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AbstractAbstractAbstractAbstract � Partial least squares (PLS) has become a respected and meaningful soft modeling analysis technique that can be 
applied to very large datasets where the number of factors or variables is greater than the number of observations. Current 
biometric studies (e.g., eye movements, EKG, body movements, EEG) are often of this nature. PLS eliminates the multiple linear 
regression issues of over-fitting data by finding a few underlying or latent variables (factors) that account for most of the 
variation in the data.  In real-world applications, where linear models do not always apply, PLS can model the non-linear 
relationship well. This tutorial introduces two PLS methods, PLS Correlation (PLSC) and PLS Regression (PLSR) and their 
applications in data analysis which are illustrated with neuroimaging examples.  Both methods provide straightforward and 
comprehensible techniques for determining and modeling relationships between two multivariate data blocks by finding latent 
variables that best describe the relationships.  In the examples, the PLSC will analyze the relationship between neuroimaging data 
such as Event-Related Potential (ERP) amplitude averages from different locations on the scalp with their corresponding 
behavioural data.  Using the same data, the PLSR will be used to model the relationship between neuroimaging and behavioural 
data. This model will be able to predict future behaviour solely from available neuroimaging data. To find latent variables, 
Singular Value Decomposition (SVD) for PLSC and Non-linear Iterative PArtial Least Squares (NIPALS) for PLSR are implemented 
in this tutorial. SVD decomposes the large data block into three manageable matrices containing a diagonal set of singular values, 
as well as left and right singular vectors. For PLSR, NIPALS algorithms are used because they provide a more precise estimation of 
the latent variables. Mathematica notebooks are provided for each PLS method with clearly labeled sections and subsections.  The 
notebook examples show the entire process and the results are reported in the Section 3 Examples. 
Keywords Keywords Keywords Keywords � partial least squares, PLS, regression, correlation, Mathematica, NIPALS 
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IntroductionIntroductionIntroductionIntroduction    

Partial Least Squares (PLS) is a powerful multivariate 
statistical tool that estimates the predictive or causal 
relationship between variables.  It was introduced by 
Herman Ole Andreas Wold in 1975 who was critical of 
structural equation models because these methods 
tended to ignore the presumption that “causality 
proceeds through time” (Wold, 1964) whereas 
recursive models addressed this deficit.  A recursive 
model uses any variable in a sequence to relate to the 
previous variable in the model.  The most recognized 
number sequence, the Fibonacci sequence (Beck & 
Geoghegan, 2010; Bóna, 2011; Sigler, 2002), is an 
example of a recursive model where variable Fn in the 
sequence relates to the previous variables, Fn-1, Fn-2 as 
below:  

FFFFnnnn    = F= F= F= Fnnnn----1111    + F+ F+ F+ Fnnnn----2222                                            for all n for all n for all n for all n ≥ 2 and F≥ 2 and F≥ 2 and F≥ 2 and F1111    = 1, F= 1, F= 1, F= 1, F0000    = 0= 0= 0= 0    

Wold found, for recursive causal chain models (i.e. 
timing order where variables affect each other), the PLS 

method was more efficient and exceeded other 
techniques (e.g., Principal Component Analysis or PCA, 
Multiple Linear Regression or MLR) in intrinsic 
properties such as correlation and data size. PCA 
examines the variances represented in a single set of 
data and describes these variances in terms of a set of 
factors (Brown, 2009), and MLR examines the 
relationship between a set of independent variables 
and a response variable.  If its number of independent 
variables gets too large (e.g., greater than number of 
observations), its performance declines substantially. 
Intrinsic properties of PLS include the ability to deal 
with large, noisy, collinear datasets whereas MLR 
cannot accurately apply multi-collinear variables to 
predict the response variable. In addition, PLS has no 
issue with missing data. 

Essentially, PLS consists of two components – (i) the 
structural, which shows the relationship between latent 
variables, and (ii) the measurement, which shows the 
relationship between latent variables and their 
indicators (Haenlein & Kaplan, 2004).  The major 
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advantage of PLS is that it is much less restrictive in 
terms of assumptions compared to other multivariate 
statistical techniques such as MLR, in that, there exists 
no need to check normality (data can have any 
distribution), linearity, and independence of 
observations. Researchers need to be aware of the 
assumption surrounding the latent variables. 
Specifically, that each observed variable has a specific 
location on the latent structure and these observed 
variables are discrete (Henning, 1989). Furthermore, 
the researcher should realize that these methods are 
not reliable if the dataset is very small, in general, that 
is, less than 30 cases.  

McIntosh, Bookstein, Haxby, & Grady (1996) first 
introduced PLS to neuroimaging data analysis. Event-
related potentials (ERPs), Positron Emission 
Tomography (PET) or functional Magnetic Resonance 
Imaging (fMRI) are examples of experiments that 
generate large neuroimaging datasets. Due to the 
expensive nature of these experiments, often the 
number of cases, or observations, is less than 50. 
Finding relationships between these large blocks of 
data, with many manifesting factors and few 
observations, can be a challenging task.  Although there 
are many factors, there may be a few latent 
(unobservable or hidden) factors that account for most 
of the pattern co-variation in the data blocks or most of 
variation in the response. PLS tries to find or extract 
those latent variables using techniques such as 
decomposition of the covariance matrix in least squares 
sense or NIPALS.   

With respect to ERPs, this is accomplished by 
extracting the latent variables that better relate brain 
activity, specifically electroencephalographic 
amplitudes at specific scalp locations, to  behaviour 
(e.g., response times, and accuracy) or experimental 
design (e.g., contrast tasks, such as similarities and 
differences ).   

The objectives of these guidelines are to assist in 
analysis and interpretation of event-related potentials 
(ERP) and behavioural data using partial least squares 
(PLS) methods, specifically correlation and regression. 
These methods are implemented using a high-powered 
statistical system known as Mathematica.  The provided 
codes can be adapted to other languages (e.g. Matlab, R, 
etc.). Each block in a dataset may contain multiple 
variables; however, for simplification purposes, the 
examples in this tutorial use behavioural and 
neuroimaging data blocks which are limited to a few 
variables. The behavioural data block has  two 

variables, reaction time and number of words recalled, 
and the neuroimaging data block has multiple variables, 
the brain electrical activities at twelve channel 
locations. 
MaMaMaMaterials and Methods terials and Methods terials and Methods terials and Methods     

Svante referred to the partial least squares technique as 
“projection to latent structures” (Abdi, 2010) because 
each observed variable is projected onto a latent 
variable.  In order to better understand PLS analyses, 
one requires tools such as eigenvectors, eigenvalues, 
projection, singular value decomposition, and linear 
algebra concepts which are described in the following 
sections.  
Materials – Notation, Definitions and Theorems 

Matrices are denoted by bold capital letters, vectors by 
bold lower-case letters, transpose of matrix XXXX by XXXXT, ith 
entry in the vector vvvv by vi, element (i,j) of matrix XXXX by xij 
and dimension of matrix XXXX by nxm where n is the number 
of rows and m is the number of columns. The norm of 
vector N is denoted by‖N‖.  Finally, the matrices of the XXXX 
latent variables and the YYYY latent variables are denoted 
by LxLxLxLx    and LyLyLyLy    respectively.  

Projection 

Let S be a Hilbert space (i.e. a vector space possessing a 
structure of dot product – a scalar or inner product) 
and M is a subspace of dimension m (here m=2). The 
projection of a vector N ϵ S on M is a vector N Rϵ M such 
that, 

    ‖N − NT‖    < < < < ‖N − NV‖            for all for all for all for all NV    ϵϵϵϵ    MMMM    

as shown in Figure 1. 

Eigenvectors and eigenvalues 

In general, an eigenvector is defined as a non-zero 
column vector that satisfies the equation: 

    AAAAxxxx    ====λλλλxxxx    

where AAAA is a nxn square matrix, xxxx is a non-zero vector, 
and λ represents the eigenvalues of AAAA. 

The above equation can be written as follows:  

    AAAAxxxx    ----    λλλλxxxx    = 0= 0= 0= 0    
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    ((((AAAA    ----    λλλλXXXX) ) ) ) xxxx    =0=0=0=0    

where X is an identity matrix of size n. 
In order to have a non-zero xxxx, the matrix (AAAA - λX) 

must be singular (i.e. its determinant is zero). 

    det(det(det(det(AAAA----λλλλXXXX) = 0) = 0) = 0) = 0    

where det(AAAA-λX) is called the characteristic polynomial 
of matrix    AAAA, the roots of this polynomial are eigenvalues 
of AAAA.  

Eigenvalues are important when the matrix is a 
transformation from one vector space onto itself.  

Note that for non-square matrices, it matters on 
which side the xxxx resides.  If it is on the left it refers to a 
left eigenvector (i.e. a column vector). If it is on the 
right, it refers to the right eigenvector (i.e. a row 
vector). 

Singular values and vectors 

In general, a singular value and pair of singular vectors 
of a square or rectangular matrix AAAA are non-negative 
scalar δ and two non-zero vectors uuuu and vvvv that satisfy 
the equations: 

    AvAvAvAv    ====δδδδuuuu    

    AAAATTTTuuuu    ====δδδδvvvv    

Singular values are important in situations when the 
matrix is a transformation from one vector space to a 
different vector space, possibly with a different 
dimension. Under- or over-determined systems are 
situations where singular values are important.  

Singular value decomposition 

If matrix AAAA ∈ ℝ m×n has rank k ≤min(m, n) < ∞, there 
exists orthogonal matrices, 

    _ =  [ab, . . . , ac]  ∈  ℝc×c        

and 

         e =  [Nb, . . . , Nf]  ∈  ℝf×f     

whose columns are the normalized singular vectors 
that satisfy UUUUUUUUTTTT = IIII and VVVVVVVVTTTT = IIII,,,, such that, 

g =  _hei    

where, 

h =  jklm(nb, . . . , no, p, . . . ) ∈  ℝc×f     

is a diagonal matrix for which δ 1, . . . , δ k satisfy  

nb  ≥  nq  ≥ · · · ≥  no  >  p    

 
Figure Figure Figure Figure 1111 � Projection a vector v onto subspace M (www.cs.cmu.edu/~htong/pdf/KDD08-tong.ppt; 
adapted from Tong, Papadimitriou, Yu, & Faloutsos, 2008). 
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This decomposition of AAAA is called Singular Value 
Decomposition (SVD).  δi s are arranged in descending 
order in a diagonal of ΔΔΔΔ    matrix and known as singular 
values of AAAA. They    are square roots of the eigenvalues of 
AAAAAAAAT (if m<n) or of AAAATTTTAAAA (if m>n). . . . If AAAA is a symmetric 
matrix, its singular values are the absolute values of its 
eigenvalues. The columns of UUUU are called left singular 
vectors and the columns of VVVV are called right singular 
vectors of AAAA.  

SVD is one of the most elegant techniques in linear 
algebra (Ghazy, Hadhoud, Dessouky, El-Fishawy, & Abd 
El-Samie, 2008; Haykin, 1991) devised to interpret the 
least squares problem (See Figure 2). 

Theory in linear algebra 

An mxn linear system with m>n  is over-determined 
(i.e. system has more equations than unknowns), 

    AAAAxxxx    = = = = bbbb    

where AAAA is a matrix of mxn  
This equation does not have any exact solution but 

has a unique least-squares solution, wR, of the smallest 
norm. The wR solution can be found in terms of the 
pseudo-inverse matrix, AAAA+    of AAAA, which is obtained from 
the singular value decomposition of A A A A (Legendre, 
1806).1    

If AAAA = UUUU∆∆∆∆VVVVT    with ∆∆∆∆=diag(δ1, …, δ r, 0, …, 0) where ∆∆∆∆ 
                                                                    
1 Legendre's (1806) least squares method is part of an 
appendix attached to his 1805 work on determining 
comet orbits. The last part of this appendix is a treatise 
on the determination of the degree of deviation of the 
Earth’s elliptical orbit, and thereby, the establishment 
of the length of the mètre. 
 

is an mxn matrix and δi >0, letting ∆∆∆∆+= diag(1/ δ 1, 
…, 1/ δ r, 0, …, 0) be an nxm matrix, the pseudo-inverse 
of AAAA+    is defined as 

    AAAA++++    = V= V= V= V∆∆∆∆
++++UUUUTTTT    

Therefore the minimum norm solution for the above 
system, AxAxAxAx = bbbb, will be  

    wR    = A= A= A= A++++bbbb    = = = = ∑ }~
��
�~

�~
�
~�b     

Methods 

EEG/ERP background information  

Voltage differences recorded as amplitudes over time 
are known as brain wave recordings or 
electroencephalography (EEG). These recordings 
reflect the synchronous activity of several thousand 
neurons. 

Event-related potentials (ERP) are EEG recordings 
of an individual’s response to some external or internal 
stimulus (e.g. auditory, visual, somatosensory, any 
combination of these, etc.). The stimulus is sent to a 
recording computer as a trigger of a specific event and 
these triggers are averaged together for several trials in 
order to reduce the background EEG noise and obtain a 
high signal to noise ratio and, thereby, a cleaner signal.  
Ocular and other artefacts are corrected or removed 
prior to averaging (Picton, Lins, & Scherg, 1995). 

Often only a subset of the electrodes and the 
number of points would be used for peak analysis.  The 
entire average files, which contain amplitude and 
latency information for each electrode, can be brought 
into the software such as SPSS, Matlab, or Mathematica 

 
Figure Figure Figure Figure 2222 � Singular Value Decomposition – The left most matrix (A) is approximately equal to matrix 
U (i.e. the left singular vectors) x matrix Δ (i.e. the singular values) x matrix V (i.e. the right singular 
vectors). 
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for further statistical analysis.  In this case, PLS 
methods in Mathematica will be used for all analyses 
here.   

PLS methods – PLS correlation 

Two major PLS techniques include correlation and 
regression (Abdi & Williams, 2013).   Path modeling 
methods of PLS can directly follow these two methods 
but will not be covered in this article (for information 
on this technique see Tenenhaus, Esposito Vinzi, 
Chatelin, & Lauro, 2005; for a review refer to Esposito 
Vinzi, Trinchera, & Amato, 2010). 
Why and when is PLSC applied?Why and when is PLSC applied?Why and when is PLSC applied?Why and when is PLSC applied? PLS Correlation is used 
to explore and describe any data structure. It can 
handle very large datasets and adapt to the 
experimental design.  It allows the exploration of the 
correlation between two matrices. 
How does it work?How does it work?How does it work?How does it work? The primary goal is to analyze the 
communalities between the two matrices.  
Communality is a measurement of the percent variance 
of a given observed variable explained by all the latent 

variables together and reflects the reliability of the 
measured variable.  Variables with high communalities 
are well explained while those with low communalities 
are not.   

Let’s matrix XXXXnxm be the brain activity data for n 
number of participants and m data points of the 
neuroimaging data (averaged ERP amplitude for each 
channel as variables), and matrix YYYYnxk be the 
behavioural data for these n participants and k number 
of behaviour variables (such as reaction time and 
number of recalled words). The relationship between 
centred XXXX and YYYY    (i.e. zero mean) is determined by the 
covariance matrix. Since data has mixed units such as 
latency (ms) and amplitude (µV), the matrices need to 
be normalized column-wise as well: 

     w~�� w��
�w~�� w���    , , , ,  �~�� ���

��~�� ����    

where ��� , ���  are the (i,j) elements of matrix of XXXX and YYYY    
respectively. . . . The   �̅�  , ��� are the mean values of column 

 
a. 

 
 
b.  

 
Figure Figure Figure Figure 3333 � a. Continuous EEG recording with triggers for averaging ERPs; b.  Averaged ERP waveform 
of centre line electrodes.  
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j. Finally,  ���� −  �̅�� and ���� −  ���� are the norm of 
centred xij and  yij. 

This process normalizes the covariance matrix. 
Since the correlation matrix is the normalized 
covariance, the correlation matrix is computed in order 
to find the patterns of relationship between XXXX and YYYY.... 
Assuming that both XXXX and YYYY are centred and 
normalized, the correlation matrix of XXXX and YYYY is 
computed: 

    �    = = = = �i�    

By decomposing RRRR using singular value decomposition 
method, the following equation is obtained: 

    RRRR    = = = = UUUU∆∆∆∆VVVVTTTT    

where UUUU = matrix of normalized eigenvectors of RRRRRRRRT, 
VVVV = matrix of normalized eigenvectors of RRRRTRRRR, ∆∆∆∆= 
diagonal matrix with square root of eigenvalues of RRRRRRRRT 

or RRRRTRRRR. 
UUUU is the matrix of the left singular vectors and VVVV is 

the matrix of the right singular vectors of RRRR. Both UUUU and 
VVVV are orthonormal (orthogonal and normalized at the 
same time) that means UUUUUUUUTTTT = IIII and VVVVVVVVTTTT = IIII. These are 
known as saliences (i.e. the most noticeable or 
important in relation to its neighbouring values). 

As Svante Wold described, the latent variables are 
projections of the original matrices onto their 
respective saliences; they are a linear combination of 
the original variables and explain the largest portion, in 
general 80 to 95 percent, of the covariance between the 
two matrices. The number of saliences is equal to the 

rank of RRRR    (Krishnan, Williams, McIntosh, & Abdi, 2011). 
The benefit of using latent variables is that it reduces 
the dimensionality of the data.  

In other words, the latent variables of XXXX and YYYY (LLLLx 
and LLLLy) are obtained by projecting the brain activity 
and behavioural data, X X X X and YYYY,,,, onto their respective 
saliences, which are the singular vectors VVVV and UUUU,,,, as 
follow: 

    LLLLxxxx    = = = = XVXVXVXV    

    LLLLyyyy    = = = = YUYUYUYU    

XXXX Latent variables, LLLLx, gives us the brain scores and YYYY 
latent variables, LLLLy, gives us behaviour scores. 
Arranging the PLSC dataArranging the PLSC dataArranging the PLSC dataArranging the PLSC data. All the data are arranged in 
one block (See Figure 4) and then concatenated.   

In order to compute the latent variables, the 
saliences are obtained by decomposing the correlation 
matrix.  Saliences are similar to the loadings in 
principal component analysis (PCA) and latent 
variables are similar to PCA components.  For the 
examples in this tutorial, neuroimaging data are the 
brain activity data of participants in three university 
degree choices, English Major (EM), Mathematics Major 
(MM), and No Major (NM). Behavioural data are the 
scores of participants in a memory task. The task 
comprised of two scores, Words Recalled (WR) and 
Reaction Time (RT). 
The PLS Correlation ProcedureThe PLS Correlation ProcedureThe PLS Correlation ProcedureThe PLS Correlation Procedure. Algorithm 1 is used to 
conduct the PLS correlation between the brain activity 
data, XXXX, and the behavioural data, YYYY.   

 
 

                a. 

 
 

                          
b. 
 

Figure Figure Figure Figure 4444 � Schematic representation of data arrangement for PLS Correlation. a. Arrangement in 
terms of space, time, and conditions/participants/groups; b. Row-wise concatenation of the matrices 
(Vallesi, 2009). 
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AlgorithmAlgorithmAlgorithmAlgorithm    1111 PLSC for XXXX and YYYY 
 
Input:Input:Input:Input: � ∈ ��×�  and � ∈ ��×�  
 
Output:Output:Output:Output:  UUUU; VVVV; LxLxLxLx; LyLyLyLy 
XXXX ← normalize(XXXX) 
YYYY ← normalize(YYYY) 
RRRR ← YYYYT.XXXX 
[UUUU;WWWW;VVVV] ← SVD[RRRR] 
LxLxLxLx ← XXXX.VVVV 
LyLyLyLy ← YYYY.UUUU 
 
 

Brain activity data and behavioural data are first 
normalized for each group and then the correlation 
matrix is formed for each group individually. Group 
correlation matrices are joined to get the correlation 
matrix RRRR. Matrix RRRR    is then decomposed into three 
matrices, UUUU, WWWW, and VVVV. Finally, latent vectors for XXXX and YYYY 
are computed by projecting XXXX and YYYY data to the two first 
vectors of VVVV and UUUU respectively.   
Mathematica notebook for PLS correlationMathematica notebook for PLS correlationMathematica notebook for PLS correlationMathematica notebook for PLS correlation. A PLSC 
toolbox in MATLAB is implemented for neuroimaging 
by McIntosh, Chau, Lobaugh, & Shen, (2013). In this 
article, a program called “PLSCexample.nb” 
(implemented in Mathematica v. 8.0.1, Champaign, IL, 
USA) is available to download on the TQMP website 
(http://www.tqmp.org/). All sections and subsections 
are carefully labelled. Section 1 describes data entry for 
each condition and centres and normalizes the data. 
Section 2 computes the correlation matrix for each 
condition then “joins” all the matrices to obtain the 
correlation matrix “Rb”. The correlation matrix is then 
decomposed using SVD. Section 3 visualizes the first 
and second behavioural saliences. Section 4 computes 
the latent variables for behavioural and neuroimaging 
data. Section 5 plots brain scores and behaviour scores 
on the first two latent variables respectively.  

PLS methods – PLS regression 

PLS regression was originally developed for 
econometrics to deal with collinear predictor variables. 
More recently this method has been applied to the 
analysis of brain imaging data (e.g., ERPs, functional 
magnetic resonance imaging, and 
magnetoencephalography).  
Why and when is PLSR applied?Why and when is PLSR applied?Why and when is PLSR applied?Why and when is PLSR applied? PLS Regression is used 
to predict relationships between two datasets and is 

very useful for datasets with missing values, collinear 
or noisy independent variables (indicators).  PLSR is 
used when the number of predictors is large compared 
to the number of observations and when the regression 
is not feasible because of multicollinearity (i.e., 
predictors are highly correlated and linearly 
dependent). In some statistical packages, if the 
researcher encounters missing data, the participant is 
sometimes completely removed from the analysis.  
With PLSR, missing data are estimated from the 
principle factors and principle components. 
How does it work?How does it work?How does it work?How does it work? Assume XXXX (predictors, independent 
variables) is an nxm matrix and YYYY (response, dependent 
variables) is an nxp matrix. This can be formulated as: 

    XXXX====TPTPTPTPTTTT    + + + + EEEE        =  =  =  =  ∑ �~�~
��

~�b     + + + + EEEE    

    YYYY    ====    UQUQUQUQTTTT    + F  =  + F  =  + F  =  + F  =  ∑ �~�~
��

~�b     + F+ F+ F+ F    

    UUUU    = = = = TTTTDDDD    

where TTTT and UUUU, with dimension nxa, are X-scores and Y-
scores, PPPP and QQQQ are X-loadings and Y-loadings, EEEE and FFFF 
are X-residuals and Y-residuals, respectively and DDDD is a 
diagonal matrix with  

Latent variables are also called  latent vectors (Zhao 
et al., 2013). TTTT consists of extracted XXXX latent variables. TTTT 
is orthonormal which means TTTTTTTTT= IIII. UUUU consists of YYYY 
latent variables. UUUU has maximum covariance with TTTT 
column-wise. In order to find the latent variables, the 
sets of weights, wwww, cccc need to be optimized to satisfy,  

�l� [ ia] = �l�
¡¢,�£

 [¤����¥]    such that    wwwwTTTTwwww=1 , =1 , =1 , =1 , ccccTTTTcccc====1111    

The latent vector is then estimated as tttt=XwXwXwXw. Based on 
the assumption of the linear inner relation of uuuu=DDDDtttt, the 
predicted YYYY is obtained from: 

    �¦    = = = = TTTTDDDDQQQQTTTT    = = = = XBXBXBXB    

where BBBB is an mxp matrix of regression coefficients of 
the model.  

This implies finding common latent vectors,    tttti, that 
explain the variances of both XXXX and YYYY (See Figure 5). 
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Arranging the PLSR dataArranging the PLSR dataArranging the PLSR dataArranging the PLSR data. Data arrangement is the same 
as shown for PLSC. 
The PLS regression procedureThe PLS regression procedureThe PLS regression procedureThe PLS regression procedure. PLSR successively 
extracts latent vectors from both XXXX and YYYY such that the 
covariance between extracted latent vectors is 
maximal. The extraction can be done by iterative 
algorithms such as Non-linear Iterative PArtial Least 
Squares (NIPALS; Abdi, 2010,  2012).  NIPALS 
algorithm is used to calculate weights (wwww,cccc), loadings 
(PPPP,QQQQ) and scores (TTTT,UUUU) in this tutorial.  
 
Algorithm 2Algorithm 2Algorithm 2Algorithm 2 PLSR for XXXX and YYYY 
 
Input:Input:Input:Input: § ∈ ��×�  and ¨ ∈ ��×© 
The Number of latent vectors to be extracted is nfactor 
Output:Output:Output:Output: PPPP; UUUU;    BBBB; TTTT 
 
Initialization:Initialization:Initialization:Initialization: EEEE ← X, F X, F X, F X, F ← YYYY, t1t1t1t1 ← F1F1F1F1 
ForForForFor i = 1 totototo nfactor dodododo 
    WhileWhileWhileWhile ( ‖�ª − ��‖ > ϵ/2 )  

tttt0 ← tttti 
             wwwwi ← «�. }�/‖«�. }�‖ 

tttti ← «. ¢�/‖«. ¢�‖ 
 cccci ← ¬�. ��/‖¬�. ��‖ 
 uuuui ← ¬. ��  
     end whileend whileend whileend while    
      ppppi ← «�. �~ 
      �i ← }�

­ . �~ 
     DeflationDeflationDeflationDeflation: 
     « ← « - �� . �~

­ 
     ¬  ← ¬ - bbbbi x �� . ��

­ 
end for     end for     end for     end for             
 
 

EEEE (residual of XXXX) and F F F F (residual of YYYY) are initialized 
with XXXX and YYYY respectively.  After the initialization 
process, which includes standardization of XXXX and YYYY and 
resetting the variables used in the computation, the 
recursive process is performed on wwww, cccc, uuuu,,,, and tttt while 
the covariance between uuuu and tttt vectors is examined in 
each iteration. The uuuu and tttt are found and extracted 
when the covariance between them is maximal.  

After extracting the latent vector, this vector will be 
removed from the XXXX and YYYY before extracting the next 
latent vector and then this procedure is repeated. This 

 

 
    
Figure Figure Figure Figure 5555 � PLSR decomposes XXXX and YYYY data into orthogonal sets of scores (TTTT, UUUU), loadings (PPPP, QQQQ), and 
weights (w, c) which are evaluated to maximize the covariance between TTTT and UUUU. The central inner 
PLS relation is made up of a standard univariate regression of UUUU upon TTTT. In the PLSR model, this is 
called the operative XXXX----YYYY Link. The weights are used to compute the regression coefficients of PLS, 
BBBB = WWWW(PPPPTWWWW)-1DQDQDQDQT (adapted from Zhao et al., 2013). 
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process is referred to as deflation of X X X X and YYYY.  
Mathematica notebook for PLS Mathematica notebook for PLS Mathematica notebook for PLS Mathematica notebook for PLS regressionregressionregressionregression. The 
Mathematica notebook “PLSRexample.nb” is available 
to download from the TQMP website 
(http://www.tqmp.org/). Each section is clearly 
labeled. Some sections have subsections. Section 1 
contains the modules for centring and normalizing data 
that will be used later. In Section 2, the neuroimaging 
and behavioural data are entered. The number of latent 
vectors to be extracted is also entered here. Section 3 
involves standardizing the input data (neuroimaging 
and behavioural data) and defining and initializing the 
required matrices and vectors. Section 4 finds and 
extracts the latent vectors using the NIPALS algorithm. 
Latent vector number and iteration are printed here. 
Section 5 depicts the table of variances which displays 
the variability accounted for by each latent vector of the 
predictor and response data. Section 6 outputs weight 
matrix CCCC, score matrices TTTT and UUUU, and graphs score 
plots, which are the projection of predictor and 
response data onto their first two latent vectors. 
Section 7 reconstitutes the predictor and response data 
and brings them back to their original units. A table for 
the predicted response (behavioural) data, ¦̈, and a 
table of regression coefficients are output. PLSR 
method is available in MATLAB as well. The program in 
MATLAB has been written by Hervé Abdi and can be 
found (www.utdallas.edu/~herve, article A76). 
ExamplesExamplesExamplesExamples    

Data used for the PLSC and PLSR examples are 
behavioural and neuroimaging data for three groups of 
participants with three participants in each group 
(Krishnan et al., 2011). Matrix XXXX stores neuroimaging or 
brain activity data (i.e. amplitudes across time for the 
vertex electrode, Cz) and matrix YYYY stores the 
behavioural data from a memory task. The brain 
activity data of participants are organized into three 
university degree choices, English Major (EM), 
Mathematics Major (MM), and No Major (NM). 
Behavioural data are the scores of participants in a 
memory task. The task comprised two scores, Words 
Recalled (WR) and Reaction Time (RT). 

§ =

¯
°
°
°
°
°
°
°
±2 5 6 1 9 1 7 6 2 1 7 3
4 1 5 8 8 7 2 8 6 4 8 2
5 8 7 3 7 1 7 4 5 1 4 3
3 3 7 6 1 1 10 2 2 1 7 4
2 3 8 7 1 6 9 1 8 8 1 6
1 7 3 1 1 3 1 8 1 3 9 5
9 0 7 1 8 7 4 2 3 6 2 7
8 0 6 5 9 7 4 4 2 10 3 8
7 7 4 5 7 6 7 6 5 4 8 8²

³
³
³
³
³
³
³
´

  

¨ =  

¯
°
°
°
°
°
°
°
±15 600
19 520
18 545
22 426
21 404
23 411
29 326
30 309
30 303²

³
³
³
³
³
³
³
´

 

Each row in XXXX matrix shows the neuroimaging data for 
each participant. Each row in matrix YYYY shows the 
number of words each participant recalled (words 
Recalled) and the average time he/she took to recall the 
words, Reaction Time (RT).  
PLS Correlation Example  

In this example, the experiment was looking at degree 
choice and relating it to scores in a memory task for 
Words Recalled and Reaction Time.  In PLSCexample.nb 
notebook, upon activation of sections 1 and 2, matrices 
of centered and normalized data and the matrix of 
correlation will be output. Activating cells in the first 
subsection of section 3 produces a bar graph that 
shows the first behaviour salience for each behavioural 
measurement, words recalled and RT.   

Figure 6 shows that the first behaviour salience 
differentiates the EM group from two other groups in 
the Words Recalled behavioural measurement. This 
salience also differentiates the NM groups from two 
other groups in the Reaction Time behavioural 
measurement. 

Activating cells in the second subsection of section 3 
produces a second behaviour salience graph (See 
Figure 7). The second behaviour salience differentiates 
the MM group from two other groups in words recalled.  

Activating cells in subsections of section 4 computes 
latent variables for neuroimaging (brain activity) and 
behavioural data and are computed from the saliences 
VVVV and UUUU respectively.     
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Activation of the first subsection of section 5 will 
give the score plot (PCA style) for the neuroimaging 
(brain activity) data as shown in figure 8. Finally, 
activating the last cell in section 5 will print the 
behaviour score plot, as in Figure 9. Only two latent 
variables were extracted because these two latent 
variables explain the highest percentage of covariance 
that describes the correlation matrix between the two 
datasets (e.g., neuroimaging and behaviour).    

In short, the main finding is that NM students were 

negatively correlated in brain and behaviour scores 
with EMs and MMs.  This means that the brain response 
(i.e., in terms of ERP averages, latencies, or both) in 
conjunction with the behaviour scores for the No Major 
students are decreasing as the scores for the 
Mathematics Majors and English Majors increase.  This 
means for the No Major students, there is lower word 
recall and slower reaction times as compared with 
English or Mathematics Majors. 

 

 
 
Figure 6Figure 6Figure 6Figure 6 � First behaviour salience. The EMs differs from MMs and NMs in Words Recalled.  The 
Reaction Time (RT) NM students differs from EM and MM.   
 

 
 
Figure 7Figure 7Figure 7Figure 7 � Second behaviour salience. The second salience shows MM to be quite different from EM 
and NM students for Words Recalled.  The salience does not differentiate the RT between the groups. 
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For more detailed information regarding the 
relationships, it is highly recommended to add 
bootstrapping techniques or a “constrained” PLS 
solution with a priori contrasts.  The analyzed data in 
the correlation can then be plotted on an overhead view 
of the electrodes showing the brain scores with design 

scores for all recording electrodes.  Other possible 
displays include design LV bar plots, and bar plots of 
the singular values and permutation test results. These 
plots are used to more easily view and interpret the 
resulting patterns’ similarities and differences in the 
brain-behaviour relationships. 

 
Figure Figure Figure Figure 8888 � Plot of latent variables to show the relationship of the covariances of the brain scores. 
Distance on the plot will directly reflect the amount of explained covariances of Rb (i.e. the 
correlation matrix). EM1, MM3 and NM3 are separated from all other scores; NM2, EM2, MM2, and 
NM3 are also separated from all other scores.  NM is negatively correlated with the other two groups.  
The first LVx separates NM3, MM3, and EM1 from the other participants. 
 

 
Figure Figure Figure Figure 9999 � Plot of the latent variables to show the relationship of the covariances of the behaviour 
scores (i.e. WR and RT).  The NM group is negatively correlated with the EM and MM groups.  The 
first latent variable, LVy, separates EM1, MM3, NM3 and NM2 participants from the others. 
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PLS Regression Example  

Developing a regression model to predict the 
behavioural data from brain activity data are the focus 
for PLS Regression. Brain activity data, matrix XXXX, are the 
predictor in this example. The behaviour data, matrix YYYY, 
are the response data. The results of this section can be 
obtained using the Mathematica notebook 
“PLSRexample.nb”. Section 1 contains standardization 
and normalization modules that will be used later. 
Activating cells in Section 2 will input data and this is 
where the number of latent vectors for extraction may 
be changed by replacing the value of the “nfactor” 
variable with a desired value. The latent vectors to be 
extracted are obtained in sections 3 and 4. Section 5 
will produce Table1 which shows the percentage of 
variances for XXXX and YYYY accounted for by each latent 
vector. In this example, the first two latent vectors 
account for more than 90 percent of the variability of Y. Y. Y. Y. 
This means the optimum prediction can be reached by a 
prediction model using only two latent vectors.    

Activation of cells in Section 6 outputs score 
matrices TTTT and UUUU and weight matrix CCCC (Table 2) and 
produces a score plot that shows the projection of 
participants onto the two first latent vectors of XXXX 
(Figure 10) and a score plot that shows the projection 
of participants onto the two first vectors of YYYY (Figure 
11.3). 

In Figure 11, the first latent vector separates the NM 
group from two other groups and the second latent 
vector separates the EM group from the other groups. 
The plot explains the same scenario as Figure 10. This 
shows the accuracy of the prediction.  

By activating the cells in Section 7, predictor and 
response data are reconstituted and the predicted 
response data (behavioural measurement), ¦̈ is 

computed and printed out as, Table 3. The regression 
coefficient table is also printed out as Table 4. The 
predicted YYYY, ¦̈, is exactly the same as ¨, the behavioural 
data, with eight extracted latent vectors.  

Different values for nfactor may be entered to see 
how the number of extracted latent vectors affects the 
regression model.   

One way to predict    YYYY from new XXXX data is to multiply 
XXXX with the regression coefficients matrix. Therefore, 
multiplying new brain activity data by the regression 
coefficient matrix of the PLSR model will yield 
predicted behaviour data. This is very useful especially 
when only neuroimaging data are available. Studying 
the behaviour effect of drugs from neuroimaging data 
can be a possible application of PLSR.  
DiscussionDiscussionDiscussionDiscussion    

Partial Least Squares (PLS) has many advantages over 
simple regression or multiple linear regressions.  For 
example, PLS is able to handle (i) more descriptor 
variables than compounds, (ii) non-orthogonal 
descriptors, and (iii) multiple biological results.  In 
addition, PLS has (i) more predictive accuracy, and (ii) 
a lower risk of chance correlation.  

PLSC looks at the ‘shared’ information between the 
variables whereas PLSR looks at the directionality and 
predictability of the DVs from a set of IVs. 

Some of the major limitations of PLS include (i) a 
higher risk of overlooking “real” correlations, and (ii) 
sensitivity to the relative scaling of the descriptor 
variables.  In regard to the data analyzed in this article, 
no evaluation is performed due to the size of the 
dataset.  This artificial dataset was used only as an 
example of procedures using Mathematica. However, 
the data are not generalizable to the population due to 
the low N values used.  The code can be further 

Table Table Table Table 1111 � Explained variability of X and Y by each latent 
vector (in percentage). 
 

Latent Vector % explained 
Variance for X 

% explained 
Variance for Y 

1 31.7858 71.6899 
2 18.8737 18.9773 
3 18.5688 5.58335 
4 6.5618 2.33263 
5 12.0726 0.704142 
6 5.78424 0.556225 
7 5.25903 0.119044 
8 1.09411 0.0374037 

 

TableTableTableTable2222 � Matrix C weights for response variables 
(behavioural measurements) 
 
 

 y1 y2 
c1 0.713805 -0.700345 
c2 0.727437 -0.686175 
c3 0.369485 -0.929237 
c4 0.970131 -0.242582 
c5 0.344749 -0.938695 
c6 0.708496 -0.705715 
c7 0.8071 -0.590415 
c8 0.933474 0.358646 
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automated using modules.  If there are a sufficient 
number of cases and a robust model is required, the 
model should be validated using bootstrap or k-folds 
techniques. 
How the Performance of PLS Correlation Model is 

Evaluated?  

Bootstrap sampling is used to estimate the standard 
error in PLS correlation (Krishnan et al., 2011).  Using 
the dataset, a bootstrap sample is created by repeatedly 
randomly sampling with replacement. Error is 
estimated by applying PLSC to this bootstrap sample. 
Permutation tests are generally employed to perform 
hypothesis tests.  In permutation tests, Student and 
Fisher’s nonparametric estimation of sampling 
distributions randomly rearranges rows of each matrix 
and then re-applies PLSC. This process is repeated 
many times in order to estimate the probability 
distribution of singular values under the null 
hypothesis.  
How the Performance of PLS Regression Model is 

Evaluated? 

The prediction performance of the PLSR model can be 

examined using cross-validation techniques such as k-
fold (Zhao et al., 2013). With k fold cross-validation, XXXX 
and YYYY data are randomly partitioned into 
approximately equal k size subsamples of observations. 
From the k subsamples, k-1 subsamples are used as 
training data and the remaining subsample is used as 
validation data.  A PLSR model is developed on the 
training data and then tested with the validation data.  
This is repeated k times with each of the individual 
subsamples being used only once for the validation 
data. The repetitions produce k models with k results. 
The estimated prediction error will be obtained from 
discrepancies between the predicted response data or 
results, ¦̈ and the observed response data, YYYY.  The 
smaller the prediction error becomes, the better the 
prediction. The root mean square error (RMSE) of 
prediction can be used to measure the prediction 
performance of the model. 
AcknowledgementsAcknowledgementsAcknowledgementsAcknowledgements    
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Table Table Table Table 3333 � Matrix ·̧ when 8 latent vectors are used. 
 

 Words 
Recalled 

RT 

Participant1 15 600 
Participant2 19 520 
Participant3 18 545 
Participant4 22 426 
Participant5 21 404 
Participant6 23 411 
Participant7 29 326 
Participant8 30 309 
Participant9 30 303 

TablTablTablTable e e e 4444 � Regression coefficients for 8 latent vectors 
model 
Words Recalled RT 
0.579289 -0.42948 
0.033262 -0.00023 
-0.2082 0.20906 
0.114298 -0.08455 
-0.26369 0.404358 
0.172974 -0.22565 
-0.06364 0.020402 
-0.18022 0.218192 
-0.17349 0.120258 
-0.01139 -0.02187 
0.10998 -0.10843 
0.452123 -0.49455 
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Figure 10Figure 10Figure 10Figure 10 � Score plot shows the projection of participants on the first two latent vectors of X. The first latent 
vector separates the NM group from the other groups in terms of brain activity and the second latent vector 
separates the EM group from other two groups. The plot also shows how brain activity predicts behavioural data. 
The EM group shows the lowest brain activity that predicts the highest words recalled with the lowest reaction 
time and the NM group shows highest brain activity that predicts the lowest word recalled with the highest 
reaction time.  This means that EMs can recall words with less effort and the NM group has difficulty recalling 
words.  
 

 
Figure 11Figure 11Figure 11Figure 11 � The score plot shows the projection of participants onto the first two latent vectors of Y. The first latent 
vector separates the NM group from the other groups in terms of brain activity and the second latent vector 
separates the EM group from the other two groups. The plot also shows how brain activity predicts behavioural 
data. The EM group shows the lowest brain activity that predicts the highest words recalled with the lowest 
reaction time and the NM group shows the highest brain activity that predicts the lowest word recalled with the 
highest reaction time.  This means that EMs can recall words with less effort and the NM group has difficulty 
recalling words.   
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