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IntroductionIntroductionIntroductionIntroduction    

It has long been recognized that to fully understand 

human behavior researchers must consider the context 

and environment in which the behavior occurs. 

Unfortunately, statistical techniques for investigating 

the role and influence of environment have been 

limited. For much of the last several decades, 

researchers faced the equally unattractive choice of 

either ignoring environment and focusing on individual 

level variables or ignoring individual variability and 

conducting analyses at the group or aggregate level. 

Both approaches have significant limitations 

(Raudenbush and Bryk, 2002).The former approach 

may lead to the atomistic fallacy, where inferences 

about groups are incorrectly drawn from individual-

level information (Hox 2002). The latter approach may 

lead to the ecological fallacy, where relationships 

observed in groups are assumed to hold for individuals 

(Freedman 1999).The advent of multilevel modeling 

techniques in the late 1980s provided tools for 

incorporating both individual and aggregate data into 

analyses.These techniques made it possible for 

researchers to routinely address questions such as 

“What is the influence of neighborhood characteristics 

on student achievement”?    

Multilevel models, largely because of their ability to 

model contextual questions,have grown in popularity 

and have evolved into ever more complicated models 

(see Raudenbush and Bryk, 2002). However, it has 

been noted that in many applications researchers make 

the untenable assumption that aggregate units close to 

one another do not affect each other. In other words, in 

many applications these models do not take proximity 

into consideration. Municipal boundaries, for example, 

as defined by law are treated as “real” ecological 

entities in which social processes in one setting do not 

“spill over” to another. This assumption is inconsistent 

with the first law of geography, mainly that objects 

closer together in space and time are more related than 

objects further away in space and time. Should spatial 

relationships exist in a specific dataset and not be 

reflected in the statistical model, the model is mis-

specified and the resulting parameter estimates and 

standard errors are inaccurate. Spatial analysis 

techniques provide means for testing the tenability of 

this assumption and of exploring issues of proximity 

(Haining, 1990).This paper describes a number of 

techniques of spatial analysis and their potential for 

applications in psychology and education. Examples 

using the SAS software are discussed. 

What is Spatial Analysis?  

Spatial analysis is analysis of data in which the location 

or distance between objects is taken into consideration. 

Spatial analysis includes techniques for visualizing 

phenomenon, determining if data exhibit spatial 

autocorrelation, and modeling spatial relationships 

(Anselin, 1995; Fotheringham, Brunsdon and Charlton, 

2000). These techniques have seen growing use in a 

Tous
Stamp

http://dx.doi.org/10.20982/tqmp.11.1.p022


 ¦ 2015 � vol. 11 � no. 1 

 

 

 

 TTTThe QQQQuantitative MMMMethods for PPPPsychology 

  

  

  
  
  

T 

Q 

M 

P 

  
    

  

  

  
  
  

  
    

23 

 
Figure 1Figure 1Figure 1Figure 1 � Spatial autocorrelation pattern 

 diverse 

number of disciplines, including demography, 

epidemiology, political science and sociology (e.g., 

Kyem, 2000). Researchers have found significant 

spatial correlations in studies of obesity, crime rates, 

disease patterns, and the like (e.g., Lin and Wen, 2011). 

There is also ample reason to believe that these tools 

are useful in psychology and education. In education, 

spatial analysis as well as maps of the spatial 

distribution of phenomena such as school achievement 

level can be useful to education planners and managers. 

For example, education planners can use spatial 

analysis to identify clusters of schools based on 

characteristics of the student populations served. High 

concentrations of poverty can be easily identified with 

visualization techniques. The effects of place are also 

potentially indirect as, for example, proximity to 

pollution sources is highly related to student morbidity 

which leads to increased absenteeism rates (e.g., 

Engler, 2007). There is growing research alone these 

lines. Falch, Lujala and Storm (2011), for example, 

found that reduced travel time between students’ 

homes and schools has a positive effect on graduation. 

Similarly, Bradford (1991) noted that standardized 

tests results are correlated with neighborhood level 

socio-economic data. These and other studies suggest 

that spatial relationships should be considered in 

education and psychological research (e.g., 

Flowerdew and Pearce, 2001). Below, we 

describe several of the more popular spatial 

modeling approaches and provide examples 

from educational research. We begin with the 

question of whether or not spatial 

autocorrelation exists and then focus on 

techniques for modeling spatial relationships. 

We provide several examples using the SAS 

software.  

Spatial cluster analysis 

Spatial cluster analysis detects unusual 

concentrations or nonrandomness of events in 

space and time. Since nonrandomness of 

events indicates the existence of spatial 

autocorrelation, it is necessary to use 

techniques such as spatial regression analysis 

when spatial clustering is found. The methods 

for spatial cluster analysis can be divided into 

two groups: global clustering and local 

clustering. 

Global clustering 

Moran’s I is one of the most common indicators of 

global clustering. Developed by Patrick Alfred Pierce 

Moran(1950), it examines whether nearby areas have 

similar or dissimilar attributes overall. If just one 

variable or attribute is under consideration, the 

formula is as follows:  

  

where n is the total number of observations (points or 

polygons), i and j represent different locations, xi and xj 

are values of the variable in the ith and jth locations, 

and x is the mean of the variable. wij is a measure of 

spatial proximity for pairs i and j. The values of Moran’s 

I typically fall between -1 and +1. -1 means negative 

autocorrelation which implies that nearby locations 

tend to have dissimilar values; +1 means positive 

autocorrelation which indicated that similar values 

Table 1Table 1Table 1Table 1 � Global Moran’s I summary 

 

Moran’s Index 0.474183 

Expected Index -0.000322 

Variance 0.000029 

z-score 88.240915 

p-value 0.000000 
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tended to occur in adjacent areas. If no spatial 

autocorrelation is found, then the spatial arrangement 

would be completely random.The transformation 

between Moran’s I to Z score is: 

  

where E(I) = -1/(n-1) is the expected index, I is the 

calculated value for Moran’s I and SEI is the standard 

error (ArcGIS Resources 2014). Figure 1 and Table 1 

present graphic and numeric results for Moran’s Iby 

using the obesity rate in 2006 in the contiguous United 

States, including 49 states and Washington D.C.  

In Figure 1, three patterns are depicted: dispersed, 

random and clustered. These patterns represent 

obesity rate for counties in the counterminous United 

States. The clustered pattern suggests a strong spatial 

autocorrelation. In Table 1 Moran’s I is presented, along 

with the associated Z score. This value can be compared 

to any standard normal Z table and the value here of 

88.24is strong evidence that in this sample dataset 

there is substantial spatial autocorrelation.  

Similar to Moran’s I, Geary’s C(Geary 1954) is 

another form of global clustering whichis based on the 

diversity in responses among observations: 

  

The value of Geary’s C ranges from 0 to 2. If the value is 

equal or close to 1, it means that there is no 

autocorrelation. If the value of Geary’s C is larger than 

1, it indicates negative spatial autocorrelation; values 

less than one indicate a positive spatial autocorrelation. 

Local clustering 

Local Indicators of Spatial Association (LISA) are  used 

to detect local clusters(Anselin, 1995). It can be defined 

as 

  

where zi,zi are in deviations from the mean, wijis the 

spatial weight. A positive value indicates either a high 

value surrounded by high values (high-high) or a low 

value surrounded by low values (low-low), while a 

negative value indicates either a high value surrounded 

by low values (high-low) or low value surrounded by 

 
Figure 2Figure 2Figure 2Figure 2    ����    An example of LISA cluster map 
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high values (low-high). Figure 2 shows an example of a 

LISA cluster map for the obesity rate in the 

conterminous United States at the county level in the 

year of 2006. We can see that hot spots (high-high 

regions) are mostly found in the southern areas and 

most of the cold spots (low-low regions) are situatedin 

the west and northeast areas.  

For both examples presented there is strong 

evidence of spatial autocorrelation. This is the first step 

in spatial analysis—in the examples below, Moran’s I 

will be computed with the SAS software. The next step 

is to attempt to incorporate the spatial autocorrelation 

structure in the actual analysis.  

Spatial regression 

Multiple regression is a widely known technique among 

psychologist, educators and other social science 

researchers. In this section we discuss three expansions 

of the regression model for purposes of accommodating 

spatial relationships among data elements.  

Spatial lag model 

This model is also called the spatially autoregressive 

model which includes means of the dependent variable 

in neighboring areas as an extra explanatory variable. 

For the case where there is one explanatory or 

predictor variable, the model is expressed as  

  

where yi is the value of the dependent variable for case 

i, β0 is the intercept, xi is the predictor variable, wwwwi is a 

1xn row vector representing the proximity of other 

cases to case i (coefficiencts sum to 1), yyyy is a nx1 

column vector of values of the dependent variable for 

all cases, and  ρ is the lag coefficient. The model shows 

that the value of yi at each location i is determined not 

only by xi at that location, but also by the value of y for 

neighboring units.  

Spatial error model 

This model is different from the spatial lag model in 

that it doesn’t treat the dependent variable as 

autoregressive, it considers the error term as 

autoregressive (Ward and Gledistch, 2007). The model 

is expressed as 

  

where ei is the usual residual in regression.  In this case, 

however, the residual is divided into a random part ɛi,  

and a portion which reflects the spatial covariance 

between units  

  

In this model, λ is a coefficient which reflects the degree 

of spatial covariance between units, wi as above is a 

proximity measure and ξi is the portion of the 

residual/error that is spatially correlated between 

units.   The full model can be represented by  

  

Both the spatial lag model and spatial error model are 

estimated by the maximum likelihood method.    

GeographicallyWeighted Regression model 

A Geographically Weighted Regression (GWR) model is 

a localized multivariate regression that allows the 

parameters of a regression model to change locally (Lin 

and Wen 2011). The model can be expressed as:  

  

where βni refers to the estimated regression coefficients 

which are location variant and xi1, xi2 … refers to the 

explanatory variables at location i. The spatial 

variability of an estimated local regression coefficient is 

examined to determine whether the underlying process 

exhibits spatial autocorrelation(Fotheringham, 

Brunsdon and Charlton 2000).   

GWR is calibrated by multiplying the geographically 

weighted matrix Wi consisting of geo-referenced data 

(Fotheringham, Brunsdon and Charlton 2002). The 

estimated local coefficient βi is given by 

  

The Wiis defined by the spatial neighboring relations 

between points, which is defined as:  

 

 



 ¦ 2015 � vol. 11 � no. 1 

 

 

 

 TTTThe QQQQuantitative MMMMethods for PPPPsychology 

  

  

  
  
  

T 

Q 

M 

P 

  
    

  

  

  
  
  

  
    

26 

  

where win is the impact between position i and position 

n and the values are between 0 and 1. The larger the 

win, the closer geographically data points are, and the 

stronger impact they have on each other. The spatial 

variability of an estimated local regression coefficient is 

examined to determination whether the underlying 

process exhibits spatial autocorrelation. Unlike the 

traditional ordinary least squares model, the GWR 

model is a localized multivariate regression that allows 

the parameters of a regression model to change locally 

which means it could access the spatial influences 

among neighboring areas.  

Spatial Analysis with Multilevel Models 

The multilevel model provides a natural mechanism for 

studying contextual and organizational effects on 

human behavior. The basic model as described below 

provides for fixed and random effects. In other words, 

 
 

Figure 3Figure 3Figure 3Figure 3    ����    Poverty rates at the county level and school achievement level in Louisiana (2009) 
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the basic multilevel model accounts for within-cluster 

correlations, but assumes no meaningful correlations 

between clusters. This is handled, in some respect, by 

having cluster level covariates in the model in which 

between cluster variation is explained. However, the 

spatial perspective allows for the possibility that the 

relationships between clusters change, the greater the 

spatial distance between units.    

A criticism of the multilevel model for studying 

contextual effects is that the traditional models make 

the untenable assumption that context effects are not 

related across contexts.  Individuals, for example, in one 

neighborhood are not affected by characteristics of 

neighboring communities. There is substantial evidence 

that this is not the case and that ignoring correlations 

among contextual units can lead to misleading results. 

One strategy for addressing this is to relax the 

assumption that individuals are limited to just one 

community, as is the case with the traditional model. 

The cross-classified model assumes that individuals 

move across communities or organizations and 

attempts to model this additional complexity. In spatial 

analysis, this is modeled in terms of a decreasing 

correlation between communities as they grow in 

distance from one another — a fact consistent with the 

first law of geography which demonstrates that 

“everything is related to everything else, but near 

things are more related than distant thing” (Tobler 

1970). Below we discuss a simple model for 

incorporating spatial autocorrelation into multilevel 

models.  

In the following section we present examples of 

fitting several spatial models using the statistics 

described above. The examples use student 

achievement and poverty data in Louisiana in 2009. 

The distribution of schools in Louisiana, by parish 

(county) poverty level and school performance label (A, 

B, C, D, F) is presented in Figure 3. As is obvious, there 

is great variation in the state with regard to the 

distribution of poverty, with the greatest occurring in 

the northeast corridor. High performing schools are 

spread across the state, but in many areas there are 

concentrations of poor performing schools. The map 

also shows that many schools are isolated and remotely 

located. Spatial techniques have the potential to explore 

the potential of location to impact school processes and 

outcomes. For example, do schools located in the 

middle of high poverty parishes experience greater 

difficulty attracting qualified teachers than those 

located on the boarders? In the following sections we 

address these and similar issues.  

Examples with Cross Sectional Data 

We present two examples. 

Spatial Regression at the School level 

We begin with a regression model which includes 

spatial autocorrelations at the school level. The 

outcome is avgmathssavgmathssavgmathssavgmathss (average math score) and the 

predictor is pctlnchpctlnchpctlnchpctlnch (percentage of students who 

receive free lunch). The first step is to produce 

residuals and then use ProcVariogramProcVariogramProcVariogramProcVariogram to produce 

Moran’s I. The syntax is presented below. Note that 

both the latitude and longitude of each school is used in 

the analysis. 

For these analyses we use two SAS system 

filesAll.sasAll.sasAll.sasAll.sas, which has all the school level data and 

Coordinate.SASCoordinate.SASCoordinate.SASCoordinate.SAS which has the latitude and longitude 

data for each school. The contents of these files are 

listed in the Appendix. We first run the regression 

procedure (see Line 1 below) and create an output 

dataset of predicted values (yhat) and residuals 

(yresid). We will examine these residuals for the 

possibility of spatial correlation. To accomplish this,we 

merge the geographic coordinates of each school with 

the residuals from the regression run  (Lines 2 through 

5), and then execute the ProcVariogram routine, which 

will produce Moran’s I. (Lines 6). 

 

Procreg;  

Modelavgmathss=pctlnch; outputout=residuals 

p=yhat r=yresid; 

Data gene.spresid;set residuals; 

Data one;set gene.coordinate; 

Data two;set gene.spresid; 

Data three;merge one(in=ii) two(in=jj);by 

sitecode; if ii and jj; 

procvariogram data=three; 

Compute novarautoc (weights=distance); 

Coordinates xc=longitude yc=latitude; 

Var yresid; 

 

The results from the ProcVariogram procedure are 

presented in Figure 4. Both Moran’s I and Geary’s Care 

significant at the .05 probability. These results support 

the conclusion that there are spatial correlations among 

the residuals when school level math achievement is 

predicted from the percent of students receiving free 

school lunch. 
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Given that there is spatial autocorrelation present in 

these data, a model which ignores this would be mis-

specified. In the next stage of our study, we use the Proc 

Mixed procedure to compare various spatial 

autocorrelation structures. The syntax for the baseline 

model is as follows: 

Baseline Model 

proc mixed; 

model avgmathss = pctlnch/solution; 

 

The output below presents estimates of the fixed 

effects. These show that percent free lunch is a 

significant predictor of math performance. Our next 

step in this process is to compare various spatial 

autocorrelation structures. To facilitate this, we also 

include the model fit statistics: AIC, etc. Decisions 

regarding which autocorrelation structure best fits 

these data are based on these fit statistics— smaller 

values being better.  

Figure 5 presents output from the initial regression 

model. We established earlier that the residuals from 

this model exhibit spatial correlations and we now 

began in investigation of various possible structures. 

SAS offers several possible spatial covariance 

structures: Exponential, Gaussian, Linear, Spherical, etc. 

For this model, each represents particular pattern of 

changes in spatial covariance among residuals as 

observations grow in distance from one another. Below, 

we utilize the AIC fit statistics above to examine several 

possibilitie (see Helie, 2006) — as noted in the output, 

smaller values indicate a better fit.  

Model with Spherical Spatial Structure 

The outcome avgmathssavgmathssavgmathssavgmathssmay have a Spherical spatial 

correlational form. We specify this structure with the 

type=sp(sph)type=sp(sph)type=sp(sph)type=sp(sph) followed by the spatial information of the 

variables. For the geometrically anisotropic structure 

sp(sph), the exact spatial coordinate variables: 

longitude and latitude must be specified. The syntax for 

the model with Spherical Spatial Structure is: 

 

proc mixed; 

model avgmathss = pctlnch/solution; 

repeated/subject=intercept 

type=sp(sph)(longitude latitude)local; 

 

The parameter estimates and fit statistics for this 

model are presented below. Our first observation is 

that the fit statistics drop in value, indicating a better fit 

to the data. 

Figure 6 presents results from the SAS run in which 

the spherical spatial covariance structure was fit to the 

residuals from the regression model. Focusing on the 

AIC fit statistics, we note a drop from 6424 to 6417. 

This is an improvement, but as part of our model 

building process we consider two other structures. 

Model with Gaussian Spatial Structure 

Similar to the Spherical, Gaussian spatial form is also 

modeled. The spatial coordinate variables are also 

required in this structure. The syntax for the model 

with Gaussian Spatial Structure is: 

 

Proc mixed; 

modelavgmathss = pctlnch/solution; 

repeated/subject=intercept 

type=sp(gau)(longitude latitude)local; 

Autocorrelation Statisticss 

Assumption Coefficient Observed Expected StdDev Z Pr> |Z| 

Normality Moran's I 0.00179 -0.00138 0.000813 3.9 <.0001 

Normality Geary's c 1.01305 1.00000 0.005941 2.2 0.0281 

 

Figure 4 � Results for Moran’s I and Geary’s c  
 

 

Covariance Parameter EstimatesCovariance Parameter EstimatesCovariance Parameter EstimatesCovariance Parameter Estimates    

CovParmCovParmCovParmCovParm    EstimateEstimateEstimateEstimate    

ResidualResidualResidualResidual    421.38 

 

Fit StatisticsFit StatisticsFit StatisticsFit Statistics    

----2 Res Log Likelihood2 Res Log Likelihood2 Res Log Likelihood2 Res Log Likelihood    6422.6 

AIC (smaller is better)AIC (smaller is better)AIC (smaller is better)AIC (smaller is better)    6424.6 

AICC (smaller is better)AICC (smaller is better)AICC (smaller is better)AICC (smaller is better)    6424.6 

BIC (smaller is better)BIC (smaller is better)BIC (smaller is better)BIC (smaller is better)    6429.2 

 

Solution for Fixed EffectsSolution for Fixed EffectsSolution for Fixed EffectsSolution for Fixed Effects    

EffectEffectEffectEffect    EstimateEstimateEstimateEstimate    
Standard Standard Standard Standard 

ErrorErrorErrorError    
DFDFDFDF    t Valuet Valuet Valuet Value    Pr> |t|Pr> |t|Pr> |t|Pr> |t|    

InterceptInterceptInterceptIntercept      369.20 2.5328 722 145.77 <.0001 

pctlnchpctlnchpctlnchpctlnch    -94.222 3.3780 722 -27.89 <.0001 

    

Figure 5.Figure 5.Figure 5.Figure 5.Output from Initial Regression of Math 

Achievement on Percent Free Lunch 
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The results for the Gaussian model are presented 

below. These results show only a slight, if any 

improvement, in fit.  

The model with the Gaussian spatial structures 

shows some improvement over the spherical structure 

and both are better than the model with no spatial 

correlations. Other structures might be considered, 

however, with the process as illustrated here.  

Multi-level Spatial Regressions 

In this model, we incorporate both school and student 

level variables. We will proceed as is typical of 

multilevel models, fitting an unconditional model first 

(no predictors) and then building a student and then 

school level model. Our analysis will differ in that we 

will explore the possibility of spatially correlated 

residuals at the school level.  

Unconditional Model without Spatially Correlated 

Errors 

The unconditional multilevel model can be regarded as 

a one-way ANOVA model with random effects. With 

both the individual and school level data structure, we 

first run the unconditional model without spatially 

correlated errors. The syntax for this model and the 

resulting parameter and fit statistics are presented 

below. 
 

Procmixed covtest noclprint; 

Class sitecode; 

Model mathss=/; 

random intercept/subject=sitecode; 
 

As with the spatial regression model, our focus here 

is on the fit statistics. The goal is to determine what 

spatial covariance structure best fits the ovserved data. 

Unconditional Model with Spatially Correlated 

Errors 

This model is similar to the previous model. However, 

in this instance we allow spatially correlated errors by 

using the geographic information of the school.  
 

Procmixed covtest noclprint; 

Class sitecode; 

Model mathss=/; 

random intercept/subject=sitecode 

type=sp(sph)(longitude latitude); 
 

When comparing these models, the fit statistics do 

now show a meaningful drop, suggesting that perhaps a 

spherical covariance structure is not appropriate for 

these results. As noted above, other covariance 

structures could be examined.  

 

Covariance Parameter EstimatesCovariance Parameter EstimatesCovariance Parameter EstimatesCovariance Parameter Estimates    

CovParmCovParmCovParmCovParm    SubjectSubjectSubjectSubject    EstimateEstimateEstimateEstimate    

VarianceVarianceVarianceVariance    InterceptInterceptInterceptIntercept    10655 

SP(SPH)SP(SPH)SP(SPH)SP(SPH)    InterceptInterceptInterceptIntercept    767.15 

ResidualResidualResidualResidual        402.16 

Fit StatisticsFit StatisticsFit StatisticsFit Statistics    

----2 Res Log Likelihood2 Res Log Likelihood2 Res Log Likelihood2 Res Log Likelihood    6411.9 

AIC (smaller is better)AIC (smaller is better)AIC (smaller is better)AIC (smaller is better)    6417.9 

AICC (smaller is better)AICC (smaller is better)AICC (smaller is better)AICC (smaller is better)    6417.9 

BICBICBICBIC    (smaller is better)(smaller is better)(smaller is better)(smaller is better)    6431.6 

Null Model Likelihood Ratio TestNull Model Likelihood Ratio TestNull Model Likelihood Ratio TestNull Model Likelihood Ratio Test    

DFDFDFDF    ChiChiChiChi----SquareSquareSquareSquare    Pr>ChiSqPr>ChiSqPr>ChiSqPr>ChiSq    

2 10.71 0.0047 

  

Solution for Fixed EffectsSolution for Fixed EffectsSolution for Fixed EffectsSolution for Fixed Effects    

EffectEffectEffectEffect    EstimateEstimateEstimateEstimate    
Standard Standard Standard Standard 

ErrorErrorErrorError    
DFDFDFDF    t Valuet Valuet Valuet Value    Pr> |t|Pr> |t|Pr> |t|Pr> |t|    

InterceptInterceptInterceptIntercept      367.61 102.99 0 3.57 . 

pctlnchpctlnchpctlnchpctlnch    -95.6782 3.4392 722 -27.82 <.0001 

Type 3 Tests of Fixed EffectsType 3 Tests of Fixed EffectsType 3 Tests of Fixed EffectsType 3 Tests of Fixed Effects    
EffectEffectEffectEffect    Num DFNum DFNum DFNum DF    Den DFDen DFDen DFDen DF    F ValueF ValueF ValueF Value    Pr > FPr > FPr > FPr > F    

PctlnchPctlnchPctlnchPctlnch    1 722 773.92 <.0001 

    

Figure 6Figure 6Figure 6Figure 6 � Results for the Spherical Correlational Form 

 

Covariance Parameter EstimatesCovariance Parameter EstimatesCovariance Parameter EstimatesCovariance Parameter Estimates    

CovParmCovParmCovParmCovParm    SubjectSubjectSubjectSubject    EstimateEstimateEstimateEstimate    

VarianceVarianceVarianceVariance    InterceptInterceptInterceptIntercept    25.3135 

SP(GAU)SP(GAU)SP(GAU)SP(GAU)    InterceptInterceptInterceptIntercept    0.3206 

ResidualResidualResidualResidual        397.90 

Fit StatisticsFit StatisticsFit StatisticsFit Statistics    

----2 Res Log Likelihood2 Res Log Likelihood2 Res Log Likelihood2 Res Log Likelihood    6410.4 

AIC (smaller is better)AIC (smaller is better)AIC (smaller is better)AIC (smaller is better)    6416.4 

AICC (smaller is better)AICC (smaller is better)AICC (smaller is better)AICC (smaller is better)    6416.4 

BIC (smaller is better)BIC (smaller is better)BIC (smaller is better)BIC (smaller is better)    6430.1 

Null Model Likelihood Ratio TestNull Model Likelihood Ratio TestNull Model Likelihood Ratio TestNull Model Likelihood Ratio Test    

DFDFDFDF    ChiChiChiChi----SquareSquareSquareSquare    Pr>ChiSqPr>ChiSqPr>ChiSqPr>ChiSq    

2 12.20 0.0022 

 

Solution for Fixed EffectsSolution for Fixed EffectsSolution for Fixed EffectsSolution for Fixed Effects    

EffectEffectEffectEffect    EstimateEstimateEstimateEstimate    
Standard Standard Standard Standard 

ErrorErrorErrorError    
DFDFDFDF    t Valuet Valuet Valuet Value    Pr> |t|Pr> |t|Pr> |t|Pr> |t|    

InterceptInterceptInterceptIntercept    370.10 2.7332 0 135.4 . 

PctlnchPctlnchPctlnchPctlnch    -96.1156 3.4840 722 -27.59 <.0001 

Type 3 Tests of Fixed EffectsType 3 Tests of Fixed EffectsType 3 Tests of Fixed EffectsType 3 Tests of Fixed Effects    
EffectEffectEffectEffect    Num DFNum DFNum DFNum DF    Den DFDen DFDen DFDen DF    F ValueF ValueF ValueF Value    Pr> FPr> FPr> FPr> F    

pctlnchpctlnchpctlnchpctlnch    1 722 761.06 <.0001 

    

Figure 7Figure 7Figure 7Figure 7 � Results for the Gausian Spatial Form  
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The Fitted Model with Student, School and County 

Predictors 

The unconditional model provides a baseline for us to 

compare more complex models. In this model, the 

student (mathss=math scale score, lnch=free lunch 

status), school (sps2008=school performance measure 

for 2008) and county (poverrate=county poverty rate) 

variables are included.   

 

Proc mixed covtest noclprint; 

Class sitecodecnty; 

Model mathss=lnch sps2008 

poverrate/solution; 

random 

intercept/subject=sitecodetype=sp(sph)(lon

gitude latitude); 

 

Figure 10 presents results for the complet multilevel 

model, one that includes both student and school level 

predictors. The improvement in the model is significant 

from that of the unconditional model, although we have 

not explored alternative spatial structures. 

ConclusionsConclusionsConclusionsConclusions    

The results presented above show that spatial 

correlations exist among schools in Louisiana with 

respect to math achievement, meaning that those in 

close proximity to one another are more similar than 

would be expected by chance. They may serve students 

from the same families, neighborhoods, and may 

experience similar processes with respect to recruiting 

and retaining teachers and administrators. These 

relationships persist even when student and school 

contextual variables are incorporated in the model 

examined. They suggest that a potentially valuable 

avenue of future research related to poverty and 

educational is to explicitly incorporate location in 

models of schooling processes. For example, the 

interstate roadway system in Louisiana was not 

imposed in Figure 3, yet it appears that outside of 

urban centers, the distribution of failing schools is 

related to the presence of interstate roadway. These 

and other hypotheses can be explored with spatial 

modeling techniques. 
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Covariance Parameter EstimatesCovariance Parameter EstimatesCovariance Parameter EstimatesCovariance Parameter Estimates    

CovParmCovParmCovParmCovParm    SubjectSubjectSubjectSubject    EstimateEstimateEstimateEstimate    
Standard Standard Standard Standard 

ErrorErrorErrorError    
Z ValueZ ValueZ ValueZ Value    Pr> ZPr> ZPr> ZPr> Z    

InterceptInterceptInterceptIntercept    SitecodeSitecodeSitecodeSitecode    737.00 43.115 17.09 <.0001 

ResidualResidualResidualResidual        3147.5 20.919 150.5 <.0001 

 

Fit StatisticsFit StatisticsFit StatisticsFit Statistics    

----2 Res Log Likelihood2 Res Log Likelihood2 Res Log Likelihood2 Res Log Likelihood    503056.5 

AIC (smaller is better)AIC (smaller is better)AIC (smaller is better)AIC (smaller is better)    503060.5 

AICC (smaller is better)AICC (smaller is better)AICC (smaller is better)AICC (smaller is better)    503060.5 

BIC (smaller is better)BIC (smaller is better)BIC (smaller is better)BIC (smaller is better)    503069.6 

 

Figure 8Figure 8Figure 8Figure 8 � Unconditional Multilevel Model     

 

Covariance Parameter EstimatesCovariance Parameter EstimatesCovariance Parameter EstimatesCovariance Parameter Estimates    

CovParmCovParmCovParmCovParm    SubjectSubjectSubjectSubject    EstimateEstimateEstimateEstimate    
Standard Standard Standard Standard 

ErrorErrorErrorError    
Z ValueZ ValueZ ValueZ Value    Pr> ZPr> ZPr> ZPr> Z    

VarianceVarianceVarianceVariance    SitecodeSitecodeSitecodeSitecode    737.94 43.216 17.08 <.0001 

SP(SPH)SP(SPH)SP(SPH)SP(SPH)    SitecodeSitecodeSitecodeSitecode    648.00 0 . . 

ResidualResidualResidualResidual        3147.4 20.919 150.5 <.0001 

 

Fit StatisticsFit StatisticsFit StatisticsFit Statistics    

----2 Res Log Likelihood2 Res Log Likelihood2 Res Log Likelihood2 Res Log Likelihood    503056.5 

AIC (smaller is better)AIC (smaller is better)AIC (smaller is better)AIC (smaller is better)    503062.5 

AICC (smaller is better)AICC (smaller is better)AICC (smaller is better)AICC (smaller is better)    503062.5 

BIC (smaller is better)BIC (smaller is better)BIC (smaller is better)BIC (smaller is better)    503076.2 

Null Model Likelihood Ratio TestNull Model Likelihood Ratio TestNull Model Likelihood Ratio TestNull Model Likelihood Ratio Test    

DFDFDFDF    ChiChiChiChi----SquareSquareSquareSquare    Pr>ChiSqPr>ChiSqPr>ChiSqPr>ChiSq    

2 7243.87 <.0001 

 

Figure 9Figure 9Figure 9Figure 9    ���� Unconditional Model with Spatially 

Correlated School Level Residuals 
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Covariance Parameter EstimatesCovariance Parameter EstimatesCovariance Parameter EstimatesCovariance Parameter Estimates    

CovParmCovParmCovParmCovParm    SubjectSubjectSubjectSubject    EstimateEstimateEstimateEstimate    
Standard Standard Standard Standard 

ErrorErrorErrorError    
Z ValueZ ValueZ ValueZ Value    Pr> ZPr> ZPr> ZPr> Z    

VarianceVarianceVarianceVariance    SitecodeSitecodeSitecodeSitecode    283.20 18.5162 15.29 <.0001 

SP(SPH)SP(SPH)SP(SPH)SP(SPH)    SitecodeSitecodeSitecodeSitecode    648.00 0 . . 

ResidualResidualResidualResidual        3017.00 20.0704 150.32 <.0001 

 

Fit StatisticsFit StatisticsFit StatisticsFit Statistics    

----2 Res Log Likelihood2 Res Log Likelihood2 Res Log Likelihood2 Res Log Likelihood    499551.9 

AIC (smaller is better)AIC (smaller is better)AIC (smaller is better)AIC (smaller is better)    499557.9 

AICC (smaller is better)AICC (smaller is better)AICC (smaller is better)AICC (smaller is better)    499557.9 

BIC (smaller is better)BIC (smaller is better)BIC (smaller is better)BIC (smaller is better)    499571.7 

Null Model Likelihood Ratio TestNull Model Likelihood Ratio TestNull Model Likelihood Ratio TestNull Model Likelihood Ratio Test    

DFDFDFDF    ChiChiChiChi----SquareSquareSquareSquare    Pr>ChiSqPr>ChiSqPr>ChiSqPr>ChiSq    

2 2474.49 <.0001 

 

Solution for Fixed EffectsSolution for Fixed EffectsSolution for Fixed EffectsSolution for Fixed Effects    

EffectEffectEffectEffect    EstimateEstimateEstimateEstimate    
Standard Standard Standard Standard 

ErrorErrorErrorError    
DFDFDFDF    t Valuet Valuet Valuet Value    Pr> Pr> Pr> Pr> |t||t||t||t|    

InterceptInterceptInterceptIntercept    280.89 3.9462 722 71.18 <.0001 

LnchLnchLnchLnch    -28.2425 0.6128 45E3 -46.08 <.0001 

SPS2008SPS2008SPS2008SPS2008    0.5756 0.02754 45E3 20.90 <.0001 

PoverRatePoverRatePoverRatePoverRate    -0.3685 0.1511 45E3 -2.44 0.0147 

Type 3 Tests of Fixed EffectsType 3 Tests of Fixed EffectsType 3 Tests of Fixed EffectsType 3 Tests of Fixed Effects    

EffectEffectEffectEffect    Num DFNum DFNum DFNum DF    Den DFDen DFDen DFDen DF    F ValueF ValueF ValueF Value    Pr> FPr> FPr> FPr> F    

lnchlnchlnchlnch    1 45E3 2123.79 <.0001 

SPS2008SPS2008SPS2008SPS2008    1 45E3 436.71 <.0001 

PoverRatePoverRatePoverRatePoverRate    1 45E3 5.95 0.0147 

 

Figure 10Figure 10Figure 10Figure 10.  Complete Multilevel Model 

 


