard deviation 

represents the typical deviation from the mean 

expressed in the same measurement unit as the data. 

The standard deviation, noted , is calculated using: 

   (17) 

The standard error of standard deviation ( ) is 

given by:  
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 (18) 

where  for integer values of . However, 

  

converges rapidly towards ½. From this convergence, 

we get Equation (19) as an appropriate estimator.  

  (19) 

Note that even if the standard deviation is the square 

root of the variance, the standard error of the standard 

deviation is not the square root of the standard error of 

variance. Just like its squared counterpart, the above 

estimator is derived by assuming a normally distributed 

population. To calculate confidence intervals, the critical 

values must be taken from the  distribution (not to be 

confused with the  distribution) at the specified  

value. Statistical tables of the  distribution are 

uncommon but most statistical packages can compute 

quantiles based on this distribution. The confidence 

interval is given by: 

  (20) 

Figure 2B presents the simulated and estimated 

standard error of the standard deviation for increasing 

sample sizes. Similar to the variance, Equation (20) is 

unreliable for sample sizes smaller than . To 

compare with the previous example, 

 = {1.8256, 0.6878}. 
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Median Absolute Deviation 

Median absolute deviation is to the median what the 

standard deviation is to the mean. It is the median of 

deviations between the raw data and the median. It 

represents to what extent the data deviates from the 

median irrespective of the direction of the deviation (Gia 

& Hung, 2001): 

  (21) 

where   is the median absolute deviation. For a 

normal population with  and  parameters, the 

population's  is given by  in which  

is the 75th percentile of a standardized normal 

distribution ( ). The standard error of 

the median absolute deviation  is given by (Gia 

& Hung, 2001): 

  (22) 

where  is the standard deviation of a given sample 

and  is the sample size.  

To calculate confidence intervals, the critical values 

are taken from Student’s  distribution. The confidence 

interval is given by: 

(23) 

Figure 2C presents the simulated and estimated 

standard error of the median absolute deviation for 

increasing sample sizes. Note that the population 

 is . Contrary to variance and 

standard deviation, the estimates of  are rapidly 

reliable: results show that only for sample sizes smaller 

than or equal to , the estimated standard error 

areto unreliable and overestimated.  

Quantiles 

Before presenting the last statistic of dispersion, the 

interquartile range, we will present the quantile as this 

measure is instrumental in the computation of 

interquartile ranges. Quantiles are divisions of a dataset 

into equal-sized groups. For example, quantile 0.50 is 

the median, quantile 0.25 is the first quartile and 

quantile 0.01 is the first percentile (percentiles are 

frequently expressed as percentage). In a normal 

distribution, the 95% percentile is 1.645 and the 97.5% 

percentile is 1.960, which are commonly used as critical 

 values.  

Various methods exist to estimate a quantile for a 

given percentile . One convenient method when 

working with a potentially small sample is to interpolate 

between two entries. If we define  as the fractional part 

of  times , the operators ⌈  ⌉ and ⌊  ⌋ as the 

floor and ceiling of the quotient , then  is defined 

as: 

(24) 

where  is the desired quantile (Cousineau, 

Figure 3Figure 3Figure 3Figure 3 � Mean estimated quantiles (horizontal blue lines) as well as estimated (error bars) and 

actual (shaded area) 95% confidence intervals as a function of sample size. Details are the same as in 

Figure 1. Panel A) Moderate quantiles (25% and 75%); Panel B) Extreme quantiles (5% and 95%). 
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2009). 

The standard error of quantiles  is given by (Jin, 

Fu & Xiong, 2003; Kendall & Stuart, 1977): 

   (25) 

where  is the  quantile of the standard normal 

distribution (typically read on a  table) and  is 

the density function of the standard normal distribution 

evaluated at the position . For example, with , 

we find the standard error of the median, Equation (6), 

as . The confidence interval of a quantile is 

given by: 

   (26) 

Because the present formula is dependent on both  and 

, rather than on only , simulations were performed 

with moderate (0.25 and 0.75) and extreme (0.05 and 

0.95) values of . Figures 3A and 3B present the 

observed and estimated CI of the quantile for 

 and  respectively. The 

results show that as  becomes extreme, the estimations 

are less accurate because of a sparseness of 

observations. Therefore, the CI for a quantile is accurate 

for  when  is moderate ( ) and for 

 when p is extreme ( ).  

Interquartile Range 

Quartiles are given by dividing the dataset into 4 

segments. The interquartile range (IQR) is calculated by 

subtracting the 1st quartile from the 3rd quartile. The 

result is the range of data that covers the cental 50% of 

the dataset. The value of the IQR is given by:  

   (27) 

The standard error of the IQR is the standard error of 

the difference between two quartiles and is given by 

(Kendall & Stuart, 1977):  

  (27) 

(note that ) The confidence 

interval for the IQR is therefore given by:  

 (28) 

Figure 2D presents the simulated and estimated 

values of IQR for varying sample sizes. The results show 

that Equation (28) is fairly accurate as soon as  

exceeds 20. For smaller samples, the estimated standard 

error overestimates the true variability of the 

interquartile range. 

Statistics of Distribution ShapeStatistics of Distribution ShapeStatistics of Distribution ShapeStatistics of Distribution Shape    

There are two measures that are commonly used to 

describe the shape of a distribution: Fisher skewness 

Figure 4Figure 4Figure 4Figure 4 � Mean estimated shape of a distribution (horizontal blue line) as well as estimated (error 

bars) and actual (shaded area) 95% confidence intervals as a function of sample size. Details are 

same as in Figure 1. Panel A) Fisher skew; Panel B) Kurtosis. 
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and kurtosis. Note that the statistics of dispersion and 

central tendency can remain unchanged even in 

conditions where the shape is not normal since those 

indicators are independent from the shape of a 

distribution.  

Skewness 

Skewness is used to measure the asymmetry of a 

distribution. A distribution with a large (away from 

zero) coefficient of skewness is one in which most of its 

data is distributed on one side of the mean. The larger 

the coefficient, the more data there is on one side of the 

mean. A negatively skewed distribution signifies that the 

distribution has a long tail leading to the right with most 

of the data on the left side of the mean. The Fisher skew 

is estimated using (Doane & Steward, 2011; Joreskog, 

1999; Joanes & Gill, 1998): 

   (29) 

The standard error for skewness ( ) can be 

estimated with (Kendall & Stuart, 1977):  

   (30) 

where  is the sample size. The standard error for 

skewness is estimated solely from the sample size and 

does not require the standard deviation of the sample. 

To calculate confidence intervals, the critical values are 

taken from the normal distribution at the  specified 

using: 

   (31) 

Figure 4A presents the simulated standard error of 

skewness for increasing sample sizes. The results show 

that unlike all statistics shown in this article, smaller 

sample sizes do not lead to unreliable estimates. The 

estimates found with Equation (31) are extremely 

reliable in every condition tested.  

Kurtosis 

Kurtosis is another measure of the shape of a 

distribution. Kurtosis is a measure of how "fat" the tails 

are, or how rapidly their probability vanishes towards 

zero. It is restricted to be larger than -2; 0 is the kurtosis 

of a normal distribution.  A low value of kurtosis 

signifies that the tails vanish very quickly (Ballanda & 

MacGillivray, 1988) whereas a high value of kurtosis 

signifies that the tails seem flatter, therefore vanishing 

at a slower pace. The kurtosis, noted as , is calculated 

using the following equation (Doane & Steward, 2011; 

Joreskog, 1999; DeCarlo, 1997, Joanes & Gill, 1998): 

  
(32)

 

The standard error for kurtosis ( ) is estimated 

using:  

  (33) 

where again,  represents the sample size and  is 

the standard error of skewness calculated in (30). A 

common way to calculate confidence intervals for 

kurtosis utilizes Equation (34). The critical values are 

taken from the normal distribution at a given  value. 

   (34) 

Figure 4B, presents the simulated standard error of 

kurtosis for increasing sample sizes. The results show 

that the confidence intervals shown in Equation (34) 

exaggerate the possibility of a large kurtosis but 

underestimate the risk of a negative kurtosis. However, 

contrary to all the other estimators seen in this review, 

the errors of estimation do not tend to disappear with 

larger sample size. The fact that Equation (34) is 

unreliable regardless of sample size is a concern because 

it can lead to erroneous inference. The problem comes 

from the use of the  critical values that are symmetrical 

when kurtosis is not. In Appendix A, we present an 

alternative to the  critical values. 

General discussionGeneral discussionGeneral discussionGeneral discussion    

This article is a review of the standard errors associated 
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with widely used descriptive statistics. It also provides 

an examination of the reliability of different equations 

that estimate the standard error. The results show that 

all measures evaluated are somewhat unreliable for 

small sample sizes, except for the standard error of 

skewness. An unusual result was found for the kurtosis 

standard error; to remedy this issue, the authors 

proposed a new approach to set critical values using a 

lognormal distribution (Appendix A).  

All the estimates, other than the means, have 

standard error estimators that assume a normally 

distributed population. In Appendix B, we present a case 

study with a population varying on skew. This 

infringement of the normality assumption leads to 

unreliable standard error for quantile estimates. 

Therefore, normality assumption should always be 

evaluated in the data before interpreting results. 

However, the impact of the infringement of this 

assumption had fewer effects as sample sizes increase in 

size, being , large than  at the least. 

A point worth mentioning is that most of the 

standard error and confidence interval estimates tend to 

overestimate the range of plausible results when they 

were not perfectly accurate. Hence, these intervals are 

conservative and avoid wrongful impressions. This 

conservative bias is appropriate: seeing a difference 

where there might not be one would be unwarranted, 

more so in a discipline that publishes mostly rejections 

 

 
Figure 5Figure 5Figure 5Figure 5 � Results of three groups in a fictitious task. Confidence intervals given are left: 95%, center (double-

stroke): 99%, and right (thick): 1 standard error. Descriptive statistics of the groups are Panel A) Mean; Panel B) 

Median; Panel C) Standard Deviation; Panel D) Median Absolute Deviation. 
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of the null hypothesis (Yong, 2012). 

An application of standard errors and confidence 

intervals concern error bars around the measured 

statistics in summary plots. Confidence intervals can 

allow for inference on bar graphs: confidence intervals 

built with standard errors hints to the significance level 

of differences for example.. Confidence interval built 

with critical values (commonly used values are 95% and 

99%) show a significant difference when the limit of 

each interval does not encompass the other group's 

measured statistic. Imagine a fictitious task where we 

measure the mean, the median, the standard deviation 

and the median absolute deviation for three 

independent groups. As seen in Figure 5, group 1 and 2 

do not show any significant difference when comparing 

means or medians, yet group 1 and 3 are significantly 

different (standard error bars do not overlap nor do the 

95% intervals encompass the other group's statistic). 

When comparing statistics of spread between groups we 

can infer that there is no significant difference as all the 

bars overlap each other between groups, supporting the 

homogeneity of variance assumption.. Standard errors 

or confidence intervals should always accompany a plot 

showing summary statistics. Loftus (1993, 1996), 

Beaulieu-Prévost (2006), Wilkinson and the APA Task 

Force on statistical inference have argued for its 

importance. Loftus (1993) went even further to argue 

that once reliable error bars are shown, null hypothesis 

testing is no longer necessary. Although this position is 

no longer considered strictly exact (Baguley, 2012, 

Volker and Loftus, 2012) error bars still offer 

considerable insights to the data. This review covered 

tools to improve the quality of data representation by 

facilitating the use of statistical indicators other than the 

mean. We hope this review will motivate researchers to 

gather more information from their data by using a 

wider array of indicators rather than the commonly 

used mean and standard deviation. 
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Appendix Appendix Appendix Appendix A: new A: new A: new A: new estimator of the confidence intervals for kurtosisestimator of the confidence intervals for kurtosisestimator of the confidence intervals for kurtosisestimator of the confidence intervals for kurtosis    

The usual confidence interval estimator for kurtosis is inappropriate for all sample sizes; the estimator assumes that 

the distributions of estimates are symmetrical about the true kurtosis. However, as was seen in Figure 4 (the shaded 

area in Panel B), this is not the case. In this appendix, we present an alternative method to retrieve critical values 

that replaces the  values previously presented. 

The new critical values are taken from a lognormal distribution. Mouri (2013) has shown that the sum for 

skewed deviates tend towards a lognormal distribution. This result conflicts with the central limit theorem which 

indicates that such a sum should tend towards a normal distribution. However, as Mouri (2013) showed, the sum of 

deviates tends faster towards a lognormal distribution than towards a normal distribution. This is the case 

regardless of the fact that as the number of addend increases, the normal distribution will ultimately be the 

asymptotic distribution. 

Regarding kurtosis, we note that it is composed of a sum of  addend, each created by taking a random value 

raised to the power of four. Such a big exponent implies that the results will have a distribution with a very strong 

negative skew. To confirm this observation, we simulated 10,000 samples with  taken from a normal 

distribution, and recorded kurtosis for each. Figure A.1 shows the result of these simulations. 
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The lognormal distribution has three parameters (Cousineau, Brown & Heathcote, 2004): the shift of the 

distribution, the  parameter, and the  parameter. The first parameter indicates how negative kurtosis can be, 

knowing that this measure is bounded from below. The theoretical distribution with the most negative kurtosis is 

the Bernoulli distribution with  for which the kurtosis is -2. Due to the fact that we use a formula for kurtosis 

that is corrected for estimation bias (Eq. 32), the minimum depends on the sample size: it is -6 for a sample size of 4, 

-4 for a sample size of 5, etc. The minimum tends towards -2 for infinite sample size. In general, the formula (by 

replacing the ratio  with -2 in Eq. 32) is given by: 

  (A.1) 

which depends only on the sample size. As for the  parameter, results from Monte-Carlo simulations suggest that 

using 0.6940 returns good estimates. Finally,  seems well characterized by , where  is given by 

Equation (33). The lognormal distribution with such parameters can be simplified into a unit lognormal distribution 

due to the following properties where the quantile function of the lognormal distribution is written as : 

  (A.2) 

Also note that  equals 2.0. 

Thus, alternative 95% confidence intervals are found by looking for the 2.5th percentile and the 97.5th percentile 

of a lognormal distribution displaced by  units to the left. Hence:  

  (A.3) 

in which  denotes a standard lognormal distribution (with parameters  equal to zero and  equal to 1). 

This new formulation for kurtosis confidence intervals was tested with simulations identical to the ones in the 

main text. The results are presented in Figure A.2. As seen, the 95% confidence intervals are very reliable past 

Figure A.1Figure A.1Figure A.1Figure A.1 � Distribution of 10,000 kurtosis estimates based on sample size of n = 10 taken from a 

normal distribution with a mean of 100 and a standard deviation of 3. The full red line is the 

proposed lognormal distribution with parameters: , , and shift = . 
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. In addition, the new confidence intervals are conservative as they never underestimate the real dispersion of 

the kurtosis estimates. Understandably, this new method of estimation is very bad for a sample size of : note 

that kurtosis requires a minimum of 4 data to be computed.  

This new estimator requires a statistical table of the lognormal distribution. It is provided in Table A.1. This 

proposed method is considerably more reliable and should therefore replace the existing method that utilizes the  

table. 

Appendix B: Case example in which the normality of distribution assumption is violatedAppendix B: Case example in which the normality of distribution assumption is violatedAppendix B: Case example in which the normality of distribution assumption is violatedAppendix B: Case example in which the normality of distribution assumption is violated    

The present section examines the accuracy of the estimator for the  (Eq. 4) and the  (Eq. 25) when the 

normality assumption is not respected. The simulations will show the error associated with an estimators that 

requires a normally distributed population, which is the case for standard errors of quantiles. The distribution used 

is a Weibull distribution with a scale parameter of , a shift parameter of , and a shape parameter of 

either  or . The Weibull distribution was chosen since it is commonly postulated in cognitive science: 

response times in simple tasks such as the same-different task have distributions that are similar looking to the 

Weibull distribution. In addition, the left tail of a Weibull distribution has a weaker kurtosis than a normal 

distribution whereas the right tail has a stronger kurtosis. A review by Cousineau, Mestari, & Engmann (submitted) 

found an average shape parameter for the best-fitting Weibull distributions of 1.7 for tasks that required speeded 

responses. For illustrative purposes, we used two shape parameters: a shape of 1.25 to illustrate a strongly skewed 

distribution, and a shape parameter of 2.00 to illustrate a moderately skewed distribution. Figure B.1 presents the 

shape of the Weibull distribution for the chosen parameters.  

Figure B.2 presents the simulated and estimated standard error of the mean for increasing sample sizes whereas 

Figure B.3 presents the simulated and estimated standard error of the quantile (  and ) for 

increasing sample sizes. The results gathered on the mean (Figure B.2) show an accurate estimation of the actual 

standard error of the population mean. This is not surprising because Equation (4) does not postulate the normality 

of the distribution. The estimation therefore remains unaffected by the amount of skew in the population (Panel A 

vs. Panel B). Unlike standard errors of the mean,  Figure  B.3  shows  that  standard  errors  for  the  first  and  third 

 

Figure A.2Figure A.2Figure A.2Figure A.2 � Mean estimated central tendency (blue line) as well as estimated (error bars) and actual (shaded 

area) 95% confidence intervals as a function of sample size. Details are the same as in Figure 1. 

Table A.1Table A.1Table A.1Table A.1 � Quantiles for the standard lognormal distribution .  
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quartiles are impacted by skew: estimations are unreliable with small samples (below ) for moderately 

skewed populations. Conversely, when the skew of the distribution is large, estimates are never adequate: the 

estimators strongly exaggerate the standard error of the lower quartile and they strongly underestimate the 

standard error of the upper quartile. These results are apparent for even moderately large sample sizes ( ) 

and huge sample sizes are required before the observed dispersion of the estimates matches the dispersion 

suggested by the estimated standard error ( ). 

 

(Continues on next page) 

  

Figure B.1Figure B.1Figure B.1Figure B.1 � Two Weibull distributions: one with an important skew ( ), the other with 

moderate skew( ). Both have a shift of 300 and a scale of 60. The parameters where chosen 

to match the look of human response times in speeded tasks. 
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Table 1 follows… 

Figure B.2Figure B.2Figure B.2Figure B.2 � Mean estimated Mean (blue line) as well as estimated (error bars) and actual (shaded 

area) 95% confidence intervals as a function of sample size. Each point is based on 10,000 data 

points sampled from a Weibull distribution with a true mean of 353.2 and 355.9 for the panel A and B 

respectively. Panel A) Moderately skewed Weibull distribution; B) Strongly skewed Weibull 

distribution. 

 

Figure B.3Figure B.3Figure B.3Figure B.3 � Mean estimated 25% and 75% quantiles (blue line) as well as estimated (error bars) 

and actual (shaded area) 95% confidence intervals as a function of sample size. Details are the same 

as Figure B.2.  
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