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Spiking variability:  
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AbstractAbstractAbstractAbstract � The quantification of spiking variability is prevalent to many questions in neuroscience.  In this review, several 
measures of variability are presented, as well as algorithms for implementing analyses including: spike rates and Fano factor, 
inter-spike intervals, coefficient of variation and local variation, autocorrelation, period histograms, a synchrony index (vector 
strength), and finally post-stimulus time histograms.  Some of the techniques show significant overlap; however, each measure is 
qualitatively unique and can be tuned to the researchers needs. 
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IntroductionIntroductionIntroductionIntroduction    

Neurons emit action potentials or ‘spikes’ which are 

said to carry information to downstream neurons and 

throughout the brain (Reike, Warland, van Steveninck, 

& Bialek, 1999).  From the perspective of a single 

neuron embedded in a network, spike timing can be a 

function of intrinsic (i.e., ionic currents) and extrinsic 

factors (i.e., a function of the integration performed by a 

neuron receiving excitatory pre-synaptic inputs); 

however, most of the variation is a product of synaptic 

inputs (Mainen & Sejnowski, 1995). Thus the signal 

emitted by a neuron has the potential to be unreliable – 

from a computational perspective this presents an issue 

(Pouget, Dayan, & Zemel, 2000). Spike trains are highly 

variable (i.e., van Steveninck, Lewen, Strong, Koberle, & 

Bialek, 1997) and numerical simulations have shown 

that the signal emitted by spiking neurons is chaotic in 

the sense that it is non-repetitive and sensitive to small 

perturbations (Kuebler, Bonnema, McCorriston, & 

Thivierge, 2013; Thivierge, 2008; Thivierge & Cisek, 

2008). Neurons, however, and the networks they are 

embedded in, have the daunting task of deciphering 

neuronal codes and processing this rich and diverse 

flow of information. 

The quantification of spiking variability is an 

important goal in neuroscience: researchers have used 

measures of variability to broaden our understanding 

of brain function. For instance, during the development 

of neuronal circuits, significant importance has been 

attributed to a neuron’s intrinsic variability – which 

gives it the ability to generate highly variable spike 

patterns (Gabbiani & Cox, 2010). Consistent with this 

idea, dentate gyrus adult newborn cells (i.e., progenitor 

cells that reach maturation during an individual’s 

adulthood) spike more often and spontaneously than 

those neurons already integrated into the network 

(Laplagne, Zhao, Lombardi, Ribak, et al., 2008).  These 

two studies characterize examples where the numerical 

assessment of spiking variability has enlightened our 

understanding of brain function and both demonstrate 

a fundamental principle in neuroscience, namely: those 

that fire together wire together (Hebb, 1949). 

Statistics representing spiking variability can be 

used to derive the unique characteristics of neurons in 

the brain (Gabbiani & Cox, 2010). One famous example 

comes from recording the visual cortex of felines. Hubel 

and Wiesel (1959) showed that the spike rate of a 

single neuron increased when presented with stimulus 

of a preferred orientation angle (i.e., black bar on a 

white background). The study by Hubel and Wiesel 

(1959) is a hallmark in neuroscience literature and was 

largely based on the analysis of spike rates. More 

recently, inter-spike interval (ISI) histograms were 

used to quantify the differences in bursting behaviour 

between projection and local interneurons, researchers 

then went on to explore the functional implications of 

these findings (Lei, Reisenman, Wilson, Gabbur, & 

Hildebrand, 2011). These examples characterize two of 

many instances (i.e., Bosman, Schoffenlen, Brunet, 

Oostenveld, Bastos, et al., 2013; Dupret, O’Neill, 

Csicsvari, 2013) where simple analyses of spiking 

variability served as a foundation from which to 

explore and advance our understanding of the 
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characteristic differences between neurons.  

In addition to single neuron analyses, networks of 

spiking neurons can be characterized using spiking 

variability. Simple analyses, such as spike rates, Fano 

factors (a measure of variability in spike rate 

distributions), and correlations, have been used to 

show that clustered neuronal networks behave 

chaotically in two ways, namely: variations in spike rate 

and timing (Churchland & Abbott, 2012; Litwin-Kumar 

& Doiron, 2012). In addition, using the Fano factor, 

investigators showed that the presentation of stimuli 

reduced variability (Churchland, Yu, Cunningham, 

Sugrue, Cohen, et al. 2010) and in numerical 

simulations, Litwin-Kumar and Doiron (2012) show 

that the reduction in variability only occurs when 

networks are clustered (i.e., excitatory cells are 

clustered together). Both studies use the spike rate and 

Fano factor to analyze spiking activity, further they 

show that it is possible to derive the characteristics of 

neural networks using simple measures. 

Finally, variability measures can be used to examine 

the possibility of candidate neural coding.  Two codes 

have attracted the attention of researchers: (1) rate or 

independent coding, and; (2) temporal or correlated 

coding (Reike et al., 1999; Dayan & Abbott, 2001). 

Researchers have shown that both rate (i.e., London, 

Roth, Beeren, Hausser, & Latham, 2010) and temporal 

coding (i.e., Adler, Finkes, Katabi, Prut, & Bergman, 

2013) are relevant to information processing (see 

Ainsworth, Lee, Cunningham, Traub, Kopell et al., 

2012). It is possible that some areas of the brain encode 

information relative to the rate of spiking activity; while 

others encode information based on correlated inputs 

and therefore rely on temporal coding. In addition to 

rate and temporal coding, researchers have suggested 

these codes can be coupled with a phase code – where 

information is added to the candidate code when 

considered relative to the phase of ongoing oscillations 

(Kayser, Montemurro, Logothetis, & Panzeri, 2009; 

Turesson, Logothetis, & Hoffman, 2012).  

The previous paragraphs have shown that 

numerous questions related to brain function can and 

have been answered or at least approached critically 

using simple analyses of variability in spiking activity. 

Spiking variability can be used to derive the 

characteristics of neurons, neural networks, and the 

neural codes. Many of the measures presented below 

can be used with stimuli. This possibility, however, 

should be evaluated with regard to your specific 

hypotheses. 

Since a number of measures of spiking variability 

exist, many non-linear measures (i.e., information 

theory and decoding algorithms) are not discussed – 

with the exception of local variation. Action potential 

events can be non-linear events – thus some of the 

measures may present a slight underestimation of 

actual variability. Many of the measures presented can 

be applied to a wide range of multi-disciplinary 

questions. For example, the coefficient of variation (Cv) 

is commonly used in probability fields, and the Fano 

factor is used in physics for particle detection (Pennini 

& Plastino, 2010). Here, we present the quantification 

of variability by broad stroke measures (i.e., spike rate) 

such as spike rates and Fano factors, as well as more 

precise measures (i.e., spike time) such as inter-spike 

intervals (ISIs), Cv, local variation (Lv), autocorrelation, 

period histograms, a synchrony index (vector strength 

– VS), and post-stimulus time histograms (PSTH). 

Measures of Spiking VariabilityMeasures of Spiking VariabilityMeasures of Spiking VariabilityMeasures of Spiking Variability    

Spike rate and Fano factor 

Spike rates are a broad stroke measure of a neurons 

activity over a duration of time measured in Hz. Spike 

rates do not measure variability, they are, however, 

commonly used to quantify a neural response over a 

given duration of time T. When a neuron’s spiking 

activity is represented as a vector of spike times t1, t2, 

t3…tN, the rate is defined by 

  (1) 

where N is the total number of spikes over a given 

duration T (some unit of time). T can be ‘binned,’ 

where, for instance, 100 ms of spiking activity is 

reduced to a 50 bit vector by using 2 ms bins and 

having ‘1’s denote spikes, ‘0’s no spikes (i.e., Kayser et 

al., 2009). Binning, or down sampling, is not the subject 

of this tutorial but can be useful (full explanation and 

implementation schemes are described in: Reike et al. 

1999; Dayan & Abbott, 2001). Spike rates can be 

computed as a function of single neurons across trials, 

or over a network, thus generating a distribution of 

rates with variability (i.e., R1, R2, R3,… RJ, where J is the 

total number of neurons or trials).  Fano factors F are a 

measure of the dispersion in a distribution. Thus Fano 

factors F are commonly used to measure the dispersion 

in the spike rate distribution, this makes F a broad 

stroke measure of variability in the signal produced by 
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a neuron or neuronal network. For random spike rates 

RJ, F is equal to 1; by comparison, for constant spike 

rates RJ, F is equal to zero (Dayan & Abbott, 2001). F 

quantifies the amount of variability in the spiking 

activity relative to the mean spike rate, and is defined 

by 

  (2) 

where Rj is a given spike rate, J is the total number of 

spike rates, and  is defined by 

  (3) 

Since R can be computed for several trials or 

neurons in a network, a single value F can describe 

variability for a single neuron or neuronal network – 

thus making it flexible to the researcher’s interests.  

Since R is a summation of N spikes over time T, R is a 

macro scale measure of spiking activity and F is a 

macro scale measure of variability, next we examine 

measures of variability in terms of precise spike timing. 

Inter Spike Intervals (ISIs) 

An ISI measures the latency ∆t between precise spike 

times (Figure 1A – Dayan & Abbott, 2001).  ISIs can be 

computed for every single spike (minus one) or a 

percentage of spikes.  When a neuron’s spiking activity 

is arranged in a vector of spike times t1, t2, t3…tN, the ith 

ISI is defined by 

  (4) 

Figure 1 ���� Measures of spiking variability. A. Cartoon schematic of a spike train. Black vertical lines are spikes across 

time. Red arrow heads denote the duration of time ∆t between two spikes – termed an inter-spike interval (ISI). B. Cartoon 

schematic of an autocorrelation generated from the spike trains of a neuron A. Black horizontal lines are spikes across time. 

Red box shows spikes aligned at ∆t = 0, these spikes are used in generating the autocorrelation function. C. A spike raster 

depicted as binned activity. Red boxes are single bins (i.e., matrices) of spiking activity that are summed across neurons 

generating a network response. Notice that the time bins are the same duration as the period of the frequency of interest 

(i.e., 100 ms). Grey box on wave below captures the full cycle of the oscillation. D. Spike raster depicting the response of a 

network of neurons to a stimulus pattern. For this example the spikes were produced by a network where oscillations were

injected (10 Hz – 5 mA). Red circles denote a random depolarizing event delivered to a subset of cells – the stimulus 

pattern. Gray box is the post-stimulation response window (100 ms) stored for offline analysis of post-stimulus histogram.   
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where t represents a given spike time. Intervals are 

then counted, generating a distribution of ISIs for single 

neurons; or by comparison, a network of neurons.  

Differences in the temporal spike patterns emitted by 

single neurons (i.e., Lei et al. 2011) or networks of 

neurons (i.e., Wallace, Benayoun, van Drongelen, & 

Cowan, 2011) can become notably visible through ISI 

distributions.  The characteristics of the ISI distribution 

can be established by examining the Cv and Lv. For a 

more detailed treatment of the relation between rates 

and intervals see Lemon (2014). 

Coefficient of Variation (Cv) 

The Cv is a measure of the dispersion in the ISI 

distribution (Dayan & Abbott, 2001).  When we 

calculated F we use variance; by comparison, the Cv is 

computed using the standard deviation.  For sufficiently 

long Poisson processes (where neurons spike at a fixed 

rate and spikes times are random) the Cv is 1; by 

comparison, for a constant ∆t the Cv is zero (Dayan & 

Abbott, 2001). Using the vector of spike times t1, t2, 

t3…tN, the Cv is defined by 

  (5) 

where N is the total number of spikes (minus 1 in the 

equation because intervals are a measure between two 

points in time, thus there are N – 1 intervals), ∆t is a 

given ISI defined by equation (4), and t∆  is defined by 

  (6) 

Since ISIs can be computed for a single neuron, or an 

entire network, the Cv can be computed for the entire 

network generating a scalar value, or computed for 

each neuron’s ISI distribution, generating a distribution 

of Cv for the entire network.      

Local Variation (Lv) 

Closely related to the Cv is the measure of local 

variation (Lv). The measurement of Lv is a relatively 

new method of examining the ISI distribution 

(Shinomoto & Shima, 2003) and has been met with 

some criticism (i.e., Ikeda, 2005; Ponce-Alvarez, Kilavik, 

& Riechle, 2010). The Lv is said to be sensitive to the 

intrinsic characteristics of neurons since it measures 

the step-wise variability of ISIs (Shinomoto & Shima, 

2003). Lv is a non-linear measure, and like the Cv, is 

based on ISIs, sufficiently long Poisson processes have a 

Lv equal to 1, and for constant ∆t Lv equals zero. When 

a neurons spike train is defined by a vector t1, t2, t3…tN, 

the Lv is defined by  

  (7) 

where N is the total number of spikes, and ∆t is a given 

ISI. The quadratic difference between ISIs (i.e., the 

second term in the numerator) is multiplied by 3 so 

that Poisson processes equal to ~1 (Shinomoto & 

Shima, 2003). 

Autocorrelation 

Autocorrelation is one way to measure how well a 

signal is correlated with itself (Reike et al., 1999). Using 

an autocorrelation, we quantify the self-similarity of a 

neurons signal as a function of the time lag τ. In the 

context of this discussion, we use correlations to 

examine the periodicity in a single neuron’s spiking 

behaviour. To do this, we take a given spike train, 

randomly pick a spike, then align spikes such that for 

each subsequent row, neuron A’s spike train is shifted 

to the left and the succeeding spikes are aligned at ∆t = 

0 (Figure 1B – Reike et al., 1999). The proportion of all 

aligned spike trains is the autocorrelation function, 

these spikes should be aligned at τ = 0 (measured in 

ms). Thus turning the proportion into a probability 

creates a peak of p = 1 in the autocorrelation at τ = 0. 

The duration of recording included in the 

autocorrelation is left to the researcher. One way of 

determining the size of the window τ (or duration of 

time) is to think of what frequencies you expect to see 

in the data. In the example provided below, τ is equal to 

400 ms, so that a periodic signal as a slow as 0.4 Hz 

could be detected. There is the added option of 

normalizing the autocorrelation function to the spike 

rate which produces a conditional rate (see Reike et al. 

1999). Here variability is measured across time, you 

would look at some measure of error (i.e., SEM is 

plotted in the upcoming examples) around the mean at 

a given time-step τ. 

Period Histogram 

Periodic inputs, injected into single neurons, have been 

shown to generate periodic outputs (i.e., Mainen & 

Sejnowski, 1995), and period histograms can be used to 

show the periodicity in a signal elicited by an input. 

Period histograms visually depict the precise timing of 
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spikes relative to the phase of an oscillating current. To 

generate a period histogram, spiking activity is binned 

where bin width is set to the duration of the period of 

the oscillating current (i.e., red boxes – Figure 1C). In 

this scenario, we define a periodic input using a sine 

wave current that reaches peaks between minimum 

and maximum limits when amplitude is added (i.e., 5 

mA). Spiking activity within each bin is counted, and 

the counts are averaged across a given number of bins 

(i.e., in the example five cycles are binned, and 

averaging across the bins would create the period 

histogram). Variability is measured in the same fashion 

as autocorrelation, that is to look at variability across 

time, you would look at some measure of error (i.e., 

SEM is plotted in the upcoming examples) around the 

mean at a given time step. 

Synchronization Index (Vector Strength) 

Period histograms visually depict periodicity; by 

comparison, synchronization indices such as vector 

strength VS are useful in numerically depicting the 

degree of synchrony between two signals (Goldberg & 

Brown, 1969; Chang, Bao, Imaizumi, Schreiner, & 

Merzenich, 2005).  VS quantifies synchrony by taking 

precise spike times and determining their phase 

relation to a sine wave.  There are many useful ways to 

define and compute synchrony (i.e., across neurons, 

across networks, across conditions, etc.); here, we 

compute the degree of synchrony between an input 

(i.e., oscillating current with a period c) and the signal 

emitted by a neuron in the form of spike times t1, t2, 

t3…tN. For completely Poisson processes VS is zero; if 

the signals are synchronized, however, VS is one.  The 

Rayleigh statistic (2N[VS]) can be used to assess the 

significance of VS, more specifically critical values of 

5.991 for α = 0.05, and 13.816 for α = 0.001 can be 

compared to establish significance (Chang et al. 2005). 

When spike times are arranged in a vector t1, t2, t3…tN, 

VS is defined by 

  (9) 

where N is the total number of spikes, x is defined by 

  (10) 

y is defined by 

  (11) 

and θi is defined by 

  (12) 

where t is the spike time for ith neuron/channel, and c is 

the period of the input wave. Here the spike time ti 

modulo the oscillations period c is the moment within 

the period (between 0 and 2π) when the neuron spikes 

and θi is the phase. Thus, this measure is an indication 

of the strength of the coherence between the injected 

signal and one emitted by a neuron in response. 

Variability is measured in the same way as 

autocorrelation and period histograms, that is to look at 

variability across time, you would look at some 

measure of error (i.e., SEM is plotted in the upcoming 

examples) around the mean at a given frequency. 

Post-Stimulus Time Histograms (PSTH) 

PSTHs measure the timing of spikes relative to a 

stimulus presentation (Reike, et al., 1999; Dayan & 

Abbott, 2001). Post-stimulus (i.e., red spikes denote 

stimulus – Figure 1D) responses are captured (gray box 

– Figure 1D) and counted so that researchers can 

visually characterize the neural response. We now have 

the added option of turning the counts into proportions 

or probabilities by dividing the value of each data point 

by the sum of all data points; in the forthcoming 

example this was not done because there were only ten 

stimulus presentations. It is recommended that stimuli 

be repeatedly presented such that a probability 

distribution can be generated because spike times are 

quite variable across repetitions of the same stimulus 

(Mainen & Sejnowski, 1995). Variability is measured in 

the same fashion as autocorrelation, VS, and period 

histograms, that is to look at variability across time, you 

would look at some measure of error (i.e., SEM is 

plotted in the upcoming examples) around the mean at 

a given time step. 

 

Examples ofExamples ofExamples ofExamples of    Spiking VariationSpiking VariationSpiking VariationSpiking Variation    

We have generated data to provide some visual 

examples that will enhance the end user’s 

understanding of the measures – see Matlab Functions 

and Example Data below. To generate this data we used 
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a computational model of interacting cells that emit 

action potentials (i.e., Gerstner & Kistler, 2008; Kuebler, 

Bonnema, McCorriston, & Thivierge, 2014). The spiking 

data is passed to each function in the form of a matrix XXXX 

of any size where the rows represent neurons (i.e., n1, 

n2, n3…nN) or trials (i.e., k1, k2, k3…kN) and columns 

represent time (i.e., t1, t2, t3…tN). Within XXXX, ‘1’s must 

denote spikes, and ‘0’s denote silence. Here we define 

Figure 2Figure 2Figure 2Figure 2    ����    Examples of spiking activity. AAAA. Cartoon schematic of an oscillation with an amplitude of zero. The black 

curve indicates what amplitude would be injected at that time step. BBBB. Cartoon schematic of an oscillation with a 

frequency of 10 Hz and an amplitude of 5 mA. CCCC. Spike raster depicting the response of a network of spiking neurons. 

For this example the spikes were produced by a network without an oscillation injected. DDDD. Spike raster depicting the 

response of the network. For this example the spikes were produced by a network with an oscillation injected (10 Hz 
– 5 mA). EEEE. Similar network to C responding to a stimulus pattern. Red circles denote a random depolarizing event 

delivered to a subset of cells – the stimulus pattern. FFFF. Similar network to D responding to a stimulus pattern (10 Hz 

– 5 mA). 
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oscillations as a sine wave current that reaches peaks 

between minimum and maximum limits when 

amplitude  is  added  (i.e.,  compare  Figure  2A  versus 

Figure 2B). For clarity, we simulated spiking activity to 

capture four conditions, neuronal networks: [1] 

without oscillations or stimulus injected (i.e., Figure 

Figure 3Figure 3Figure 3Figure 3    ����    Examples of spiking variability.... Left column: figures represents a neuronal network without oscillations. 

Right column: figures represents a neuronal network with oscillations (10 Hz – 5 mA). A1A1A1A1. & A2A2A2A2. Spike rate 

distribution and Fano factor (F). B1. B1. B1. B1. &    B2B2B2B2. Inter-spike interval distribution and coefficient of variation (Cv). C1C1C1C1. & C2C2C2C2. 

Local variation distribution. D1D1D1D1. & D2D2D2D2. Autocorrelation function. Red shading represents standard error of 

measurement (SEM). E1E1E1E1. & E2E2E2E2. Period histogram. Red shading represents standard error of measurement (SEM). F1F1F1F1. 

&    F2F2F2F2. Vector strength. 
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2C); [2] with oscillations and without stimuli (i.e., 

Figure 2D); [3] without oscillations and with stimuli 

(i.e., Figure 2E); as well as, [4] with oscillations and 

with stimuli (i.e., Figure 2F). We define stimuli as 

random depolarizing events delivered to a subset of 

cells (i.e., red circles in Figure 2E & 2F). To enhance the 

readers understanding we present some examples for 

the following measures: spike rate, Fano factor, ISIs, Cv, 

Lv, autocorrelations, period histograms, VS, and PSTHs.  

To examine the spiking activity in terms of global 

measure (i.e., long durations of time) we look at spike 

rates and the Fano factor (F). For this analysis we 

compare two conditions: [1] the network without 

oscillations (Figure 2A); and, [2] the network with 

oscillations (i.e., 10 Hz, 5 mA – Figure 2B). Results of 

this analysis show that networks without oscillations 

had a normal distribution of spike rates that was not 

highly variable, F = 1.77e-04 (Figure 3A1). By 

comparison, networks with oscillations had a spike rate 

distribution that was normal; but less variable, F = 

8.12e-05 (Figure 3A2). This example shows how spike 

rates and F can be used to quantify variability in spiking 

activity. 

To investigate the temporal patterns in spiking we 

can examine latencies between spikes emitted by a 

neuronal network, for this we utilize the ISI distribution 

and Cv. Results of this analysis show that the network 

without oscillations had a normal distribution of 

intervals, and the Cv = 1.56 indicates that the spikes 

were highly variable (black curve – Figure 3B1). By 

comparison, the network with oscillations (10 Hz – 5 

mA) had a normal distribution that was shifted and 

skewed towards longer intervals and the Cv = 1.15 

indicates spike times were less variable (black curve – 

Figure 3B2). This example depicts the utility of ISIs in 

showing that the temporal pattern within two signals is 

different. 

Another way to examine variability in the ISI 

distribution is to look at the local variation (Lv) 

distribution. Results of this analysis show that 

networks without oscillations had a Lv distribution that 

was normal; yet positively skewed (Figure 3C1). By 

comparison, networks injected with oscillations had a 

distribution that was normal; but less heavily skewed in 

comparison to networks without oscillations (compare 

Figure 3C1 versus Figure 3C2). This example shows 

how variability, in the form of Lv can be used to 

characterize differences between neuronal networks.    

To further examine the periodicity in the signal 

emitted by single neurons in the network we compare 

the autocorrelation function for the two conditions 

above. Results of this analysis show that the 

autocorrelation function for cells in a network without 

oscillations appeared stochastic – indicated by the 

curve appearing largely flat (Figure 3D1). By 

comparison, the autocorrelation function for cells in a 

network with oscillations injected showed greater 

periodicity – indicated by well-defined peaks and 

troughs (Figure 3D2). These results are consistent with 

the spike rasters presented in Figure 2C and D: [1] cells 

in the network without oscillations spiked randomly; 

[2] cells in the network with oscillations spiked with a 

periodic rhythm. We can examine the variability in the 

function of each network by looking at the shaded area 

(red – Figure 3D1 & 3D2). Within these networks the 

variability is low, this is probably because there was 

low levels of heterogeneity between cells (i.e., reversal 

potential, capacitance, time constants, etc.). This 

example shows how autocorrelations can be useful in 

quantifying the periodicity and variability in the signal 

emitted by single cells.  

To assess the periodicity in the signals emitted by a 

network of interacting cells we examine period 

histograms. Results show that the network without an 

oscillation injected did not respond with any 

periodicity (Figure 3E1) – this aligns well with previous 

results (i.e., flat autocorrelation function – Figure 3D1). 

By comparison, networks injected with oscillations 

were more periodic and most spiking occurred during 

the peak of the injected oscillation (Figure 3E2) – this is 

consistent with previous results (i.e., periodicity in the 

autocorrelation function – Figure 3D2). We can 

examine the variability by looking at the shaded red 

area, here we see that spiking activity was less variable 

when oscillations were injected (compare Figure 3E1 

versus Figure 3E2). These examples depict how period 

histograms can be useful in showing the variation in 

network responses to periodic input. 

Next we examine the VS to quantify the level of 

synchronization to frequencies of an oscillation. Results 

of this analysis show that the network without 

oscillations was not synchronized with any frequencies 

– indicated by a flat curve (Figure 3F1). By comparison, 

the network with an oscillation injected was 

synchronized with numerous periodic inputs – 

indicated by the clear peaks and troughs of the curve 

(Figure 3F2). We examine the variability by looking at 

the shaded and can see that both networks had low 

variability in VS (Figure 3F1 & 3F2) – likely owning to 

low levels of heterogeneity between cells. This analysis 
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shows how quantifying the level of synchrony to a 

periodic signal can be useful to show the periodicity in 

the cells and variability between cells or neuronal 

networks.  

In a final series of analyses we examine the post-

stimulus time histograms (PSTHs). For clarity, we look 

at spiking activity for two networks: [1] without 

oscillations and a stimulus (red circles – Figure 2E); 

and, [2] with an oscillation and a stimulus (10 Hz, 5 mA 

– red circles – Figure 2F). For each network, the same 

randomly generated stimulus is presented at 1500 ms 

intervals at rising phase of the oscillating network, and 

post-stimulus spikes (i.e., gray box – Figure 1D) were 

stored to generate PSTHs. Results show that for the 

network without oscillations, post-stimulus spike times 

varied widely across time (Figure 4A). By comparison, 

for networks with oscillations post-stimulus spike 

times were more reliable and all spiking activity 

occurred around the peak of the wave (i.e., after ~ 20 

ms – Figure 4B). The PSTHs generated by examining 

these two networks show that cells without oscillations 

responded with more variability across time than those 

with oscillations injected (compare Figure 4A versus 

4B). Note that these results are consistent with the 

spike rasters presented in Figure 2E and 2F: [1] for the 

network without oscillations there was a slow and low 

amplitude response; [2] the network with oscillations 

injected responded with two high amplitude bursts of 

activity shortly after stimulus presentations – this is 

likely because the stimulus was presented during the 

rising phase of the oscillations when most of the 

neurons spike in a synchronized fashion. The variability 

in the PSTH can be examined by looking at the shaded 

red area, here we see very little variability in both 

networks (Figure 4A & 4B) – possibly because the 

stimulus reduced the variability in spiking activity. This 

example is useful in depicting that PSTHs can show 

differences in the responses to stimuli between 

networks or single cells. 

Matlab Functions and Example DataMatlab Functions and Example DataMatlab Functions and Example DataMatlab Functions and Example Data    

The above analyses have been written as functions and 

can be implemented through the Matlab environment 

(The MathWorks, Natick, Massachusetts, United States). 

The functions as well as the example data file are 

available for download from the journal’s website 

(www.tqmp.org). This tutorial assumes that the 

researcher has some experience with MATLAB: please 

refer to “MATLAB Primer 2013” (The MathWorks, 

Natick, Massachusetts, United States) for information 

on how to: manipulate the user interface, set the path, 

load data, and run functions. Go to the ‘Command Line’ 

in Matlab and run the functions using one of the 

example matrices (or your own data) as input. Please 

refer to Table 1 for file names and syntax to call the 

functions. All of the functions require XXXX, a matrix of 

spiking activity where rows represent neurons, 

columns represent time (measured in ms) and within 

the matrix ‘1’s represent spikes; ‘0’s depict the 

quiescent state. XXXX is not a variable in the file; instead XXXX 

must be generated by calling another variable (i.e., X = 

var;). Within the file ‘varDEMO.mat’ there are four 

matrices of spiking data: [1] a neural network without 

oscillations (see variable ‘M1_withoutOSCIL’); [2] a 

neural network with oscillations (see 

‘M1_synchronous’); [3] a neural network without 

oscillation; but with stimulus (see ‘M2_withoutOSCIL’); 

[4] a neural network with oscillations and stimulus (see 

‘M2_synchronous’). There are some functions, however, 

that require additional inputs (see Table 1). For 

instance, any analyses that compare spiking activity to 

periodic input need to have frequency (Hz) as a second 

input. In addition, the autocorrelation script needs τ 

input (the size of the window around t0). The plots 

Figure 4 ���� Examples of spiking variability with stimulus. Left column: networks without oscillations. Right column: 

networks with oscillations (10 Hz – 5 mA). A. Post-stimulus time histogram (PSTH) for the same network as Figure 3 with 

a stimulus presented. B. PSTH for the same network as A with a stimulus presented. 
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throughout the discussion cannot be produced by 

simply running the functions, they need to be created – 

this was done so that the functions did not need to be 

edited (i.e., removing plotting functionality for the 

analysis of large datasets). The data, however, is the 

same and therefore the plots can be replicated.    

ConclusionConclusionConclusionConclusion    

Measurements of spiking variability have enhanced our 

understanding of how the brain may process 

information. In this contribution we have shown that 

the measurement of spiking variability can be a 

simplified process that enables researchers to quickly 

and efficiently analyse large data sets. We have 

presented several ways to analyze this variability, many 

of the measures are qualitatively unique and offer a 

different perspective on neuronal activity. We have 

shown how several measures of spiking variability can 

be used to characterize the behaviour of cells or 

networks. Several examples of variability were 

reviewed, for example: spike rates, synchrony, 

periodicity, and temporal delays. Depending on how 

these measures are used different variability can be 

quantified or visualized, for instance: across trails or 

repeated stimuli; or across cells in a network.    Finally, 

we have presented functional algorithms for each 

analysis and example data to aid in understanding how 

these measures might be used.    
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