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The standard error of the Pearson skew
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Abstract ® The Pearson skew is a measure of asymmetry of a distribution, based on the difference between the mean and the
median of a distribution. Here we show how to calculate the Pearson skew, estimate its standard error and the confidence
interval. The derivation is based on a population following a normal distribution. Simulations explored the validity of this
expression when the normality assumption is met in comparison to when the normality assumption is not met. The standard
error of the Pearson skew revealed very robust in case of non-normal populations, compared to the Fisher Skew as presented in

Harding, Tremblay & Cousineau (2014).
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Introduction

The Pearson skew (Skp) is an alternative measure for
the skewness of a sample (noted as Sk, in Kim and
White, 2003; also see Kendall and Stuart, 1983). It is a
measure of the asymmetry in a data set based on the
discrepancy between the mean and the median,
standardized with a division by the standard deviation.
Skp is therefore given by the following:
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where X is the mean of the sample X of sample size n,
X is the median, and sx is the standard deviation of the
sample.

The Pearson skew is an alternative to the Fisher
skew; it is also more robust than the Fisher skew since
it is less affected by the presence of outliers (see
Daszykowski, Kaczmarek, Vander Heyden & Walczak,
2007). Table 1 provides the theoretical value of the
Pearson skew for some commonly used distributions.

To be useful, a statistic must be accompanied by its
standard error and confidence intervals (Harding,
Tremblay & Cousineau, 2014). We hereby provide the
expression for these assuming that the population is
normally distributed and the sample size is large, as is
common practice. We present the results first, followed
by their derivations. Finally, we will present Monte
Carlo experiments that confirm the results and their
limits.

The standard error of the Pearson Skew is given by:

N 1 Jm
SES’CP = USkP = % 5 - 1 (2)

and the 1 — o confidence interval is obtained with:
Cli_q = Skp + SEsk, X tn—1(a/2,1 —a/2) (3)

using the same notation as in Harding et al. (2014).
Demonstration

We know that the standard error of the mean is
ox = ox/y/n and the standard error of the median is
0% = /7/2 0x/\/n where ox is the population’s
standard deviation. We need the covariance between
the mean and the median of a sample. From Ferguson
(2003), we have that the covariance is asymptotically
given by

9 E|X—v|
O == ———
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where v is the population true median, fis the density
function of the population and || is the absolute value
of x. Assuming a normally distributed population with
parameter u=v and ox, we find that
f(v)=1/(27ox); as the distribution of |X — v| is
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Table 1 ® Theoretical values of the Pearson skew for some commonly used distributions.

Distribution | Pearson skew Fisher skew
Normal 0 0
Student t* 0 0
Exponential | 1 —log(2) =~ 0.3069 2

1) =l 1y 1 2 3
Woibull** r(1+2)-y71 g(2)2 2r(1+1) 3F(1+W)F(1+ﬂ{)3—:-21“(1+7)

Vr(22)-r(1+1) (P+2)-T(1+7))
Lognormal et et Ve 12+ €7)
/(602_ )e2u+<’2

Gumbel*** | —Y8(log(log(2)) + C) ~ —0.1643 =12Y56) ~ _1 1396

Note: Pearson skew tends to be approximately 6 times smaller than Fisher skew.
There is no closed-form expression for the median of the Wald and the Ex-Gaussian distributions.
*. d.f. must be greater than two for the Pearson skew and greater than 3 for the Fisher skew

*3%k

: v is the shape parameter and I' is the Gamma function.

**%. C is Euler gamma = 0.5772 and ( is the Rieman zeta function, with {(3) ~ 1.2012.

half-normal (Forbes, Evans, Hastings, & Peacock, 2010;
Leemins, & McQuestion, 2008), the expected value of

|X — v|is \/2/m ox. Hence,
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Using a Taylor series expansion (e. g., Ku, 1966), we
have that

-X X X, X
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which is the squared standard error of the numerator
of the Pearson skew.
As of the denominator, the standard error of sx is

0sx = 0x/v/2(n—1). Using again a Taylor series
expansion, for a ratio this time, we have that
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The last covariance term, 9% _x ., is based on the
correlation between the numerator and the
denominator of the Pearson skew. Yet, assuming a

normal distribution, these two terms are uncorrelated.
Thus,

2 2
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An estimate is obtained by replacing 0% by the
observed variance s%c Further, note that the second
term is expected to be close to zero (as E(Skp) = 0) so
that we can ignore it. Thus,

) 1 /7
USkP:a(§—1>

and the standard error is found in Eq. 2.

Regarding the distribution of Skp, knowing that the
distribution of the sample mean of a normal population
is also normal, that the distribution of the sample
median is well approximated by a normal population as
well, the numerator of Skp is normal with mean zero.
The denominator is related to the x? distribution and
thus, the ratio has student ¢ distribution with n — 1

Table 2 ® Summary of the standard error for the Pearson Skew in the same format presented in Harding et al. (2014)

Descriptive Statistics

Equation Standard Error

Confidence interval

Pearson skewness* Skp = 2=X

—2  SEsk, = Oskp = % /2 =1 Cli_o = Skp+ SEsk, X th-1(a/2,1— a/2)

Note: Estimates that assume a normally distributed population are marked by an asterisk (*);
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Figure 1 ® Mean estimated Fisher and Pearson skewness (horizontal blue line) as well as estimated (error bars) and
actual (shaded area) 95% confidence intervals as a function of sample size. Each point is based on 50,000 data points
sampled from a normal distribution with a true mean of 100 and a true standard deviation of 3 (replicating the
simulations presented in Harding et al.,, 2014). The Fisher skew (as presented in Harding et al., 2014) is found in the
left panel whereas the Pearson skew, studied here, is found in the right panel.
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degrees of freedom. Consequently, a confidence interval
for the Pearson’s skew is found using ¢critical values, as
was indicated in Eq. 3.

Table 2 summarizes the relevant equations for the
measure of the Pearson Skew following the same layout
as Table 1 used in Harding et al. (2014).

Monte Carlo experiments

To verify the reliability of the Pearson skew standard
error estimator we compared the actual standard error
(the standard deviation of the Pearson skew over a
large number of simulated samples) to the estimated
standard error (measured using Eq. 2). We have
followed the same methodology utilized in Harding et
al. (2014) by simulating 50,000 random samples taken
from a normal distribution with parameters p = 100,
and o = 3. We also varied the sample size by increasing
n by increments of 5 from a very small sample (n = 5)
to a fairly large sample (n = 80).

Figure 1 presents the results of the simulation for
the actual and estimated standard error of the Pearson
skew as compared to Fisher skew for increasing sample
sizes. As seen, the results of the estimated standard
error are very reliable when compared to the actual
standard error. Note that for smaller sample sizes
(below n =10), the 95% confidence interval for
Pearson skew (Eq. 2) slightly overestimates actual
standard error values. However, larger sample sizes

Pearson Skew
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£ “l_l..lll-l.llll.ul
g -o0s]

Sample Size n

lead to reliable results. Note that although the Pearson
skew and the Fisher skew are both interpreted by their
relation to zero (a skewness of zero is given to a
symmetrical distribution such as the normal
distribution), the scales are different. The Pearson skew
is measured with a smaller scale than the Fisher skew
although they are interpreted the same. For
comparison purposes, simulations on Fisher skew were
added in Figure 1 (See Harding et al. for more
information on the Fisher skew and its standard error).
Unlike the Pearson skew, the confidence interval for
Fisher skew is unaffected by smaller sample sizes.

Case example in which the normality of distribution
assumption is violated

In the present section, we verify the reliability of the
standard error estimator for the Pearson skew when
the normality assumption is not met. The objective of
this example is to see if a normally distributed
population is required to use the standard error
estimator of the Pearson skew as is the case for the
Fisher skew. We sampled 50,000 data points from a
Weibull population distribution with a scale parameter
of B =60, a shift parameter of a = 300. We used a
shape parameter of either v = 2 or 7 = 1.25 to observe
the reliability when the normality assumption is not
met and when it is violated outright. These simulation
details replicate those used by Harding et al. (2014) in
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Figure 2 = Mean estimated Pearson skew (horizontal blue line) as well as estimated (error bars) and actual (shaded
area) 95% confidence intervals as a function of sample size. The distribution used is a Weibull distribution with a
scale parameter of 8 = 60, a shift parameter of @ = 300 and a shape parameter of either v = 2 or v = 1.25
(simulation details are identical to those found in Appendix B of Harding et al., 2014). The Pearson skew of a
moderately skewed distribution (v = 2) is found in the left panel whereas the Pearson skew of a strongly skewed

distribution (v = 1.25) is found in the right panel.

Appendix B of their review of standard error estimators
and their confidence intervals. Figure 2 presents the
results of the simulation.

As seen, when the population's distribution is
moderately skewed (left panel) the standard error
estimator of the Pearson skew slightly overestimates
skewness for sample sizes smaller than n = 40. For
sample sizes larger than n = 40 the standard error
estimator of the Pearson skew seems to estimate the
actual standard error quite accurately. From this
simulation alone we could warrant the use of the
Pearson skew when the population’s distribution is
moderately skewed. When the population’s distribution
is strongly skewed (right panel), the Pearson skew
standard error estimator consistently overestimates
the actual standard error of positive skewness.
However, negative skews seem to be consistently
accurate as sample size grows (especially after n = 30).
From these simulations we could advocate for the use
of the Pearson skew when the population’s distribution
is not normal: the estimator is quite reliable and gains
reliability as the sample size grows, the estimator
slightly overestimates the actual result by a consistent
margin, and the estimated values converge towards the
actual standard error values.

We also repeated this simulation with the Fisher
skew to verify how this measure of skewness estimates
the standard error when the population’s distribution
is not normal. Figure 3 shows the results of this
simulation (details of the simulation are identical as the

one presented above for the Pearson skew). As is seen,
when the distribution is moderately skewed, positive
skews are slightly underestimated and negative skews
are overestimated. When the distribution is strongly
skewed (right panel of Figure 3), the estimated
standard error underestimates greatly positive skews
yet seems to estimate negative skews somewhat
accurately (although it begins to underestimate
negative skews as the sample size grows). What is
important to note however is that although the
standard error for the Fisher skew converges to a
smaller interval, the actual standard error for the
Fisher skew does not follow suit. Actual standard error
for the Fisher skew does not follow the same trend as
its estimator calculates as it requires a normally
distributed population.

Based on these simulations we can conclude that the
use of the Pearson skew in a situation where the
population is not normally distributed is preferred over
the use of the Fisher skew.
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Figure 3 ® Mean estimated Fisher skew (horizontal blue line) as well as estimated (error bars) and actual (shaded
area) 95% confidence intervals as a function of sample size. Simulation details are identical to the ones presented in
Figure 2. The Fisher skew of a moderately skewed distribution (v = 2) is found in the left panel whereas the Fisher
skew of a strongly skewed distribution (y = 1.25) is found in the right panel.
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