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AbstractAbstractAbstractAbstract � Meta-analysis is a set of statistical procedures used for providing transparent, objective, and replicable summaries of 
research findings. This tutorial demonstrates the most common procedures on conducting a meta-analysis using the R statistical 
software program. It begins with an introduction to meta-analysis along with detailing the preliminary steps involved in 
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IntroductionIntroductionIntroductionIntroduction    

Gene Glass (1976) introduced the term meta-analysis 

to refer to “the statistical analysis of a large collection of 

analysis results from individual studies for the purpose 

of integrating the findings” (p. 3). As with any statistical 

procedure, meta-analysis has its strengths and 

limitations (see Table 1),  but is now one of the 

standard tools for providing transparent, objective, and 

replicable summaries of research findings in the social 

sciences, medicine, education, and other fields (Hunter 

& Schmidt, 2004; Hunt, 1997).  

This tutorial provides a step-by-step demonstration 

of the fundamentals for conducting a meta-analysis 

(summarized in Table 2) in R (R Core Team, 2013). The 

user should download and install R version 3.1 (or 

greater) to ensure replicability of each step in this 

tutorial. Several R packages for meta-analysis  will be 

used (freely available), including compute.es ( Del 

Re, 2010) for computing effect sizes and MAd (Del Re & 

Hoyt, 2010) and metafor (Viechtbauer, 2010) for 

aggregating effect sizes, conducting omnibus, meta-

regression, and graphics. MAd provides a convenience 

“wrapper” for omnibus and meta-regression 

functionalities that are available in the metafor R 

package (Viechtbauer, 2010). R is an open-source 

statistical software program for data manipulation, 

graphics, and statistical analysis. R can be downloaded 

freely at http://www.r-project.org/ .  

Systematic research strategies  

At the start of a meta-analytic endeavor, research 

questions needs to be formulated with precision, as 

these questions will affect the entire meta-analytic 

process. Then, as is usual in any empirical or 

experimental investigation, inclusion and exclusion 

criteria must be detailed. This will provide clarity on 

how the study results may generalize to the population. 

One of the goals of every meta-analysis is to gather a 

representative sample of primary studies that meet the 

study criteria. A systematic research strategy consists 

of two major steps: (1) defining inclusion and exclusion 

criteria and (2) selecting studies.  

(1) Inclusion and (1) Inclusion and (1) Inclusion and (1) Inclusion and exclusion criteria.exclusion criteria.exclusion criteria.exclusion criteria. Defining study 

inclusion and exclusion criteria should be based on the 

study’s hypotheses and research questions (see Table 3 

for examples). Inclusion/exclusion criteria could 

potentially bias the study results. Therefore, it is 

important to be as explicit and thoughtful as possible 

when defining these criteria.  

(2) Study selection.(2) Study selection.(2) Study selection.(2) Study selection. Study selection and the data 

extraction process are often the most time-consuming 

steps in conducting a meta-analysis. The study selection 

process usually follows a particular sequence from the 

initial search to the coding of effect sizes from the single 

primary studies. It can be helpful to structure the study 

selection process based on the 4 steps (study 

identification, screening, eligibility and inclusion) 

detailed in the Meta-Analysis Reporting Standards 

(MARS) guidelines (http://www.apa.org/pubs/ 

authors/jars.pdf ) or the PRISMA statement (see 

http://www.prisma-statement.org/statement.htm). 

The above steps should be double coded by two (or 

more) collaborators to ensure greater objectivity and 
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precision of the study selection process.  

Extracting study-level information and generating 

reliability statistics 

Study characteristics (e.g., average number of sessions 

in the study) and relevant data to calculate effect sizes 

should be extracted from each of the included primary 

studies. Most studies will report more than outcome 

measure to calculate an effect size. For each study, 

ensure that the coded effect sizes from a single sample 

have the same study ID.  

The data extracted from the primary studies should 

be double-coded and checked for the degree to which 

the two or more coders are in agreement. Double 

coding is used to determine the degree to which coding 

errors are present (i.e., reliability), which could 

subsequently bias the meta-analytic findings. The 

double coded data should be assessed with interclass 

correlation procedures for continuous variables (e.g., 

number of treatment sessions) and Kappa coefficients 

for categorical variables (e.g. severity of participant 

distress, coded as “low” or “high”).  

Sample data 

After the raw dataset is constructed and adequate 

reliability is obtained for each variable, analyses can 

begin.  For demonstrative purposes, I have simulated 

(using Monte Carlo simulations) fictional treatment-

control psychotherapy data with the following: 

1- Population (i.e., “true”) effect sizes (based on a 

normal distribution) of g = 0.50, which represents a 

moderate effect, for outcome one. 

2- Large population effect sizes of g = 0.80 for outcome 

two. 

3- An average population sample size of N = 30 for both 

treatment and control groups (average total N = 60 for 

each study) 

4- Number of sessions as moderator (“dose”; 

continuous variable) 

5- Stress level (“stress”; participant baseline severity) 

in the sample/study dichotomized into “High” and 

“Low” stress samples 

Table 1 Table 1 Table 1 Table 1 ����    Strengths and limitations of meta-analyses. 

Strengths. 

- Summarizes a body of research. When a body of 

research is sufficient enough (publication 

studies >3), investigation beyond the primary 

research via meta-analysis is warranted. 

- Objective and transparent. Meta-analyses are 

based on well-defined guidelines and a set of 

procedures, instead of e.g. subjective 

interpretations.     

- Robust and replicable. Meta-analytic results 

(random effects models) will often generalize to 

the universe of possible study findings in the 

given area.    

- Research consolidation. Meta-analysis can serve 

as catalyst to disentangle relevant from less 

relevant factors.    

- Publication bias. Meta analyses allow to 

estimate publication bias in the report of 

primary studies.    

 

Limitations 

- Apples and oranges argument. Meta-analysis is 

criticized for the tendency of analysts to mix 

incommensurable studies without accounting 

for differences. 

- Garbage in, garbage out. Meta-analytic results 

depend on the methodological quality of the 

source studies. 

 

Table 2 Table 2 Table 2 Table 2 ����    General Steps on conducting a Meta-Analysis 

Steps 

1. Developing hypotheses/research questions  

2. Conducting a systematic search 

3. Extracting study-level information and generating 

reliability statistics 

a. Data to calculate effect sizes 

b. Study-level characteristics (moderators 

variables) 

4. Handling dependent effect sizes 

5. Analyzing data 

a. Omnibus test(summary effect) 

b. Heterogeneity test 

c. Meta-regression  

6. Examining diagnostics 

7. Reporting findings  
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Therefore, we know that upon completion of this 

fictional treatment, participants included in the 

psychotherapy treatment condition will be expected to 

improve (on average)  ½ standard deviation above that 

of the control group for outcome one and nearly a full 

standard deviation for outcome two. From the 

“universe” of possible studies that could have been 

conducted, 8 studies were randomly selected to use as a 

running example. We should expect, based on sampling 

error alone, that there will be variation from the “true” 

population effects among these studies. That is, no one 

study will be a perfect representation of the true 

population effects because each study is a random 

sample from the entire population of plausible 

participants (and studies). Details on the meaning of an 

effect size is provided below. 

Getting started  

We will begin by first installing the relevant R packages 

and then loading them into the current R session. At the 

command prompt (“>”) in the R console, type: 

library(compute.es)# TO COMPUTE EFFECT SIZES 

library(MAd)       # META-ANALYSIS PACKAGE 

library(metafor)   # META-ANALYSIS PACKAGE 

Note that anything following the pound sign (“#”) will 

be ignored. This is useful for inserting comments in the 

R code, as is demonstrated above. To follow along with 

the examples provided in this chapter, first load the 

following fictional psychotherapy data (which are 

available when the MAd package is loaded) with 

data(dat.sim.raw, dat.sim.es) 

or, run the supplementary R script file 

(‘tutorial_ma_data.R’) found on the journal’s web site. A 

description of the variables in these datasets are 

presented in Tables 4 and 5.  

Computing Effect sizes  

An effect size (ES) is a value that reflects the magnitude 

of a relationship (or difference) between two variables.  

The variance of the ES is used to calculate confidence 

intervals around the ES and reflects the precision of the 

ES estimate. The variance is mostly a function of sample 

size in the study which approaches 0 as the sample size 

increases to infinity. The inverse of the variance is 

typically used to calculate study weights, where larger 

studies are more precise estimates of the “true” 

population ES and are weighted heavier in the 

summary (i.e., omnibus) analyses.  

Table 3Table 3Table 3Table 3 � Examples of inclusion/exclusion criteria for psychotherapy meta-analyses 

 

- Search areas: Specific journals, data bases (PsycINFO, Medline, Psyndex, Cochrane Library), platforms 

(EBSCO, OVID), earlier reviews, cross checking references, google scholar, authors contact 

- Written language: English, German, Mandarin, French 

 

- Design: e.g. randomized controlled trials, naturalistic settings, correlational (process-) studies 

 

- Publication: Peer review, dissertations, books, unpublished data sets 

 

- Patient population: participants inclusion criteria of the primary studies (such as diagnosis), exclusion 

criteria of primary studies (such as exclusion of substance use disorder), age (e.g. children, adolescents, 

older adults), participants that were successfully recovered in a prior treatment, number of prior 

depressive episodes 

- Treatment: psychotherapy, cognitive behavioral therapy, psychodynamic therapy, medication, time 

limited / unlimited treatment, relapse prevention, pretreatment training, internet therapy, self-help 

guideline 

- Outcomes: All reported outcomes, selected constructs, selected questionnaires, number of participants 

with clinical significant changes. 

- Comparisons of treatment groups: Direct comparisons of treatment, indirect comparisons, treatment 

components, non-bonafide treatments (control/treatment groups that does not intend to be fully 

therapeutic) 

- Therapists: Educational level (e.g. masters students, PhD students, licensed therapists), profession 

(psychologists, psychiatrists, social worker, nurses, general practitioners),  

- Assessment times: Post assessment, months of follow-up assessments 
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For the running example, the ES refers to the 

strength of the psychotherapy treatment effect. There 

are several types of ESs, such as standardized mean 

difference (Cohen’s d and Hedges’ g) and correlation 

coefficients (See Table 6). The type of ES used will be 

dictated by the meta-analytic research question. In our 

running example, we will compute standardized mean 

difference ESs, because the outcome is continuous, the 

predictor is dichotomous (treatment versus control), 

and means and standard deviations are available. ESs 

and their variances should be computed for each study 

to assess the variability (or consistency) of ESs across 

all included studies and to derive an overall summary 

effect (omnibus). 

The standardized mean difference ES, Cohen’s 

(1988) d, is computed as  

  (1) 

where OPQ and  OPR are the sample mean scores on the 

outcome variable at post-treatment in the two groups 

and sd
pooled

 is the pooled standard deviation of both 

group means, computed as: 

  (2) 

where n1 and n2 are the sample sizes in each group and 

S1 and S2 are the standard deviations (SD) in each 

group. The pooled SD has demonstrated superior 

statistical properties than other denominator choices 

(e.g., control group SD at pre-treatment) when 

calculating d (Hoyt and Del Re, In process). The 

variance of d is given by:  

  (3) 

where ST is the harmonic mean. Cohen’s d has been 

shown to have a slight upward small sample bias which 

can be corrected by converting d to Hedges’ g.  To 

compute g, a correction factor J is computed first: 

  (4) 

where df is the degrees of freedom (group size minus 

one).  The correction factor J is then used to compute 

unbiased estimators g and Vg:  

  (5) 

  (6) 

For example, to calculate g for outcome one, the mes 

function (which computes ESs from means and SDs) 

can be run as follows:  

res1 <- mes(m.1  =  m1T, m.2  =  m1C,  

 sd.1  =  sd1T, sd.2  =  sd1C,  

 n.1  =  nT, n.2  =  nC, id  =  id,  

 data  =  dat.sim.raw ) 

Table 4Table 4Table 4Table 4 � Description of dat.sim.raw dataset Table 5 Table 5 Table 5 Table 5 ����    Description of dat.sim.es dataset 

VariableVariableVariableVariable    DescriptionDescriptionDescriptionDescription    

id Study ID 

nT Treatment group N 

nC Control group N 

g Unbiased estimate of d 

var.g Variance of g 

pval.g p-value of g 

outcome Outcome (g1 or g2) 

dose Continuous moderator: Number 

of therapy sessions 

stress Categorical moderator: Average 

distress level in sample 

 

 

VariableVariableVariableVariable    DescriptionDescriptionDescriptionDescription    

id Study ID 

nT Treatment group N 

nC Control group N 

m1T (m2T) Treatment group mean for both 

outcomes 

m1C (m2C) Control group mean for both 

outcomes 

sd1T (sd2T) Treatment group SD for both 

outcomes 

sd1C (sd2C) Control group SD for both 

outcomes 

dose Continuous moderator: Number 

of therapy sessions 
stress Categorical moderator: Average 

distress level in sample 
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Table 6Table 6Table 6Table 6    ����    Choice of ES depends on research question 

ESESESES    Outcome typeOutcome typeOutcome typeOutcome type    Predictor typePredictor typePredictor typePredictor type    

Correlation coefficient  Continuous Continuous 

Mean difference (d or g) Continuous Dichotomous 

Odds ratio (or Log odds) Dichotomous Dichotomous 

 

where the output from the mes function is being 

assigned (<- is the assignment operator) to the object 

res1.  m.1 and m.2 are the arguments of the function 

for means of both groups (control and treatment), 

sd.1 and sd.2 are for standard deviations of both 

groups,  and n.1 and n.2 are for sample sizes of both 

groups. See the compute.es package documentation 

for further details.  

We will now work with the dat.sim.es dataset 

(see Table 5), which contains ESs (for each outcome) 

generated from mes() using dat.sim.raw dataset. 

This data can be loaded into R (when the MAd package 

is loaded) with data(dat.sim.es) at the command 

prompt. This dataset is in the ‘long’ format, where each 

study provides two rows of data (one for each 

outcome). The long data format is ideal for further 

processing of data that have dependencies among 

outcomes, as is the case in this sample data. That is, 

each study reports multiple outcome data from the 

same sample and these data are not independent. 

Therefore, prior to deriving summary ES statistics, it is 

recommended to address dependencies in the data, 

which will be explained below.  

Aggregating dependent effect sizes 

Meta-analysis of interventions for a single sample often 

yield multiple ESs, such as scores reported on two or 

more outcome measures, each of which provides an 

estimate of treatment efficacy. The meta-analyst can 

either choose to either (1) include multiple ESs from 

the same sample in the meta-analysis, or to (2) 

aggregate them prior to analysis, so that each 

independent sample (study) contributes only a single 

ES.   

It is widely recommended to aggregate dependent 

ESs because including multiple ESs from the same study 

can result in biased estimates. Further, ignoring 

dependencies will result in those studies reporting 

more outcomes to be weighted heavier in all 

subsequent analyses.  

There are several options for aggregating ESs.  The 

most common, but not recommended, procedure is the 

naïve mean (i.e., simple unweighted mean). Procedures 

that account for the correlation among within-study 

ESs are recommended. These include univariate 

procedures, such as Borenstein, Hedges, Higgins, and 

Rothstein (BHHR; 2009), Gleser and Olkin (GO; 1994), 

and Hedges (2010) procedures and multivariate/multi-

level meta-analytic procedures. Based on a large 

simulation study testing the most common univariate 

procedures, BHHR procedure was found to be the least 

biased and most precise (Hoyt & Del Re, 2015). This 

procedure, along with others, have been implemented 

into the MAd package. Aggregating dependent ESs 

based on the BHHR procedure is demonstrated below:  

dat.sim.agg <- agg( 

 id  =  id, es  =  g, var  =  var.g, 

 n.1  =  nT, n.2  = nC, cor  = 0.5, 

 method  =  "BHHR", data  = dat.sim.es 

) 

In this example above, the output from the 

aggregation function is being assigned to the object 

dat.sim.agg. The arguments of the agg function are 

id (study ID), es (ES), var (variance of ES), n.1 and 

n.2 (sample size of treatment and control, 

respectively), cor (correlation between ESs, here 

imputed at r = 0.5), method (Borenstein, et al. or 

Gleser and Olkin procedures), and data (dataset). The 

dependent dataset (dat.sim.es) is now aggregated 

into one composite ES per study (dataset 

dat.sim.agg). Note the imputation of  r = 0.5. This 

value was chosen because it is a conservative (and 

typical) starting value for aggregating psychologically-

based ESs (e.g.,  Wampold,  Mondin, Moody, et al., 

1997). Availability of between-measure correlations 

within each study are often not available and such 

starting imputation values are reasonable, although 

sensitivity analyses with several values (e.g., ranging 

perhaps from r=.3 to r=.7, although these values may 

differ depending on the particular substantive area 

under investigation) are recommended prior to 

running omnibus or meta-regression models.   

Returning to our data, notice that study-level 

characteristics (moderators of dose and stress) 

were not retained after running agg(). Therefore, we 

will add these moderator variables back into the 

dataset and also display a sample of 3 rows of the 

updated data (dat.sim.final), as follows: 

dat.sim.final <- cbind( dat.sim.agg,  

 dat.sim.raw[, c(12:13)] ) 

dat.sim.final[sample(nrow(dat.sim.final),3),] 
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which will display a random sample of rows, here 

being: 

      id    es    var  dose  stress 

Study 3 0.550  0.052     9     low 

Study 8 0.225  0.048     7     low 

Study 4 1.135  0.048    11    high 

Here es is the aggregated ES and var is the 

variance of ES. Note that the appropriate choice of 

standardized mean difference (d or g) and its variance 

to aggregate depends on the aggregation method 

chosen. Hoyt and Del Re found that using Hedges’ g 

(and Vg) is preferred when using Borenstein’s method 

(BHHR) and Cohen’s d (and Vd) is preferred with Gleser 

and Olkin’s methods (GO1 or GO2).  

After within-study dependencies among outcomes 

have been addressed, the three main goals of meta-

analysis can be accomplished. These goals are to (1) 

compute a summary effect (via omnibus test), (2) 

calculate the precision or heterogeneity of the summary 

effect, and (3) if heterogeneity between studies is 

present, identify study characteristics (i.e., moderators) 

that may account for some or all of that heterogeneity 

(via meta-regression).  

Estimating summary effect 

The summary effect is simply a weighted average of the 

individual study ES, where each study is weighted by 

the inverse of the variance (mostly a function of sample 

size in the study—larger studies are weighted heavier 

in the omnibus test). There are several modeling 

approaches for calculating the summary effect and 

choice of procedure depends on the assumptions made 

about the distribution of effects.  

The fixed-effects approach assumes between-study 

variance ( XR ) is 0 and differences among ESs are due 

to sampling error. The fixed-effect model provides a 

description of the sample of studies included in the 

meta-analysis and the results are not generalizable 

beyond the included set of studies. The random-effects 

approach assumes between-study variance is not 0 and 

those ES differences are due to both sampling error and 

true ES differences in the population—that is, there is a 

distribution of “true” population ESs. The random-effect 

model considers the studies included in the analysis as 

a sample from a larger universe of studies that could be 

conducted. The results from random-effects analyses 

are generalizable beyond the included set of studies 

and can be used to infer what would likely happen if a 

new study were conducted.  

The random-effects model is generally preferred 

because most meta-analyses include studies that are 

not identical in their methods and/or sample 

characteristics. Differences in methods and sample 

characteristics between studies will likely introduce 

variability among the true ESs and should be modeled 

accordingly with a random-effects procedure, given by: 

  (7) 

where   is the true effect for study , which is assumed 

to be unbiased and normally distributed,  is the 

average true ES, and , where the variance 

of the within-study errors  is known and the between-

study error is unknown and estimated from the 

studies included in the analysis.  

A random-effects omnibus test can be conducted 

using the mareg function in the MAd package. This 

function is a “wrapper”, an implementation of the rma 

function in the metafor package (Viechtbauer, 2010). 

The following code demonstrates the random-effects 

omnibus test: 

m0 <- mareg( 

 es ~ 1, var =  var, method  = "REML", 

 data = dat.sim.final 

) 

where the output from the omnibus test is saved as m0 

(which stands for “model 0”). The arguments displayed 

here (see documentation for further arguments) for the 

mareg function are es (ES, here the composite g), 

var (variance of ES), method (REML; restricted 

maximum likelihood), and data (dataset). The mareg  

function works with a formula interface in the first 

argument. The tilde (~) roughly means “is predicted by” 

, to the left of  ~ is the outcome variable (ES) and to the 

right is the predictor variable (omnibus or 

moderators). For omnibus models, 1 is entered to the 

right of the ~, meaning it is an intercept-only model 

(model not conditional on any moderator variables). 

See the documentation in the MAd and metafor 

packages for further details. To display the output of 

the omnibus test, type: 

summary(m0) 

which outputs  
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Model Results:   

   

  estimate    se     z  ci.l  ci.u  p 

      0.80  0.13  6.12  0.54  1.05  0 

  

  Heterogeneity & Fit:   

          QE   QEp     QM  QMp 

       16.23  0.02  37.50    0 

 

where estimate is the summary ES for the included 

studies, se is the standard error of ES, z is the z-

statistic, ci.l and ci.u is the lower and upper 95% 

confidence interval (CI), respectively, and p is the p-

value for the summary statistic.  The Heterogeneity 

statistics refer to the precision of the summary ES and 

provides statistics on the degree to which there is 

between-study ES variation. Heterogeneity will be 

discussed further in the following section.  

Interpreting these summary statistics, we find that 

the overall effect is g+  =  .80 (95% CI  =  0.54, 1.05), 

indicating there was a "large" (based on Cohen's 

interpretive guidelines; 1988) and significant treatment 

effect at post-testing. In other words, the average end of 

treatment outcome score for the psychotherapy group 

was nearly a full standard deviation higher than that of 

the control group. Therefore, based on the k = 8 

psychotherapy intervention studies, 67% of treated 

patients are better off than non-treated controls at 

post-test. However, based on the Q-statistic (QEp; 

measure of heterogeneity), there appears to be 

statistically significant heterogeneity between ESs and 

further examination of this variability is warranted.  

Heterogeneity  

As noted above, heterogeneity refers to the 

inconsistency of ESs across a body of studies. That is, it 

refers to the dispersion or variability of ESs between 

studies and is indicative of the lack of precision of the 

summary ES. For example, suppose the overall 

summary effect (overall mean ES) for the efficacy of 

psychotherapy for anxiety disorders is medium (i.e., it 

is moderately efficacious) but there is considerable 

variability in this effect across the body of studies. That 

is, some studies have small (or nil) effects while others 

have very large effects.  In this case, the overall 

summary effect may not provide the most accurate or 

important information about this treatment’s efficacy.  

Why might inconsistencies in treatment effects 

exist? Perhaps specific study characteristics, such as 

treatment duration, are related to this variability.  So, 

suppose that some studies included in the meta-

analysis have a short treatment duration and that 

others have a long treatment duration. If treatment 

duration had a positive relationship with treatment 

effect—that is, if ESs increase as the average number of 

treatment sessions is longer—then the meta-analyst 

will likely find that the number of treatment sessions 

accounts for at least some of the variation in ESs. The 

meta-analyst may then choose to examine other 

potential moderators of treatment effects, such as 

treatment intensity, severity of psychiatric diagnosis, 

and average age in the sample.  

There are two potential sources of variability that 

may explain heterogeneity in a body of studies. The first 

is the within-study variability due to sampling error. 

Within-study variability is always present in a meta-

analysis because each study uses different samples. The 

second source of heterogeneity is the between-study 

variability, which is present when there is true 

variation among the population ESs. 

The most common ways of assessing heterogeneity 

is with the Q-statistic, , and I2-statistic. There are 

other procedures, such as the H2-statistic, H-index, and 

ICC, but they will not be detailed here. The Q-statistic 

provides information on whether there is statistically 

significant heterogeneity (i.e., yes or no heterogeneity), 

whereas the I2-statistic provides information on the 

extent of heterogeneity (e.g., small, medium, large 

heterogeneity). 

Q is the weighted squared deviations about the 

summary ES, given by: 

    (8) 

which has an approximate χ2 distribution with k - 1 

degrees of freedom, where k is the number of studies 

aggregated. Q-values above the critical value result in 

rejection of the null hypothesis of homogeneity. The 

drawback of the Q-statistic is that it is underpowered 

and not sensitive to detecting heterogeneity when K is 

small (Huedo-Medina, Sánchez-Meca, Marin-Martinez, 

& Botella, 2006).   

I2 is an index of heterogeneity computed as the 

percentage of variability in effects sizes that are due to 

true differences among the studies ( Hedges & Olkin, 

1985; Raudenbush & Bryk, 2002) and represents the 

percentage of unexplained variance in the summary ES. 

The I2 index assesses not only if there is any between-

2
τ
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study heterogeneity, but also provides the degree to 

which there is heterogeneity . It is given by 

  

where df is the degrees of freedom (k-1). The general 

interpretation for the I2-statistic is that I2  =  0% means 

that all of the heterogeneity is due to sampling error 

and I2  = 100% indicates that all of the total variability 

is due to true heterogeneity between studies.  An I2 of 

25%, 50%, and 75% represents low, medium, and large 

heterogeneity, respectfully. 

Returning to our running example, the 

heterogeneity output from the omnibus model m0 will 

now be clarified. The heterogeneity statistics QE refers 

to the Q-statistic value, QEp is the p-value for the Q-

statistic, QM is the Q-statistic for model fit and QMp is 

the p-value for QM. The results of the omnibus model 

indicate there is between-study variation among ESs 

based on the statistically significant Q-statistic (QEp = 

0.02). Note that QMp refers to the overall model fit, 

which equals the p-value for the ES estimate in single 

moderator models but may change if multi-moderator 

models are computed (as will be demonstrated below).  

Although the Q-statistic indicates the presence of 

heterogeneity between ESs, it does not provide 

information about the extent of that heterogeneity. To 

do so, I2 (and other heterogeneity estimates) and its 

uncertainty (confidence intervals) from the omnibus 

model can be displayed, as follows: 

confint(m0, digits = 2) 

which outputs 

      estimate  ci.lb  ci.ub 

tau^2      0.08  0.00   0.44 

tau        0.28  0.03   0.67 

I^2(%)    56.14  1.15  88.27 

H^2        2.28  1.01   8.52 

Here, I2 = 56% [1%, 88%], indicating there is a 

moderate degree of true between-study heterogeneity. 

However, there is a large degree of uncertainty in this 

estimate—roughly speaking, we are 95% certain the 

true value of I2 is between 1% (all heterogeneity is 

within-study from sampling error) and 88% (most 

heterogeneity is due to true between study 

differences). The large degree of uncertainty in the I2 

estimate is not surprising given low statistical power 

due to inclusion of a small numbers of studies 

(Ioannidis, Patsopoulos, & Evangelou, 2007). 

The effect and heterogeneity estimates are depicted 

visually with a forest plot in Figure 1. In this plot, the 

first column displays the study and the last column 

displays the details of the ESs and confidence intervals. 

In the center, each ES is visually displayed (square 

point) along with their confidence intervals. The size of 

the point reflects the precision of the ES estimate 

Figure 1Figure 1Figure 1Figure 1 � Forest plot  
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(larger studies have larger points). At the bottom, the 

diamond point represents the summary effect.  

Given these results, it appears this treatment effect 

is not consistent across the body of k = 8 studies. 

Therefore, examining study characteristics (i.e., 

moderators) that may account for some or all of this 

heterogeneity is warranted.  

Applying moderator models 

When ESs are heterogeneous, determining what study 

characteristics that might account for the dispersion in 

the summary effect should be considered. However, it is 

important for meta-analysts to be selective in in their 

analyses and test only those study characteristics for 

which a strong theoretical case can be made, to avoid 

capitalizing on chance (Type I error) and identifying 

spurious moderator variables (Hunter & Schmidt, 

2004).  

In this fictional dataset, we have identified two 

moderator variables to examine with mixed-effects 

models (also called “meta-regression” or “moderator” 

or “conditional” models). The effects of each moderator 

variable will be analyzed individually, prior to being 

analyzed jointly in a multiple moderator model. For 

example, examining dose moderator in a mixed-effects 

model is given by 

  (9) 

where γ0 is the expected effect for a study when the 

moderator is zero, centered at the grand mean, or 

centered in another way.  If a moderator variable 

accounts for the effects detected, the fixed effect γ1 will 

be significantly different than zero (p-values < .05) and 

the variance, , will be reduced. Note that these 

models have limited statistical power, because the 

degrees of freedom is based on the number of studies 

that can be coded for the study characteristic analyzed.   

To examine the dose moderator (continuous 

variable) under a mixed-effects model, the following is 

entered at the R command line: 

m1 <- mareg( 

 es ~ dose, var  =  var,  

 data  =  dat.sim.final 

) 

summary(m1)  # DOSE MODERATOR 

which outputs 

 Model Results:   

  

       estimate  se    z     ci.l  ci.u    p 

intrcpt -0.68  0.41  -1.64  -1.49  0.13   0.1 

dose     0.15  0.04   3.66   0.07  0.23     0 

 

 Heterogeneity & Fit:   

  

         QE    QEp     QM  QMp 

       2.82   0.83  13.40    0 

Notice that on the right hand side of the formula, 

dose has now been entered, which can be interpreted 

as “es predicted by dose”. The intercept (intrcpt), 

γ0, is -0.68 and, based on the p-value (p; α set at 0.05), is 

not statistically significant. Given the lack of 

significance, this coefficient should not be interpreted. 

However, if it were significant, it means that when 

treatment participants have 0 psychotherapy sessions, 

we expect the average ES to be -0.68. Despite lack of 

statistical significance, this finding is not particularly 

meaningful anyway because psychotherapy without a 

single session is not psychotherapy! Nevertheless, in 

this case we can roughly interpret the intercept as the 

average control group ES compared to the treatment 

group, which, not surprisingly, is similar to the omnibus 

ES.  One possibility for making the intercept value more 

meaningful, at least in this case (and only for non-

dichotomous variables), is to center the moderator 

variable to a meaningful value. For example, centering 

the dose moderator to the average value across the 

studies included in the meta-analysis will make the 

intercept term more meaningful. It will provide 

information about the average treatment effect for a 

study with the typical number of psychotherapy 

sessions (average dosage). This will not be elaborated 

on any further here but see the R code available on the 

journal’s web site for examples of how to center 

moderator variables.   

The statistically significant slope coefficient, γ1 =  

0.15, can be interpreted much like ordinary least 

squared regression models, where a one unit change in 

the predictor (here dose moderator variable) results in 

an expected change of γ1 in the outcome. Given this is a 

continuous variable, we expect that for each additional 

psychotherapy session, the ES will increase by 0.15 and 

we are 95% certain that the true effect lies somewhere 

between 0.07 and 0.23. Therefore, a participant who 

completes 10 sessions of this fictional therapy (average 

number of sessions in this dataset) is expected to 

v
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improve by g = 0.79 above that of the control group. 

This can be manually computed at the R command line 

as follows: 

y0 <- m1$b[1]  # INTERCEPT 

y1 <- m1$b[2]  # SLOPE 

# AVERAGE NUMBER OF SESSIONS  =  10 

x1 <- mean(dat.sim.final$dose)   

# TO CALCULATE EXPECTED ES WITH 10 SESSIONS 

y0 + y1 * x1   

which outputs 

0.79 

See Figure 2 (panel a) for a visual representation of 

the data. The Q-statistic p-value (QEp) is now 

nonsignificant, indicating that this moderator accounts 

for a large proportion of the between-study variance in 

ESs and reducing and I2 to 0 (which can be 

displayed by running confint(m1) at the command 

line). However, uncertainty in these heterogeneity 

estimates are again wide (I2 range from 0% to 53%), so 

should be interpreted with caution. In a non-fictional 

dataset, it is unlikely that a single moderator will 

account for all of the between-study heterogeneity.  

The stress moderator (dichotomous variable) in 

a single-moderator mixed-effects model: 

m2 <- mareg( 

 es ~ stress, var  =  var,  

 data  =  dat.sim.final 

) 

summary(m2)  # SINGLE MODERATOR 

which outputs  

 Model Results:   

  

        estimate   se     z    ci.l   ci.u  p 

intrcpt    0.97  0.11   9.23   0.76   1.18  0 

stressLow -0.59  0.20  -3.00  -0.97  -0.21  0 

 

 Heterogeneity & Fit:   

         QE    QEp    QM  QMp 

       6.43   0.38  9.04    0 

The stress variable modeled here is categorical 

(“high” or “low” values) and the interpretation of slope, 

γ1, is similar but somewhat different than that for 

continuous variables. Notice that the slope name is 

stressLow. The reason for this is that the reference 

level for this variable is “high” and the “low” level is 

being compared to that of the reference level. The high 

stress group is represented here by the intercept term 

and the low stress group is represented by the slope 

term (γ1). Therefore, the high stress group improved by 

g = 0.97 (almost a full standard deviation) at post-test 

compared to the control, whereas the low stress group 

ES of g = -0.59 improved by g = 0.38 (i.e., ghigh – glow  = 

0.97-.59 = 0.38) compared to control. Therefore, 

therapeutic effects here appear to be moderated by 

stress levels, such that those with higher stress tend to 

improve to a greater extent than those in the lower 

stress group when tested at the end of treatment. See 

Figure 2 (panel b) for a boxplot representing these 

findings. The boxplot is a useful visualization for 

displaying the distribution of data, where the thick line 

(usually in the center) represents the median, the box 

represents 50% of the data, the tails represent the 

maximum and minimum non-outlying datapoints, and 

anything outside the tails are outlying data. Note here 

there are only two datapoints for the low stress group. 

In a real situation, one would interpret these findings 

with great caution, as there are not enough data to be 

confident in the summary effect for that group. Because 

these data are for demonstration purposes, we will 

proceed with further moderator analyses. 

Each of the above moderator results are based on 

single-predictor models. Perhaps these findings are 

important in isolation but it is crucial to determine the 

extent to which there may be confounding (i.e., 

correlation) among these variables. If study 

characteristics are correlated, results from single 

moderator models need to be interpreted with caution. 

Examining the correlation between variables can be 

accomplish with: 

with( 

 dat.sim.final,  

 cor(dose, as.numeric(stress)) 

)   

which returns 

-0.60 

This indicates that there is a strong (negative) 

correlation between these variables, although they are 

not multicollinear (not measuring the same underlying 

construct). This confounding is displayed as a boxplot 

(with coordinates flipped) in Figure 2 (panel c), where 

stress is on the y-axis and dose on the x-axis. 

Therefore, it is important to examine these variables in 

a multi-moderator model to tease out unique variance 

attributable to each variable while controlling for the 

2
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effect of the other moderator variable. 

Confounding among moderator variables.   

Ignoring potential confounds among moderator 

variables may lead to inaccurate conclusions regarding 

moderator hypotheses (one of the most important 

conclusions of a meta-analysis, Lipsey, 2003). For 

example, in the bereavement literature, patient severity 

has been found to moderator outcome, such that high 

risk patients (“complicated grievers”) have been found 

to have better outcomes after treatment than “normal” 

grievers (Currier, Neimeyer, & Berman, 2008). In fact, 

these findings have sparked debate about the 

legitimacy of treatment for normal grievers (e.g., should 

normal grievers even seek treatment?).  

However, recent meta-analytic evidence (Hoyt, Del 

Rey & Larson, 2011) suggests these differences are 

completely explained by treatment dose (i.e., number of 

therapy session). They found that studies involving 

high-risk grievers had longer treatment duration than 

those studies involving lower risk grievers, which when 

examined in a multiple-moderator model, the 

difference in outcome for high-risk and low-risk 

grievers disappeared (was not statistically significant). 

Said another way, the amount of treatment is what 

mattered and not the degree to which the patient was 

grieving, contrary to findings based on single 

moderator models.  

Returning to the running example, when including 

both moderators (dose and stress), the formula for 

Figure 2Figure 2Figure 2Figure 2 � Visualizing continuous and categorical moderator variables 

 

Note. Hedges’ g effect size (ES) is on the y-axes (panels a, b and d) and treatment dose (panel a, c and d) and stress 
(panel b) are on the x-axes. Each point represents a study and the size of the point represents the study weight 
(inverse of variance), where larger points are larger sample size studies and are therefore more precise estimates of 
the population ES. Panel a displays the impact of dose on ES with the slope coefficient (y1) line indicating there is a 
strong positive relationship. Panel b displays a boxplot of the ES distribution for both levels of the stress moderator 
variable. Panel c displays a boxplot (with coordinates flipped) of the confounding between moderators, such that 
those in the high stress group have a larger dose than those in the low group. Panel d displays the same information 
as panel a but has now distinguished the two levels of the stress moderator, where the high stress group is depicted 
by the blue triangle point and the low stress group depicted by the red circle points. 
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a mixed-effect model yields 

  (10) 

In this equation, γ0 is the expected effect for a study 

when all the moderators are at zero and γ1 and γ2 are 

the expected differences in ES per unit change in each 

of the moderators, while holding the other moderator 

constant.  If γ1 remains statistically significant in this 

model, it can be inferred that the treatment dosage 

(dose) is a robust moderator in the sense that it is not 

confounded with the other moderator.   

The code and output for this model yields a 

strikingly similar effect as 

m3 <- mareg( 

 es ~ dose + stress, var  =  var,  

 data  =  dat.sim.final 

) 

summary(m3)  # MULTIPLE MODERATOR 

which ouptputs 

 Model Results:   

  

        estimate  se    z    ci.l   ci.u   p 

intrcpt   -0.26 0.57  -0.45  -1.38  0.87  0.70 

dose       0.11 0.05   2.18   0.01  0.21  0.03 

stresslow -0.26 0.24  -1.07  -0.73  0.22  0.29 

 

 Heterogeneity & Fit:   

  

        QE   QEp     QM  QMp 

      1.69  0.89  14.54    0 

 

the findings from the grief meta-analysis (which was 

intentional for demonstrative purposes). Here we find 

that with both moderator variables in the model, dose 

remains statistically significant but stress becomes 

nonsignificant. This is displayed visually in Figure 2 

(panel d). Therefore, as in the grief meta-analytic 

findings, when controlling for treatment dose, stress 

levels are not relevant. And, expectedly (given the 

single predictor heterogeneity estimates), the p-value 

for the overall model fit is significant (QMp) and the Q-

statistic is nonsignificant (although uncertainty in

and I2 remains large, e.g., I2 range from 0% to 50%). 

This demonstrates the importance of taking caution 

when interpreting single moderator models without 

first examining potential confounding between 

moderator variables.  

Sensitivity analyses and diagnostics  

Given space constraints, this section will not be 

afforded the attention it deserves but the reader is 

referred to Viechtbaur and Cheung’s  (2010) study on 

diagnostics for meta-analysis. There are several 

diagnostic tools available for meta-analysis, including 

tools for publication bias (e.g., funnel plot, trim and fill, 

fail-safe N) and tests to determine the impact/influence 

of a study on omnibus and mixed-effects outcome (e.g., 

Cook’s distance, externally standardized residuals, 

radial plots). The meta-analyst should always examine 

for publication bias and influential studies.  

An examination for potential publication bias (“file-

drawer problem”) is generally the first recommended 

diagnostic test and will be the only one examined in this 

section. Publication bias refers to the possibility that 

studies showing a statistically significant effect are 

more likely to be published than studies with null 

results which could bias the summary effect. The funnel 

plot is a useful visualization to examine for publication 

bias. It is a scatter plot of the ES (on the x-axis) and a 

measure of study precision (generally the standard 

error of ES on the y-axis). Asymmetry in the funnel may 

be indicative of publication bias but in some cases this 

plot can be fairly subjective. Creating a funnel plot can 

be achieved with: 

# EXAMINE PUBLICATION BIAS VISUALLY  

funnel(m0)   

Based on the plot (Figure 3) there is no visual 

indication of publication bias. There are several 

additional publication bias and diagnostic procedures 

demonstrated in the R file on the journal’s web site and 

the reader is referred there for details on these 

procedures. 

Reporting findings 

As in other empirical investigations, the quality of a 

meta-analytic study is only as good as its clarity, 

transparency, and reproducibility.  Precision in 

documenting each of the many steps involved in 

conducting a meta-analysis can be challenging. It can be 

useful to keep a diary about the various decisions – 

sometimes even the small ones – that were made at 

each step. The MARS guidelines and the PRISMA 

statement offer a standard way to check the quality of 

reports, and to ensure that readers have the 

2
τ



 ¦ 2015 � vol. 11 � no. 1 

 

 

 

 TTTThe QQQQuantitative MMMMethods for PPPPsychology 

  

  

  
  
  

T 
Q 
M 
P 

  
    

  

  

  
  
  

  
    

49 

information necessary to evaluate the quality of a meta-

analysis.  

CCCConclusiononclusiononclusiononclusion    

Meta-analysis is one of the standard tools for providing 

transparent, objective, and replicable summaries of 

research findings. In this tutorial, many of the basic 

steps involved in conducting a meta-analysis were 

detailed and demonstrated using R packages that are 

freely available for meta-analysis. Interested readers 

can reproduce each of the steps demonstrated here by 

running the supplementary R script file found on the 

journal’s web site.  

AAAAuthor's noteuthor's noteuthor's noteuthor's note    

I would like to thank Dr. Christoph Flückiger for his 

contributions to an earlier version of this paper. 
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