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AbstractAbstractAbstractAbstract � In contrast with absolute selection, which retains any candidate reaching some pre-determined level of the selection 
variables, relative selection deals with a pool of candidates among which a given number of individuals must be recruited. 
Trivially done when only one criterion is to be used, implementation of relative selection becomes more involved when two or 
more criteria are applied, each criterion having its own a priori, predetermined weight and no outcome measure being available. 
For instance, with two criteria, how may information from both criteria be combined, and can the respective, a priori weights 
assigned to the criteria be enforced on the selection results? The problem is analysed, and tentatively solved, and two 
implementation schemes, – additive and sequential – are described, mathematically examined, and exemplified. 
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IntroductionIntroductionIntroductionIntroduction    

Personnel selection systems used for qualifying 

candidates for a job or for sorting out the most worthy 

individuals from a group of contenders operate in a 

diversity of modes (Barrett et al., 1978; Dunnette & 

Borman, 1979), ranging from qualitative, one-person 

judgements up to data-based classification algorithms, 

such systems being either absolute or relative. An 

absolute, or minimum qualification, selection system is 

one in which the merit of each candidate is appraised 

on the basis of some qualification criterion or criteria, 

compared to pre-determined standard or value-

threshold, and then decided upon, independently of any 

remaining candidates. Relative selection, by contrast, 

considers all competing candidates at once and 

compares their merits from one to the other, thus 

highlighting a number of persons agreed to in advance 

and retaining them, independently of any externally 

defined threshold. In this essay, we consider relative 

selection systems based on two pre-weighted 

quantitative criteria, and we investigate two distinct 

schemes of implementation, an additive scheme using a 

composite, or weighted sum, of selection variables, and 

a sequential or multi-stage scheme in which the 

selection variables are applied sequentially. 

Many selection systems can be, and have been, 

thought up, applied and compared (e.g., Sackett & Roth, 

1996), as can be seen in recent reviews on the subject 

(Guion, 2011; Ployhart, 2012). Documented and 

published systems pertain mostly to job selection 

contexts and they aim at predicting in some way the 

future ‘output’ of the candidate or some variable 

thereof; for systems using two or more predictive 

variables and an output measure, multiple regression 

analysis (Schmidt & Hunter, 1998) is a standard 

method, providing the user with a weighted composite 

of the predictors, optimally related to the target 

variable1. Although “success-at-the-job” remains an 

important asset for selection, other views are 

                                                                    
1 In the psychometric literature (e.g. Cronbach, 1971; 

Kane, 2006), predictive selection systems are dealt with 

under the headings of predictive validity and criterion-

based validation, i.e. validation of a test score by its 

correlation with or regression on some recognized 

‘criterion’, frequently an outcome or ‘output’ variable. 

The term ‘criterion’ in that context is thus reserved for 

the outcome variable. In the present article, however, 

no reference is made to any outcome or outcome 

variable nor to any external validation of the selection 

results. This allows us to use the term ‘criterion’ more 

broadly, with the connotation that ‘criterion’ is the 

psychometric construct for which the corresponding 

‘selection variable’ stands for. 
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legitimate, for instance judgementally-based selection 

decisions, inasmuch as their operation is based ‘on 

some logical, empirical and theoretical foundation’ 

(SIOP, 1987).  A quite common example of such a 

logical / theoretical evaluation approach is selection of 

candidates for an academic or professional training 

program. For instance, for would-be physicians, 

teachers or plumbers, there may be no readily available 

measures of ‘professional success’, and only the skills 

and knowledge obtained and measured during 

academic training can be considered. Moreover, 

‘success-at-the-program’, whether available or not, may 

not be a sufficient or even an admissible variable for 

foretelling a decent practitioner. As noted by Deckro 

(1977), any single measure of performance or academic 

output, be it simple or composite, may pass by crucial 

requisites, such as technical or interpersonal know-how 

and moral standing, qualities to which careful 

interviewing and qualitative appraisal can hopefully 

attest. 

Hence, for any combination of the above reasons, 

organizations have set up selection systems based on 

two or more a priori criteria, each being assigned a 

“nominal” weight: for instance, for recruiting and hiring 

factory workers, a classification system could be based 

on “working ability” for 80% and “honesty” for 20%, 

the first component measured by a standardized, on-

site test protocol, and the second, by an “honesty test” 

(Ones, Viswervaran and Schimdt, 1993) or through 

psychological interviewing.  Murphy and Shiarella 

(1997) discuss such systems. Moreover, Guion (2011) 

recommends them, in these words: 

A weighting scheme matters if only a few 

variables form the composite. In these cases, it 

should be based on rational or theoretical 

grounds rather than on computation alone… [In 

either case,] it is wise to see if the effective 

weights make sense. [Guion, 2011, p. 276-277]. 

We must open a parenthesis to further define and 

clarify our concept of “nominal weights”, which pertain 

here to numbers purported to express the relative 

importance of a set of criteria and are imposed by 

decree by some governing authority. “Nominal weights” 

appear in another, somewhat different guise in the 

literature (Wang & Stanley, 1970; Kolen 2004; Guion, 

2011), where they denote simple coefficients in a linear 

composite (e.g., bX  and bY in bX⋅⋅X + bY⋅Y), in contrast 

with “effective weights” which reflect the contribution 

in variance of each linear component, including its 

proper variance and its possible covariances shared 

with other components. Moreover, our experimental 

results show that the two definitions are not equivalent. 

We feel that our use of the verbal label ‘nominal weight’ 

is unavoidable, and pray the reader to indulge us and 

keep in mind the particular, and more natural, 

definition that we propose. 

For systems based on numerous, positively 

correlated variables, it has been shown  that all 

positive-weighted composites are about statistically 

equivalent: unit-weights, random positive weights, 

rational weights and regression-based weights 

composites all correlate highly, with correlation 

coefficients near 1 (Wang and Stanley, 1970; Dawes 

and Corrigan, 1974; Cronbach, 1990; Guion, 2011). Of 

course, this high level of correlation between various 

positive-weighted composites crumbles down as the 

number of linear components decreases. This actual 

quasi equivalence of linear composites leaves room for 

adopting rational weights and rationally accountable 

weighting rules and principles, which will be easier to 

handle and legitimize in cases of dispute (Guion, 2011). 

Most selection systems reviewed in the foregoing 

literature refer, explicitly or implicitly, to absolute 

selection, even if authors (e.g., Cronbach, 1990) allude 

to relative selection when describing situations where a 

pre-determined number of candidates must be 

retained. In spite of this, we were able to find but a few 

papers dealing with relative selection and its 

mechanisms, e.g., Sackett and Roth (1996)’s where 14 

different selection rules on two criteria are compared 

through Monte Carlo simulations, and none regarding 

relative selection based on two nominal-weighted 

criteria, used either in an additive or a sequential 

implementation scheme. This is not to say that such 

selection systems are imaginary or their use 

unprecedented. On the contrary, on the basis of our 

own experience, we feel assured that relative selection 

is quite common, even commoner (and cheaper!) than 

absolute selection, at least in small and medium-sized 

enterprises and limited enrolment training programs 

such as for medicine and teaching. Among those 

organizations, there are some who use two or more 

differentially weighted criteria embedded either in the 

“additive” or the “hierarchical” scheme, as we call them: 

how are the weights integrated into the selection 

scheme, and how can one assess the correspondence 

between the weights’ values and the selection results? 

Let’s now posit the problem, clarify the issues and 

present some preliminary results. 
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Two preTwo preTwo preTwo pre----weighted criteria, and does the output matches weighted criteria, and does the output matches weighted criteria, and does the output matches weighted criteria, and does the output matches 

the input?the input?the input?the input?    

Plainly stated, relative selection amounts to the 

eventual recruitment and hiring of the best n among N 

postulants. With only one criterion and corresponding 

selection variable, relative selection is trivially carried 

out: the N candidates are arranged in descending order 

as a function of their value on the variable, the 

individuals to be retained being those appearing in the 

n positions at the top of the list. With two 

criteria/variables or more, the problem becomes more 

involved, at two levels: first, the criteria need be 

weighted (unless equal weights are appropriate for a 

particular situation and are agreed to), and, second, the 

selection scheme must ensure that each criterion’s 

predetermined weight is duly transferred into the 

selection results. For instance, let’s suppose a 

manufacturing plant operates a selection system based 

on two measures, ‘manual ability’ and ‘honesty’, 

respectively weighted 80% and 20%: how should we 

combine information form the two measures? One may 

naïvely propose an additive combination such as: 

 T = 0.80 × (Ability score) + 0.20 (Honesty score) , 

then selecting the wished for number of people who 

obtain the highest T values. What is the real outcome of 

this selection rule, and how do the results, i.e. the array 

of persons retained, match the imposed 80/20 weights? 

In fact, as we shall see, the deployment of results (e.g., 

how many candidates were favoured by each criterion) 

depends in a complex manner on each score’s variance, 

their mutual correlation, and even on the selection rate. 

A naïve formula such as the one above could well lead 

to absurdly irrelevant results.  

For the sake of clarity, the following developments 

will be limited to the case of two criteria, although most 

results and conclusions are easily extended to criteria 

in any number. 

Origin of the weights 

Where do the weights come from? The weights are 

usually conceived as to reflect the relative importance 

of the criteria they stand for, and they can emanate 

from a careful analysis of the situation, from a global 

appreciation of the profile of the wished for candidates, 

or even from available statistical information such as 

previous multiple regression analyses. The recruitment 

of factory workers broached earlier, with a weight of 

80% for ‘working ability’ and 20% for ‘honesty’, is a 

paradigmatic instance, as that of selecting candidates 

for enrolment in an academic training program based 

on the GPA score for 70% and ‘interpersonal skills’ for 

30% as quantitatively appraised through a standard-

ized group interview. In any case, at some point in time 

prior to the selection process, some legislative body, a 

committee, an administrator has defined the criteria 

and decreed their respective weights, say wX and wY, 

expecting that such weights be proportionally 

implemented in the selection results. 

Rescaling the weights 

The weights (wi) assigned to the criteria are, by 

definition, positive (wi > 0)2 and they can be rescaled 

so that they sum up to 1, i.e. Σ wi = 1. Take, for instance, 

a 2-criterion system with weights wX = 0.75 and wY = 

0.25, meaning in a broad sense that criterion X should 

have an influence three times as large as criterion Y on 

the selection results. But, how can we relate the 

decreed, predetermined weights, on the one hand, to 

the pattern of selection results on the other? 

The dominance index 

Let the two criteria be embodied by selection variables 

X and Y, with corresponding weights wX and wY. From 

an initial pool of N candidates, the selection process (to 

be studied in the following sections) shall produce a list 

of n chosen recruits. Now, the n elements in the final list 

of selected candidates have been spotted and retained 

as a function of both variable X and variable Y, but this 

does not entail that each chosen candidate would have 

separately been qualified both on X and on Y, or even 

on any one variable. More precisely, the n elements 

forming the final list of selected individuals may be 

subdivided in the following four categories, 

nnnnX,YX,YX,YX,Y    :::: elements (candidates) who would have been 

retained either by variable X or Y ; 

nnnnX,*X,*X,*X,*:::: elements who would have been retained by 

variable X but not variable Y ; 

nnnn****,Y,Y,Y,Y:::: elements who would have been retained by 

variable Y but not variable X ; 

nnnn*,**,**,**,*:::: elements who would have been retained neither by 

variable X or Y. 

Indeed, to explain the n*,* component, a candidate may 

be retained by the selection system even if he/she 

                                                                    
2 Because they reflect the relative ‘importance’ of the 

criterion. They are not to be confused with linear 

regression weights, which can have any real value. 
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would have failed to rank among the n best scores in 

both his/her X and his Y variables, their joint values 

having “pushed” him (i.e. additively) to success.  

Among the n elements retained, those (nX,Y) who 

would have qualified on both criteria and those (n*,*) on 

neither one render no information about the relative 

importance of each criterion ; only the discordant 

counts, nX,* and n*,Y, do inform us about it. Based on 

these data, the dominance index for criterion X (DX) is 

defined by: 

 DX = nX,* / (nX,* + n*,Y) , (1) 

i.e. the proportion of discordant decisions favouring 

criterion X, the dominance for Y  being defined likewise, 

with corollary DY = 1 –  DX. For instance, DX = 1 reflects 

a situation where, apart the (nX,Y) candidates elected 

both on the X and Y variables, the remaining selected 

candidates were all favoured by the X criterion, such an 

utopian case corresponding to a wX = 1, wY = 0 weight 

pair. 

The precedence index 

Another way to look at the selection data, composed of 

n (X,Y) values, is to compare the relative ranks of 

selected candidates on X and Y. For instance, if criterion 

X should dominate (e.g., with wX = 0.90 and wY = 0.10), 

one would expect that, on the average, the X-rank for a 

candidate exceed his Y-rank, the ranks being 

established from the original full list of N candidates. In 

other words, the relative import of the X criterion 

should reflect on the ranks of the selected individuals, 

their X-rank values preceding, i.e. being higher than, a 

number of the Y-rank values. The precedence index of X 

is then defined by: 

(2) 

where r(Xi) is the rank (numbered 1 to N) of candidate 

i for his X score among the N X values, etc. , and 0 ≤ PrX 

≤ 1. The precedence of Y is defined likewise, with PrY = 

1 – PrX.  

We ran a series of Monte Carlo experiments in order 

to assess the comparative merits of the DX and PrX 

indices, using the additive selection scheme (to be 

explained later). Table 1 is illustrative of our results. 

Summarily, the two indices are equally responsive 

to variations of the criteria’s weights, and both are 

sensitive to the selection ratio (n / N) and correlation 

(ρXY) between criteria. Moreover, Spearman’s rank-

order correlation between DX and PrX borders on 1. 

However, as can be seen in Table 1, the DX index tends 

Table 1Table 1Table 1Table 1 � Comparing the DX and PrX indices for various parametric conditions for the selection of n 

individuals among N = 1000 candidates, under the additive selection scheme†,* 

 

 N bX 
ρXY = 0 ρXY = 0.5 

DX PrX DX PrX 

100 

0.1 0.039 0.071 0.071 0.218 

0.3 0.144 0.143 0.234 0.309 

0.5 0.296 0.278 0.423 0.441 

0.7 0.495 0.494 0.635 0.601 
0.9 0.759 0.773 0.869 0.754 

200 

0.1 0.051 0.126 0.077 0.275 

0.3 0.171 0.203 0.244 0.353 

0.5 0.316 0.324 0.424 0.455 

0.7 0.491 0.493 0.625 0.575 

0.9 0.733 0.721 0.860 0.699 

300 

0.1 0.059 0.178 0.082 0.319 

0.3 0.186 0.252 0.248 0.383 

0.5 0.326 0.355 0.425 0.464 

0.7 0.494 0.496 0.627 0.560 

0.9 0.722 0.681 0.856 0.659 

† ρXY is the value of the linear correlation coefficient used for generating each list of (X,Y) 

values for the N candidates. 

* Score applied for selecting selecting is bX⋅X + bY⋅Y  (variables X and Y being 

standardized), where  
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to show a broader range of values, and its 

interpretation for the layman seems plainer. For all 

practical purposes, we will use the dominance index, 

DX. 

Selection by the sum of the two Selection by the sum of the two Selection by the sum of the two Selection by the sum of the two variablesvariablesvariablesvariables    

The additive scheme of selection essentially consists in 

adding in some way the two criterion-related variables 

for every candidate, then deciding on the basis of the 

obtained totals. In the course of the selection process, 

each candidate is given an X and a Y value, their sum 

(T) being computed as: 

 T = BX ⋅ X + BY ⋅ Y + C , (3) 

BX and BY being appropriate weighting coefficients, and 

C an arbitrary constant. This additive utilization of two 

or more selection variables for determining the status 

or rank of each candidate is also known as the 

“composite (or sometimes compensatory) approach” 

(Salgado, Viswervaran & Ones, 2001). 

Were we in a situation of absolute selection, the 

obtained T value would then be compared to some 

predetermined threshold T*, and, if T ≥ T*, the 

candidate would be retained, independently of any 

other candidate. In our situation of relative selection, 

the N candidates are judged not from a confrontation of 

their T score with a target value, but by comparing it to 

the T scores of all other N – 1 candidates, then retaining 

the top n values, for a selection ratio of n/N. In this case, 

the C constant becomes immaterial and can be dropped. 

Moreover, though they are numerical and vary on a 

linear scale, the X and Y variables have arbitrary, ad hoc 

distribution parameters, depending both on the 

variables used and the group being measured, a fact 

which, at least, would unduly complicate the following 

treatment. To obviate this difficulty, we standardize 

each variable separately, through the z-score 

transformation, i.e.: 

 , (4) 

each variable now having mean 0 and standard 

deviation 1, and equation (3) will be rewritten as : 

 t = bX ⋅x + bY ⋅y . (5) 

Setting also variable t in standard form, with variance 1, 

we may write: 

 1 = bX
2 + bY

2 + 2ρX,Y bX bY, (6) 

whence, for instance: 

 . (7) 

Equation (7) leaves only coefficient bX to be determined 

for each specific situation. 

The computed t value is that by which the sorting of 

meritorious individuals is effected, and it is apparent 

that it is through linear coefficients bX and bY  that the 

relative importance, i.e. the weights wX and wY assigned 

to criteria X and Y, is to be conveyed. The question, 

now, is how do we fix coefficients bX and bY so that the 

decreed, predetermined weights wX and wY are 

complied with and reflect in the selection results, DX 

and DY. Expressed programmatically: 

 Set bX and bY  so that DX = wX   and DY = wY . (8) 

The selection process is intrinsically complex, the 

more so if it is relative and its performance and output 

vary as a function of the selection ratio, a disadvantage 

which escapes absolute selection. For this reason, 

determination of coefficients bX and bY cannot be 

rigorous, and we contemplated three solutions for 

carrying it out. 

Solution 1, Monte Carlo determination 

The simplest, although most laborious solution for 

determining the values of coefficients bX and bY, 

consists in running random Monte Carlo samples for 

some values of parameters N, n and ρX,Y, varying 

coefficient bX (and its companion bY) in a purposeful 

manner, until the dominance index DX matches wX 

(approximately), with a corresponding match between 

DY and wY. Monte Carlo simulation runs were effected 

using samples of pseudo random normal deviates. 

Table 2 presents the estimated bX coefficients (bY may 

be obtained by eq. 7), for various data configurations. 

Detailed information on the Monte Carlo simulation 

runs is given below table 2. 
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Linear coefficient bX increases trivially with the 

corresponding criterion’s weight wX, and it also shows a 

small but consistent increase with selection rate τS. 

Conversely, the positive correlation (ρX,Y) between 

criteria brings about a reduction of the dominating 

coefficient bX, which glides down toward its asymptotic 

value wX. This could be expected by the fact that a 

positive X-Y covariance increases the value of the nX,Y 

selection component, thus incorporating an excess of Y-

individuals and concomitantly trimming down the n*,Y  
component, an effect which needs to be compensated 

by a relative reduction of bX  and parallel increase of bY.  

Solution 2, By proportional contribution of variance 

The determining variation of the t scores is traceable to 

contributions by both variables x and y and their 

correlation, as can be seen in expressions (5) and (6). 

Now, the separate contribution of, say, variable x can be 

roughly identified with the variance of x, plus half the 

x,y-covariance term, obtaining bX
2 + ρX,Y bX bY . This 

leads to yet another proposition to fix the b coefficients: 

Set bX  and bY  so that  

Table 2Table 2Table 2Table 2 � Estimated bX coefficients to be used with eq. 5, as a function of the weight (wX) of the X 

criterion, correlation (ρX,Y) between criteria X and Y, and selection rate (τS)† 
 

τS ρ wX = 0.6 wX = 0.7 wX  = 0.8 wX = 0.9 

0.1 0 0.789 0.860 0.925 0.974 

 0.25 0.720 0.802 0.875 0.943 

 0.5 0.670 0.760 0.843 0.924 

 0.7 0.639 0.732 0.824 0.912 

 0.9 0.612 0.711 0.806 0.905 

0.3 0 0.805 0.886 0.946 0.986 

 0.25 0.731 0.819 0.894 0.955 

 0.5 0.677 0.771 0.856 0.932 

 0.7 0.643 0.738 0.830 0.918 

 0.9 0.613 0.713 0.809 0.907 

0.5 0 0.809 0.891 0.951 0.988 

 0.25 0.734 0.823 0.898 0.957 

 0.5 0.679 0.773 0.858 0.934 

 0.7 0.643 0.741 0.831 0.920 

 0.9 0.613 0.712 0.811 0.907 

0.7 0 0.811 0.893 0.953 0.988 

 0.25 0.735 0.825 0.900 0.959 

 0.5 0.679 0.774 0.860 0.935 

 0.7 0.644 0.741 0.833 0.921 

 0.9 0.612 0.712 0.812 0.909 

0.9 0 0.819 0.903 0.960 0.991 

 0.25 0.740 0.833 0.908 0.963 

 0.5 0.683 0.779 0.866 0.940 

 0.7 0.646 0.744 0.837 0.924 

 0.9 0.615 0.713 0.812 0.912 

† The Monte Carlo data samples were generated as N ρ-correlated X, Y normal deviates, re-

standardized to mean 0 and variance 1, and trial bX, bY values were used to compute the t score (eq. 

5), allowing the selection of n = τS × N candidates to obtain DX. Corrections were then made to 

coefficients bX, bY  and the convergent process iterated until DX ≈ wX. For definiteness, we used N = 

1000, such that, for instance, τS = 0,3 corresponded to n = 300 people to be selected. The 
corresponding bY coefficient is obtained by (7). 
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 bX
2 + ρX,Y bX bY ≈ wX  and bY

2 + ρX,Y bX bY ≈ wY  . (9) 

This type of analysis concurs with what is known in the 

literature as “effective weights”, e.g. bX
2 + ρX,Y bX bY, vs. 

“nominal weights”, e.g. bX or bX
2

, determination (Wang 

& Stanley, 1970; Kolen 2004; Guion, 2011), although 

the said literature stops there, confining itself to 

variance calculations and disregarding the actual, 

individual selection results (as mirrored in the DX and 

DY statistics). 

A solution for system (9) in two coefficients was 

found by Caroline Lambert3. Let k and a be : 

 

; 

 , (10) 

then : 

 bX = k cos ( a ) ,  bY = k sin ( a ) . (11) 

One may note that: 

 bX = 
X
w , bY = 

Y
w       if ρX,Y = 0,  (12a) 

 bX  → wX , and bY  → wY   if ρX,Y → 1. (12b) 

Table 3 presents values of coefficient bX obtained from 

(10)-(11) under conditions comparable to Table 2; note 

that the selection rate τS has no impact on these 

computations. 

The reader may see that the pattern of coefficients 

                                                                    
3 Caroline Lambert, Ph.D., Montréal, 2011, personal 

communication. 

in Table 3 mimics that of Table 2, at each level of 

selection rate (τS), but, being impervious to that 

parameter, the upward variation of bX as a function of τS 

is overlooked. Above all, every coefficient in Table 3 lies 

below the corresponding value in Table 2, the gap 

diminishing somewhat as the selection rate increases. 

These numerous and occasionally important 

differences disqualify the simple variance- or ‘effective-

weight’ method for controlling the differential selection 

problem. 

Solution 3, Setting ρρρρX,Y = 0 

A third solution, that may be seen as legitimate under 

specific considerations, consists in applying to all cases 

the coefficients obtained for the case wherein ρX,Y = 0, 

in Table 24. Indeed, in frequently used selection settings 

where an ability criterion plus a personality component 

are used, Ones, Viswervaran and Schmindt (1993) 

report that the inter-criterion correlation is 0 or near to 

0. In addition to being handy, this ‘0’ solution is tenable 

on statistical grounds. If wX > wY, we necessarily have 

bX > bY and should consequently obtain DX ≈ wX > DY ≈ 

wY. Keeping coefficients bX, bY unchanged while 

increasing ρX,Y  will step up the contribution of both 

criteria, but more so for the higher one, with the effect 

that DX > wX and DY < wY. In words, setting coefficients 

bX and bY for ρX,Y = 0 insures that the direct (individual) 

contribution of each criterion is adequately controlled, 

whereafter the actual correlation between criteria 

‘naturally’ enriches the import of the higher-weighted 

one. A significant counter-argument to the use of this 

solution is that, for situations where ρX,Y > 0, the wX, wY 

weights are not directly mirrored in the actual DX, DY 

                                                                    
4 Use of the bX and bY  coefficients obtained at ρ = 0 for 

samples where ρ > 0 entails, for the selection variable t, 

in (5), a variance of 1 + 2ρ⋅bX⋅bY, i.e. t being no more 

standardized to a variance of 1. This has no adverse 

consequence here, in our context of relative selection, 

whereas it would have to be tackled with in the context 

of absolute selection. 

Table 3Table 3Table 3Table 3 � Computed bX coefficients based on expressions (10)-(11) to be used with eq. 5, as a 

function of the weight (wX) of the X criterion and correlation (ρX,Y) between criteria X and Y 
 

ρ wX = 0.6 wX = 0.7 wX  = 0.8 wX = 0.9 

0 0.774 0.837 0.894 0.949 

0.25 0.709 0.781 0.851 0.921 

0.5 0.662 0.744 0.826 0.909 
0.7 0.633 0.723 0.813 0.904 

0.9 0.610 0.707 0.804 0.901 
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indices. Table 4 gives an illustration for the case where 

wX = 0.6, wY = 0.4 and τS = 0.1, by breaking down the 

(averaged) selection results in their individual 

components. 

Complementary remarks 

Among the three solutions considered for implement-

ing the additive scheme of relative selection, the most 

convincing one is obviously solution 1, because it 

ensures the (approximate) equality between the wX, wY 

weights and the DX, DY statistics. Table 2 presents these 

coefficients for an interesting range of conditions, 

simple linear interpolation being sufficient to fill in the 

intervals (and using bX = wX for ρX,Y = 1). 

Values of coefficients bX in Table 2 were obtained 

using samples of N = 1000 pseudo candidates, instead 

of 10 000 or more. Subsequent verifications with 

smaller samples have shown that the printed values 

hold up quite well, even for N < 15, so that the user 

should feel confident in using them. 

On the other hand, all simulations were performed 

in the normal, linear context, and some side 

experiments have shown us that, for instance, 

uniformly distributed data render slightly different 

results and coefficients. Be it for this reason or any 

other contextual aspect, a thorough validation 

procedure should always be carried out before 

submitting people’s careers and lives to a selection 

process. 

Selection by sequential screeningSelection by sequential screeningSelection by sequential screeningSelection by sequential screening    

Relative selection on two criteria can also proceed 

sequentially, sorting out a subsample of candidates who 

perform best on a first selection variable5, then 

retaining among them those who perform best on the 

                                                                    
5 As a variant, selection on the first criterion, e.g. a 

honesty or criminal propensity score, could be absolute, 

by comparing the obtained score (X) to some agreed 

upon threshold (X*), leaving plain, single-variable 

relative selection for the second phase of the process. 

second variable. A noteworthy advantage of this multi-

stage selection strategy is its economy, i.e. screening 

out candidates on a first (sometimes cheaper) selection 

variable, leaving a reduced number for the final 

selection. To be specific, let N be the initial number of 

candidates, and n, the number we wish to retain ; NX is 

the number of candidates that are first selected by 

variable X, and NY, the number of candidates, taken 

from the previous list of NX, that are finally retained by 

selection on the second variable, Y. We see here that NY 

= n. This sequential, or hierarchical, scheme is akin to 

the multi-stage procedure, or the so-called “multiple-

hurdle” approach in its sequential form (the multiple-

hurdle approach can also be applied simultaneously, a 

candidate being retained if all his scores reach the 

corresponding criteria’s thresholds). The study by 

Converse, Peterson and Griffith (2009) is a landmark 

for researches comparing the composite vs. multiple-

hurdle approaches in multi-criterion systems, although 

neither their methodology nor any that we could find 

explore our decreed nominal weights situation nor do 

they ascertain the correspondence between criteria’s 

weights and individual selection results.  

To get the gist of our hierarchical selection scheme, 

consider two extreme cases, one in which NX = n, the 

other where NX = N. In the first case, the uppermost n 

candidates are chosen by the first criterion, X, leaving 

no hold, no room for maneuver to select by criterion Y: 

such a case refers obviously to a wX = 1, wY = 0 weight 

design.  The opposite extreme case is one where NX = N, 

N > NY = n: all candidates are passed on by criterion X, 

and the whole burden of selection is left to criterion Y: 

here, wX = 0 and wY = 16. We thus see that, for this 

scheme, the operating parameter is NX, parameters N 

                                                                    
6 These two extreme and theoretical cases would not 

automatically produce equivalent selection results, e.g., 

results where DX = 1, DY = 0 for the first case. Partially 

random pairings of (X, Y) values under –1 <  ρX,Y  < 1 

would spuriously elect candidates in the 0-weighted 

variable.  

Table 4Table 4Table 4Table 4 � Selection components and dominance index DX for the case where wX = 0.6, wY = 0.4, τS = 

0.1 and coefficients in (5) are set to ρX,Y = 0 (bX = 0.789, bY = 0.614). 

 

ρX,Y n*,* nX,* n*,Y nX,Y DX 

0 0.150 0.450 0.300 0.100 0.600 

0.25 0.081 0.495 0.230 0.194 0.683 

0.5 0.037 0.475 0.170 0.323 0.735 

0.7 0.015 0.395 0.123 0.467 0.762 

0.9 0.004 0.241 0.068 0.687 0.781 
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and n (= NY) being set in advance. The nearer NX comes 

to n, the more importance criterion X will have, leaving 

only (N – NX) elements for criterion Y to decide upon.  

The hierarchical scheme of relative selection is 

essentially non-parametric, in the sense that it needs no 

population model to implement, normal or otherwise; 

only rank order information is used for variables X and 

Y, and no score transformation is needed. The cases 

where X and Y are stochastically independent, and ρX,Y 

= 0, can be dealt with easily. For any N, NX, NY = n 

system, let all N candidates first be ordered on their X 

value; the concomitant list of Y values appears as a 

random permutation, indeed is equivalent to a random 

permutation of numbers 1 to N. On this model, for ρX,Y 

= 0, a cursory analysis indicates that : 

 nX,Y = NY ; (13) 

 nX,* = NY ⋅ (N – NX) / NX ; 

 n*,Y = (NX – NY) ; 

 n*,* = (N – NX)(NX – NY) / NX .  

Using equations (13) for supplementing values to 

components nX,* and n*,Y in (1), the dominance index 

becomes : 

  (14) 

Formula (14) can be recast in terms of pre-selection 

rate rX = NX / N and global selection rate τS = NY / N = n 

/ N : 

 , (15) 

from which we may derive : 

Table 5Table 5Table 5Table 5 � Pre-selection ratio on first criterion X (rX) for various relative weights wX as a function of final selection 

ratio (τS) and correlation between criteria X and Y† 

 

τS ρX,Y wX = 0.1 wX = 0.2 wX = 0.3 wX = 0.4 wX = 0.5 wX = 0.6 wX = 0.07 wX = 0.8 wX = 0.9 

0.1 

0 0.630 0.500 0.421 0.363 0.316 0.275 0.238 0.200 0.159 

0.25 0.566 0.438 0.362 0.310 0.268 0.232 0.200 0.169 0.139 

0.50 0.470 0.358 0.296 0.253 0.220 0.193 0.169 0.147 0.125 

0.70 0.365 0.281 0.236 0.205 0.182 0.163 0.146 0.131 0.116 

0.90 0.227 0.187 0.166 0.151 0.140 0.130 0.122 0.115 0.108 

0.3 

0 0.835 0.734 0.660 0.600 0.548 0.500 0.454 0.409 0.359 

0.25 0.794 0.689 0.616 0.558 0.510 0.467 0.427 0.387 0.347 

0.50 0.726 0.624 0.557 0.507 0.466 0.430 0.397 0.366 0.334 

0.70 0.639 0.551 0.497 0.457 0.424 0.396 0.372 0.348 0.325 

0.90 0.496 0.441 0.409 0.386 0.368 0.352 0.338 0.326 0.313 

0.5 

0 0.915 0.851 0.797 0.750 0.707 0.667 0.627 0.588 0.546 

0.25 0.893 0.824 0.770 0.724 0.684 0.646 0.611 0.575 0.539 

0.50 0.854 0.783 0.731 0.689 0.653 0.621 0.590 0.561 0.531 

0.70 0.799 0.732 0.686 0.650 0.620 0.594 0.570 0.547 0.524 

0.90 0.690 0.643 0.612 0.589 0.571 0.555 0.540 0.527 0.514 

0.7 

0 0.960 0.925 0.894 0.865 0.837 0.810 0.783 0.756 0.729 

0.25 0.951 0.914 0.881 0.852 0.826 0.800 0.775 0.751 0.726 

0.50 0.934 0.893 0.861 0.834 0.810 0.787 0.765 0.744 0.722 

0.70 0.906 0.866 0.836 0.811 0.790 0.771 0.753 0.735 0.718 

0.90 0.843 0.810 0.787 0.771 0.756 0.744 0.733 0.722 0.711 

0.9 

0 0.989 0.979 0.968 0.958 0.949 0.939 0.929 0.920 0.910 

0.25 0.988 0.976 0.966 0.956 0.947 0.937 0.928 0.919 0.909 

0.50 0.984 0.972 0.961 0.952 0.943 0.934 0.925 0.917 0.908 

0.70 0.978 0.965 0.954 0.945 0.937 0.929 0.922 0.915 0.907 

0.90 0.960 0.947 0.938 0.931 0.925 0.920 0.915 0.910 0.905 

† Values computed with formula (16) for ρX,Y = 0 and estimated through Monte Carlo sampling  for ρX,Y > 0 

(estimated standard deviation ≤ 0.001). 
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(16) 

giving us the solution of the selection problem for ρX,Y = 

0. 

Introducing correlational dependency between X 

and Y complicates the situation somewhat, and we must 

again resort to Monte Carlo estimation for situations 

where ρX,Y > 0. Table 5 presents values of rX, the pre-

selection rate, for a choice of conditions of τS (the final 

selection rate), ρX,Y, and wX, the weight decreed for 

criterion X. Use of the tabled coefficients ensures the 

user that the pre-determined weights wX and wY 

imposed on his criteria are enforced adequately on the 

selection output. 

Summary comparison of the additive and Summary comparison of the additive and Summary comparison of the additive and Summary comparison of the additive and sequentialsequentialsequentialsequential    

schemes of relative selectionschemes of relative selectionschemes of relative selectionschemes of relative selection    

The additive and sequential schemes for relative 

selection presented here both ensure that the nominal, 

pre-determined weights assigned to the two criteria be 

obeyed, as reflected by the DX, DY dominance statistics. 

The seemingly similar situation in which two predictor 

variables are used to predict some outcome criterion 

variable by multiple regression analysis also involves 

weight coefficients, whether raw (b) or standardized 

(β), whose magnitudes reflect approximately the 

relative influence of the associated variable on the 

predicted value7. Although some parallelism exists 

between the two contexts, crucial differences remain. 

First, regression weights are aimed at controlling or 

predicting the value of some well-defined external 

outcome variable, whereas the weights operating in our 

two procedures were defined per se and based on a 

priori reasons, independently of any external criterion, 

and the procedure aimed at securing a close 

concordance between weight values and selection 

(retained / not retained) results. Second, regression 

analysis solutions and weight coefficients lean on 

variance control, in the same manner as does our 

additive procedure presented as Solution 2, a 

procedure that was discarded because of its inability to 

obtain the desired concordance. 

Indeed, under conditions roughly similar to those 

implemented in this study, both selection schemes, 

additive and hierarchical, ensure that the criteria’s 

respective weights wX and wY are approximately 

                                                                    
7 ‘Aliasing’ effects can blur and even distort the true 

relative contributions of the predictor variables. 

echoed in the DX and DY “dominance” statistics. But, do 

the two schemes select the same individuals, and how 

do they compare? Even though, logically, the same 

subgroup of meritorious individuals ought to be 

selected, the operational modes of the two schemes 

prevent a perfect match. Take, for instance, a situation 

where selection rate is low (say, τS ≈ 0.1) and criterion 

X is high-valued (say, wX ≈ 0.9). For the additive 

scheme, the two selection ingredients will be merged 

into a linear composite and processed for the full 

complement of candidates, so that every candidate will 

stand a fair chance to be selected thanks to his/her X 

and Y results. What happens in the hierarchical scheme 

is quite different: pre-selection on the X criterion will 

be drastic (here, rX ≈ 0.159-0.108, see Table 5), so that a 

major part of candidates will be rejected, whatever 

their Y results. Final selection will ensue on the basis of 

the Y values of only the X pre-selected individuals. 

Again through Monte Carlo sampling, we estimated the 

degree of concordance between the two schemes: Table 

6 presents the percentage of co-selected individuals for 

an illustrative subset of conditions. 

Concordance scores of selected individuals range 

from 68.2% to 97.8%. As can be seen, the concordance 

between the additive and sequential schemes increases 

with increasing selection rate (τS) and with increasing 

correlation (ρX,Y). There is also a somewhat subtle, 

parabolic effect of the wX, wY weights, concordance 

results showing a slight depression near the middle 

(0.5) weight values. It thus appears that, for some 

combinations of weights (wX, wY), selection rate (τS) 

and correlation (ρX,Y) conditions, a fair percentage of 

individuals rejected by one selection strategy would 

have been retained by the other. 

A worked out exampleA worked out exampleA worked out exampleA worked out example    

To help recapitulate the proposed two selection 

procedures, here is a worked out example, 

schematically outlined. A firm needs to engage 45 new 

workers. 150 persons answered the job announcement, 

so that selection must be done. The chief of staff, in 

consultation with the company’s management board, 

has decreed the use of two criteria, ‘work ability’ for 

80%, as measured through a 10 minute standardized 

work bout, and ‘honesty’ for 20%, stemming from a 

standardized psychometric questionnaire ; correlation 

between the two measures is estimated null.  
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The preceding data correspond to N = 150 

candidates, an imposed selection ratio τS of 45/150 = 

0.3, pre-determined weights wX = 0.8 and wY = 0.2, ρX,Y 

≈ 0. In table 2, we find bX = 0.946 ; by (7), we compute 

bY ≈ 0.324. Hence, after separately standardizing i.e. 

converting to z-scores the 150 work and honesty 

measures for this group by (4), we calculate the 

weighted composite (5) for the additive procedure, i.e.: 

 t = 0.946 × x + 0.324 × y , 

the 45 individuals with the highest t values being 

selected. For the sequential, or two-stage  procedure, 

Table 5 gives us rX = 0.409, so that we shall first pre-

select rX × N = 0.409 × 150 ≈ 61 persons, those 61 

obtaining the highest score on the X (work ability) 

measure. Then, among those 61 persons only, we must 

find the 45 individuals having the highest result on the 

Y (honesty) variable. The estimated commonality of 

candidates for this parameter set is 80%, precisely 

~ 0.808 ± 0,002. This means that, on average, 0.808 × 

45 ≈ 36 individuals would be jointly retained by the 

additive and the hierarchical schemes, and 9 only by 

one and not the other. 

ConclusionConclusionConclusionConclusion    

Relative selection, a procedure by which a given 

number of individuals must be sorted out and retained 

from a larger pool of candidates, has been neglected in 

the literature, even if its practice is quite common in 

many industries and large companies. The case of 

selection on the basis of two promising, or theoretically 

profitable criteria, each with its own importance factor, 

has been minutely examined, and it was proven that, by 

appropriate procedures, the weights attributed to each 

criterion could be enforced and echoed in the selection 

results: in fact, a pair of weights like { 80% ; 20% } 

would be passed on the results, 80% of the 

differentially chosen candidates being ascribable to the 

first criterion, and 20% to the second. These nominally 

pre-weighted relative selection procedures, the 

additive and the sequential, can thus be added to the 

already long list of multi-criterion selection strategies 

(Sackett & Roth, 1966; Guion, 2011; Ployhart, 2012). 

Which of the two procedures is to be preferred? To 

answer this question, we must consider the whole 

personnel management situation, in both its financial 

aspect and its efficiency. The sequential, multi-stage 

scheme, in which part of the initial set of candidates is 

screened out by pre-selection on the first criterion, 

represents a financial and practical advantage, the more 

so if selection by the second criterion is costly to run or 

painstaking. Absolute prioritization of the first criterion 

is yet another argument in favour of this scheme: 

thanks to pre-selection, relatively unworthy candidates 

according to this criterion are sure to be rejected and 

cannot be ‘score-compensated’ through a two-variable 

composite. On the other hand, and when no criterion is 

to be prioritized over the other, the additive scheme, 

encompassing all candidates from the initial set, 

appears fairer, or more equitable, in that it uses all 

available information for every candidate and the 

selection decision is accountable to him for the two 

criteria. Finally, given that the criteria used for 

selection and their relative weights are agreed upon 

beforehand by all parties, the demonstrable and 

accountable correspondence between weights and 

actual selection results is an asset and a guarantee 

against quibble and judicial dispute.  

Variants of our selection schemes can be thought up 

and have indeed been implemented and analysed (e.g. 

Sackett & Roth, 1966), like one where pre-selection 

would be made with an absolute value-threshold for 

criterion 1, leaving simple relative selection for the 

remaining candidates for criterion 2. Relative selection 

systems using three criteria or more can also be 

implemented, and the methods developed and 

exemplified herein will hopefully inspire their 

designers. 

Table 6Table 6Table 6Table 6 � Mean percentage of candidates picked out concomitantly by the additive and the hierarchical 

scheme of relative selection as a function of the global selection rate (τS), the weight of criterion X (wX) and 

the correlation between criteria (ρX,Y) 

 

 wX = 0.1 wX = 0.5 wX = 0.9 

τS ρX,Y = 0 0.50 0.90 ρX,Y = 0 0.50 0.90 ρX,Y = 0 0.50 0.90 

0.1 74,6 86.6 94.8 68.2 79.0 90.6 69.0 80.1 91.4 

0.3 86.3 91.9 96.8 76.7 85.1 93.7 78.3 86.4 94.3 

0.5 91.8 94.8 97.8 82.8 89.3 95.6 84.6 90.4 96.1 
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