
 ¦ 2015 � vol. 11 � no. 2 

 

 

 

 TTTThe QQQQuantitative MMMMethods for PPPPsychology 

  

  

  
  
  

T 

Q 

M 

P 

  
    

  

  

  
  
  

  
    

52 

Partial Least Squares Regression  
in the Social Sciences 

Megan L. Sawatsky a, Matthew Clyde a, Fiona Meek ����, a 

a School of Psychology, University of Ottawa 

 

AbstractAbstractAbstractAbstract � Partial least square regression (PLSR) is a statistical modeling technique that extracts latent factors to explain both 
predictor and response variation. PLSR is particularly useful as a data exploration technique because it is highly flexible (e.g., 
there are few assumptions, variables can be highly collinear). While gaining importance across a diverse number of fields, its 
application in the social sciences has been limited. Here, we provide a brief introduction to PLSR, directed towards a novice 
audience with limited exposure to the technique; demonstrate its utility as an alternative to more classic approaches (multiple 
linear regression, principal component regression); and apply the technique to a hypothetical dataset using JMP statistical 
software (with references to SAS software). 
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IntroductionIntroductionIntroductionIntroduction    

Statistical modeling techniques attempt to understand 

the relationship between predictor (or observed) 

variables and response variables. Oftentimes, there 

exists interdependency among the predictor variables, 

such that the variation in the predictor(s) reflects 

variation of a smaller number of underlying variables. 

These underlying, unobserved predictor variables are 

referred to as latent factors. Partial least squares 

regression (PLSR) is a statistical regression technique 

used to extract linear combinations of the predictors—

the latent factors—in order to predict one or more 

responses. Unique to PLSR, the extracted factors 

account for both predictor and response variation.   

PLSR is appealing as a statistical technique in that it 

is relatively versatile compared to other predictive and 

regression techniques (e.g., there are few assumptions). 

This is because the emphasis is not necessarily on 

understanding the relationships between predictor 

variables, but rather on extracting the latent factors. 

PLSR is known as a soft science application because it is 

most appropriate for datasets with a relatively high 

number of variables, when the identification of a hard 

model relating all of the variables would be too complex 

(Tobias, 1995). As such, PLSR is also recognized for its 

utility in data exploration. For example, PLSR may be 

useful during pilot testing when the number of 

observations (cases) may be low compared to the 

number of predictor variables.  

It is worthwhile to point out that in addition to PLSR 

there are other partial least squares (PLS) approaches 

that can be used to derive latent variables. For instance, 

PLS path modelling (PLS-PM) is a method of modeling 

complex causal networks among latent variables 

(Haenlein & Kaplan, 2004; Tenenhaus, Vinzi, Chatelin, & 

Lauro, 2005) and is most similar to structural equation 

modelling (SEM; Hox & Bechger, 1998). Unlike SEM, 

which is covariance-based and is designed to maximize 

model fit, PLS-PM is component-based and is designed 

to maximize prediction. PLS-PM has been demonstrated 

to outperform SEM when there is a small number of 

observations and when other assumptions (e.g., the 

distribution of the predictors/indicators) are not met 

(see Reinartz, Haenlein, & Henseler, 2009). Another 

variant is PLS correlation (PLSC), which, like a 

correlation, examines information that is common 

among variables (Abdi & Williams, 2013; Van Roon, 

Zakizadeh, & Chartier, 2014). A special issue of the 

journal Computational Statistics & Data Analysis (Vinzi 

& Lauro, 2005) comprises 12 papers from the 2nd 

International Symposium on PLS and Related Methods 

and is a rich resource for those interested in additional 

approaches to and uses of PLS.  

The next section presents an overview of PLSR, 

including its underlying model, followed by a 

discussion comparing PLSR to other regression 

techniques, such as multiple linear regression (MLR) 

and principal component regression (PCR). PLSR will 

then be applied to a social sciences related dataset that 
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was generated for the purpose of this paper. In this 

simple example, we extract a two-factor model to 

predict a single continuous response. Analyses will be 

performed using JMP version 10 (a statistical program 

produced by SAS) with references to SAS version 9.3.  

Usefulness of Usefulness of Usefulness of Usefulness of PLSRPLSRPLSRPLSR    

PLSR is considered a flexible technique; as such, it is 

particularly useful in instances where other predictive 

or regression techniques are not appropriate. For 

instance, PLSR can be applied to various “shapes” of 

data: PLSR is appropriate to use when there are a 

greater number of predictor and/or response variables 

relative to observations (wide data); when there is a 

greater number of observations relative to variables 

(tall data); or, when the number of observations and 

variables is equal (square data; Cox & Gaudard, 2013; 

Haenlein & Kaplan, 2004). While the predictor 

variables must be continuous, the response variable(s) 

can be continuous or categorical. Moreover, unlike 

other statistical techniques such as MLR, PLSR can be 

used when the predictor variables are highly collinear 

(or correlated). 

Another important advantage of PLSR is that it 

requires few assumptions. Although not imperative, the 

data should be relatively normally distributed and 

should be screened for influential outliers prior to 

analysis. When the data is not normally distributed or if 

there are extreme outliers, a logarithmic 

transformation can be performed prior to analysis.  

It is recommended that data be centered and scaled 

prior to analysis to ensure that each variable has an 

equal opportunity to influence the model. Centering 

means that for each variable, the mean of all the 

observations is subtracted from each individual 

observation, and scaling refers to dividing the variable’s 

standard deviation from each observation. After 

centering and scaling, all variables will have a mean 

equal to zero and a standard deviation equal to one, 

thereby preventing variables with higher variance to be 

overly influential in the model. Note that, if desired, it is 

possible to assign a variable a higher scaling weight so 

that it has greater influence in the model. Most 

statistical software programs include centering and 

scaling in the default settings.  

In regards to missing data, by default most 

statistical programs (including JMP and SAS) 

automatically exclude observations with missing 

variables from the analysis. When observations have 

missing predictor variables but no missing response 

variables, a prediction coefficient is nonetheless 

computed. JMP also allows for missing data to be 

imputed using one of two methods: mean or 

expectation-maximization (see Cox & Gaugard, 2013). 

Underlying ModelUnderlying ModelUnderlying ModelUnderlying Model    

PLSR works by identifying a linear regression model by 

projecting the predicted variables and the response 

variables into a new lower dimensional space in order 

to control for collinearity among the variables (Tobias, 

1995; Van Roon et al., 2014). Within the new space, the 

underlying relationships between two matrices—the X 

matrix (predictors) and the Y matrix (responses)—are 

investigated. The model attempts to identify the 

direction within the X space that explains the maximum 

amount of variance in the Y space. Simply, PLSR aims to 

identify the underlying factors that explain the greatest 

variance between the predictors and the response(s). 

The underlying model of PLSR is: 

  

in which 

-    XXXX and Y Y Y Y are the matrices of predictors (n × m matrix of 

predictors) and responses (n × p matrix of responses), 

respectively; 

---- TTTT and UUUU represent projections of X X X X (X scores) and YYYY (Y 

scores) and are both n ×    l matrices; 

-    PPPP and QQQQ represent orthogonal loading matrices for the 

projected X and Y scores; and, 

-    EEEE and F F F F are the error terms for the predictor matrix 

and the response matrix, and are assumed to be 

independent. 

The overall goal is to use the underlying factors to 

predict the responses in the population. This is done by 

extracting factors TTTT and UUUU (the projected X and Y scores 

from a data sample). The extracted factors TTTT (X scores) 

are used to predict UUUU (Y scores), and then the predicted 

Y scores are used to construct predictions for future 

responses.  

To reiterate, PLSR takes into account both the X 

(predictors) and Y (responses) scores in order to 

extract the latent variables, whereas some of the other 

extraction methods either only take into account the X 

scores or the Y scores. Further, the precise number of 

extracted factors is based on the maximum variance 

that can be accounted for with the fewest number of 

factors. 

The two most commonly used algorithms (i.e., 
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prediction formulas) in JMP and SAS, are nonlinear 

iterative partial least squares (NIPALS; Wold, 1980) 

and statistically inspired modification of the PLS 

method (SIMPLS; de Jong, 1993). Both algorithms 

maximize the covariance between X and Y for each 

factor and produce identical PLSR prediction scores for 

a single response variable in Y. The predictive models 

differ slightly for multivariable responses, for which 

SIMPLS is the preferred method. The difference 

between the two algorithms, to put it simply, is that 

NIPALS maximizes covariance by working with the 

residuals, while SIMPLS works directly with the 

centered and scaled X and Y scores. In this paper, we 

focus on NIPALS—the more traditional method of 

fitting PLSR models.  

Factor ExtraFactor ExtraFactor ExtraFactor Extractionctionctionction    

Predictive methods, such as PLSR, identify linear 

combinations of the predictors and extract factors that 

can be used to predict one or more responses. PLSR 

extracts one factor at a time and, in doing so, it attempts 

to explain as much predictor variation and response 

variation as possible. Other extraction techniques 

derive the factors by attempting to only explain as 

much predictor variation or as much response variation 

as possible, without considering the other. 

The number of factors that are extracted depends on 

the data. The more factors that are extracted, the better 

the model fits the data; however, extracting too many 

factors can cause overfitting. Overfitting results from 

over-tailoring the model to fit the specific dataset, 

which is detrimental to the factors’ ability to predict 

future responses. As such, the number of factors 

extracted from a dataset should explain as much 

predictor and response variation as possible with the 

fewest number of factors.  

A method referred to as cross validation provides 

assistance when determining the optimal number of 

factors to extract. Cross validation involves fitting the 

model to a portion of the data, minimizing the 

prediction error for the unfitted part, and applying the 

model repeatedly to different portions of the data. In 

other words, the dataset is first divided into two or 

more groups, and then the model is fit to all groups 

except for one in order to determine the model’s 

capacity to predict responses for the omitted group. 

Cross validation minimizes the risk of overfitting the 

model by striking a balance between modeling the 

intrinsic structure of the data and modelling the noise. 

Although cross validation is the default in both JMP and 

SAS, it is possible to specify the initial number of factors 

to be extracted, without employing this technique. 

Test set validation is a simple technique whereby 

the model is developed with a portion of the data (test 

set) and validated using another subset of the data 

(training set). Test set validation can only be used when 

the dataset has a sufficient number of observations for 

the training and test sets to adequately represent the 

predictive population. This is because test set 

validation is highly dependent on the specific 

observations that are included in the training and test 

sets, meaning that an outlier can unduly influence the 

result. That being said, the minimum number of 

observations required is smaller for PLSR compared to 

other techniques: In the example below, 30 

observations are split into a test set and a training set. 

In JMP, this technique is called the holdout method. In 

SAS, test set validation can be implemented using the 

CV=TESTSET(dataset) option to specify the dataset 

containing the test set.   

If there is insufficient data to make sizable training 

and test sets that are representative of the predictive 

population, alternative cross validation techniques can 

be employed, whereby the observed data is 

systematically divided in several different ways to form 

the training and test sets. Users of JMP Pro (see Cox and 

Gaudard, 2013) can choose k-fold or leave-one-out 

cross validation methods. With k-fold validation, data 

are randomly split into a certain number (k) of subsets 

(or folds), with an equal number of observations in 

each fold (by default k = 7). Each fold is omitted once 

and used as the test set, while the remaining folds make 

up the training set. The leave-one-out method is similar, 

but the number of folds is equal to the number of 

observations; thus, each observation is omitted once 

and used as the test set, while the remaining 

observations are used as the training set (also see Van 

Roon et al., 2014). 

The cross validation methods offered in SAS are 

similar to those mentioned above (see SAS Institute 

Inc., 1999). Blocked validation (CV=BLOCK) omits 

successive blocks of observations as test sets. Split-

sample validation (CV=SPLIT) omits groups of data 

composed of every nth observation beginning with the 

first observation, every nth observation beginning with 

the second observation, etc. The number of test sets in 

blocked and split-sample validation can be specified by 

including the desired number in parentheses after the 

specified option. Random sample validation 

(CV=RANDOM) selects test sets at random. One-at-a-
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time validation (CV=ONE) is the same as the leave-one-

out method in JMP Pro. 

As outlined by Arlot and Celisse (2010), choosing 

the most suitable cross validation method is highly 

dependant on the features of the dataset. The leave-

one-out (or one-at-a-time) method can be used with 

very small datasets, but it tends to result in highly 

variable error estimates. As such, the k-fold method in 

JMP Pro is generally preferred. In SAS, if the observed 

data are serially correlated, blocked or split-sample 

validation may be most appropriate. 

For all cross validation techniques, the optimum 

number of extracted factors is usually that which 

results in the absolute minimum predicted residual 

sum of squares (PRESS) statistic. This statistic is based 

on the residuals generated via the cross validation 

process. There are, however, times when the PRESS 

value for a smaller number of factors is only marginally 

higher than the absolute minimum PRESS value. For 

example, if the PRESS value for three factors is 0.728, it 

is only marginally higher than the smallest absolute 

PRESS value for two factors, 0.726. In instances such as 

this, the van der Voet’s statistic (van der Voet, 1994) 

can be used to determine the optimum number of 

factors.  

The van der Voet statistic randomly selects different 

models and compares the residuals to that of the model 

that minimizes the PRESS statistic. The van der Voet 

statistic selects the smallest number of factors with 

residuals that are not significantly greater than the 

residuals of the model with the smallest absolute PRESS 

value. As such, the van der Voet statistic will extract the 

same number of factors as the PRESS statistic or fewer 

factors. The van der Voet statistic is automatically 

provided in JMP output and can be requested in SAS 

using the CVTEST option (see SAS Institute Inc., 1999). 

In addition to cross validation, the PRESS statistic, and 

the van der Voet statistic, interpretability should be 

considered when determining the appropriate number 

of factors.  

Comparison Between Comparison Between Comparison Between Comparison Between PLSRPLSRPLSRPLSR    & Other Regression & Other Regression & Other Regression & Other Regression 

TechniquesTechniquesTechniquesTechniques    

At this point, we have described the theoretical 

background of PLSR and have outlined how it is 

applied. Before providing an example of an application 

of PLSR, we would like to briefly touch on why one 

might choose to use PLSR over other prediction 

techniques. Multiple linear regression (MLR) is often 

the starting point when there are multiple predictors 

and a continuous outcome measure. Consider the 

simple case of a single response, where n is the number 

of observations and m is the number of predictors. In 

order to obtain estimates of the beta coefficients, MLR 

requires that a number of assumptions be met: there 

should be more observations than predictors (n > m), 

and the predictors (m) should be linearly independent 

of one another (see Campbell, 2006). When attempting 

to model increasingly complex problems, the number of 

predictors required to model the outcome(s) increases, 

and so does the likelihood of breaching these 

assumptions. When the n < m assumption is not met, 

MLR is unable to generate accurate estimates of the 

beta coefficient without resorting to more complex 

methodology (e.g., stepwise methods).  

A common issue in psychological research is the 

problem of multicollinearity (i.e., when the predictors 

are highly correlated). Multicollinearity can result in 

redundancy and can lead to high variability in the 

coefficients (see Mason & Perreault Jr, 1991). One of 

the proposed methods for dealing with this issue is 

through a reduction in the dimensionality. In this case, 

the use of principal component regression (PCR) might 

be considered an appropriate choice. PCR is an 

extension of principal component analysis (PCA; see 

Dunn Iii, Scott, & Glen, 1989), in which correlated 

variables are grouped into sets of uncorrelated 

variables known as the principal components. In PCR, 

the same techniques that are applied in PCA are used to 

project predictors into its principal components, and 

then use this reduced dimensionality (the components) 

in the regression of the response variable. Through this 

orthogonal projection, PCR is able to deal with the 

problem of multicollinearity via dimension reduction 

and is able to generate predictive models using the 

principal components through regression. See Geladi 

and Esbensen (1991) for a more detailed description of 

the procedure, and Sutter, Kalivas, and Lang (1992) for 

information regarding the selection of principal 

components.  

One caveat is that with PCR, the component 

reduction occurs only for the predictors, ignoring the 

relationship between the predictors and response 

variable(s). As such, the procedure might eliminate 

some predictors that, although not as meaningful to the 

generated components, could exert a large influence in 

the model of the response. Rather than focus solely on 

the variance within the predictors (as in PCA/PCR), 

PLSR attempts to maximize the covariance between the 

predictors and the response(s) when extracting the 
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latent factors. By taking into account both the 

predictors and the response(s), PLSR can be applied to 

complex distributions in which there is a large number 

of potentially correlated predictors and can,  therefore, 

be used to generate models with good predictive 

validity. Care should be taken when determining which 

technique to employ, as the choice can vary heavily 

depending on the type of data (see Huang & Harrington, 

2005; Wentzell & Vega Montoto, 2003).  

Applying Applying Applying Applying PLSRPLSRPLSRPLSR    to a Psychologyto a Psychologyto a Psychologyto a Psychology----Related ExampleRelated ExampleRelated ExampleRelated Example    

The following example
1
 illustrates the application of 

PLSR to a hypothetical dataset relevant to psychology, 

specifically forensic psychology. Decisions regarding 

the sentencing and parole of an offender are made 

based on the likelihood that an offender will commit 

future criminal acts (i.e., recidivate). Several risk 

factors have been associated with the likelihood of 

recidivism (e.g., age of first offense, delinquent peer 

group, psychopathy).  

Imagine a hypothetical scale called the Recidivism 

Prediction Scale (RPS) where scores range from 0 to 

100 (a score of 100 indicates complete confidence that 

the individual will reoffend). RPS scores are, 

hypothetically, generated after extensively examining 

an individual’s dispositional, contextual, and clinical 

risk factors, and this process can involve clinical 

interviews, psychometric and physiological tests, and a 

review of the offender’s file. Next, imagine that a group 

of researchers wishes to simplify this evaluation 

process. They question whether RPS scores can be 

accurately predicted using a smaller number of easily 

measured risk factors.  

To do so, the researchers select 16 risk factors, 

which can be assessed by examining the offenders’ files. 

Examples include the offenders’ current age (Age), 

score on the Psychopathy Checklist Revised (PCLR; 

Hare, 2003), and history of substance abuse (SA). Next, 

the researchers select data from a random sample of 30 

offenders with known RPS scores from two 

penitentiaries. Table 1 presents the data for each of the 

30 offenders. Note that the columns with the predicted 

RPS scores (pred rps) and the logarithmically 

transformed RPS scores (pred log_rps) are generated 

later in this example. 

Data from the offenders in penitentiary A (n = 15) 

are used to train the model, and those from 

                                                                    
1 This example was inspired by those provided in Cox and 

Gaudard (2013). 

penitentiary B (n = 15) are used to test the model. 

Because forensic settings can pose challenges for 

recruitment and data collection—resulting in a smaller 

number of observations relative to predictors—and 

because the study is exploratory, the researchers 

decide that PLSR is the ideal prediction technique to 

employ. Using PLSR, the researchers aim to determine 

a) whether a few underlying predictive factors account 

for most of the variation in RPS scores, b) whether all 

16 predictor variables contribute to the model, and c) 

whether this model can accurately predict RPS scores.  

In this example, figures and outputs are generated 

using JMP version 10 software; references to SAS 

version 9.3 are made throughout. JMP is particularly 

useful for data exploration because of the multitude of 

highly informative figures that can be easily 

produced—several of which are demonstrated below. 

In JMP, PLSR can be found under the analyze tab by 

selecting multivariate methods and partial least 

squares. In SAS, PLSR is computed using the PROC PLS 

statement followed by a specification of the predictor 

and response variables in the MODEL statement. For a 

thorough outline of PROC PLS and the available options, 

see chapter 51 in the SAS/STAT User’s Guide (SAS 

Institute Inc., 1999). 

Prior to analysis, the distributions of the predictor 

and response variables should be assessed. In this 

example, the original RPS scores are highly negatively 

skewed. As shown in Table 1, the RPS scores (rps) are 

logarithmically transformed (log_rps). All predictor 

variables are sufficiently normally distributed and so 

no transformation is performed. As previously stated, 

the first 15 observations are used to build the PLSR 

model. As such, the dataset is split into training and test 

sets by excluding and hiding rows 16 to 30 (i.e., rows 

with ID values 16 to 30).  

Once the PLS statistic is selected, the predictor and 

response variables must be specified. This is important 

because the predictor variables are measured on 

different scales and have different means and standard 

deviations. Next, in the JMP Model Launch window, the 

type of PLSR algorithm must be specified. In this 

example, we are predicting a single continuous 

response variable and so the NIPALS and SIMPLS 

algorithms would produce identical prediction scores. 

We accept the default NIPALS (NIPALS is also the 

default algorithm in SAS). 

For demonstration purposes, Figure 1 shows the 

NIPALS output for the maximum number of factors (X-Y  
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score plots are shown for the first seven factors only). 

In both JMP and SAS, the maximum number of factors 

that can be extracted for any given dataset is 15. First, 

we can see that the correlation between the X 

predictors and the Y response is highest for the first 

few factors and decreases with each subsequent factor. 

We can also see that 100% of the variation of X and Y is 

explained with 14 factors. Remember, it is important to 

Table 1Table 1Table 1Table 1 � Hypothetical dataset used in PLS example  
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A 1 5 0.70   4.08 0.61 3 34 2 45 1 55 10 6 14 10 9 7 56 76 57 3 

A 2 7 0.85   7.02 0.85 5 37 3 45 2 62 2 3 15 12 2 4 6 6 5 1 

A 3 17 1.23 14.99 1.18 22 10 6 5 5 52 12 4 16 10 11 5 44 60 45 3 

A 4 9 0.95   6.33 0.80 10 35 3 70 1 63 4 5 12 10 4 5 6 12 9 3 

A 5 2 0.30   3.17 0.50 6 28 4 60 4 62 17 8 17 12 17 7 22 32 24 3 

A 6 78 1.89 84.88 1.93 38 8 10 2 20 22 16 2 12 18 16 8 51 50 38 5 

A 7 2 0.30   3.47 0.54 3 32 1 26 2 45 15 4 18 12 15 5 41 40 30 3 

A 8 34 1.53 25.58 1.41 30 9 8 3 14 24 14 6 17 10 14 5 38 42 32 3 

A 9 7 0.85   5.70 0.76 6 30 7 55 2 62 12 5 16 11 12 7 60 64 48 3 

A 10 12 1.08 18.26 1.26 16 29 6 56 10 45 2 4 14 14 2 4 2 6 5 3 

A 11 15 1.18 23.69 1.37 25 18 6 15 11 46 3 7 16 15 3 3 4 12 9 1 

A 12 18 1.26 14.99 1.18 20 19 6 16 11 56 4 8 19 15 4 7 19 32 24 1 

A 13 17 1.23 11.24 1.05 21 20 7 17 11 58 18 3 20 15 17 5 31 30 23 1 

A 14 37 1.57 37.48 1.57 32 9 8 2 15 25 19 4 12 15 20 6 45 44 33 1 

A 15 4 0.60   3.21 0.51 3 32 1 26 4 60 13 5 18 10 13 8 78 46 35 3 

B 16 9 0.95   4.64 0.67 9 34 2 60 5 62 12 6 13 12 12 4 2 70 53 2 

B 17 12 1.08 16.40 1.21 16 30 5 54 12 50 3 3 16 16 3 4 5 10 8 3 

B 18 11 1.04 19.76 1.30 15 13 6 55 14 60 2 7 14 14 2 4 3 16 12 3 

B 19 27 1.43 24.87 1.40 22 14 7 4 10 40 12 5 13 15 12 5 5 32 24 1 

B 20 28 1.45 18.08 1.26 23 29 8 4 12 40 13 5 15 12 13 5 6 60 45 1 

B 21 51 1.71 51.18 1.71 35 8 8 3 17 25 14 2 15 14 12 6 3 74 56 1 

B 22 2 0.30   3.47 0.54 3 32 1 26 2 45 15 4 18 12 15 5 2 6 50 3 

B 23 4 0.60   3.78 0.58 8 28 1 26 2 54 16 4 18 13 16 5 1 40 30 1 

B 24 17 1.23 11.55 1.06 22 20 7 17 12 58 18 3 20 15 18 5 31 30 29 3 

B 25 37 1.57 32.47 1.51 31 9 8 3 15 26 19 5 13 15 20 6 5 14 11 1 

B 26 76 1.88 82.94 1.92 38 8 9 3 20 21 16 2 11 18 16 6 51 50 57 3 

B 27 52 1.72 56.09 1.75 33 19 8 16 17 24 2 3 15 12 2 4 6 6 5 1 

B 28 16 1.20 14.97 1.18 20 20 6 17 16 60 12 4 16 10 12 8 8 60 45 3 

B 29 12 1.08 18.26 1.26 16 29 6 56 10 45 2 4 14 14 2 4 2 12 9 3 

B 30 6 0.78   4.27 0.63 4 34 2 30 4 54 5 8 17 12 10 5 1 32 24 3 

 

Note. Variables represent: Psychopathy Checklist Revised (PCLR; Hare, 2003); age of first offense (AFO); aggressiveness (Aggr); 
impulse control (ImC); antisociality (AnS); age (Age); criminal attitudes (CA); substance abuse (SA); prior arrests (Arr); history 

of maladjustment (HM); negative affect (NA); prior charges (Ch); treatment index (TI); income (In); mental status scale (MSS); 

number of children (Chld). 
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choose the number of factors that maximizes the 

covariance between X and Y scores without overfitting 

the data. 

To select the optimum number of extracted factors, 

we run PLSR using cross validation. The results indicate 

that the smallest value for the PRESS statistic is for two 

factors (PRESS = .53; see Figure 2).  With two factors, 

61% of the variation is explained for X and 88% of the 

variation is explained for Y.  

This example will be continued using two factors; 

however, it should be acknowledges that the van der 

Voet statistic indicates that a two-factor model is not 

significantly different than a one-factor model. 

Remember, the number of factors selected by the van 

der Voet statistic is the smallest number of factors with 

residuals that are not significantly different than the 

residuals of the model with the smallest absolute PRESS 

value. While the number of extracted factors is left to 

the discretion of the researcher (who should consider 

the interpretability of the factors), the model with the 

fewest factors is typically preferred. In this example, 

the predictors tend to cluster into factors related to the 

offender’s personality and temperament (Factor 1), and 

demographics and criminal history (Factor 2). For this 

reason, we opt to use a two-factor prediction model.  

Under the NIPALS dropdown menu in JMP, a 

multitude of figures and plots can be selected that are 

useful for data exploration. First, the overlay loading 

plot (see Figure 3) shows the factor loadings for each 

predictor variable for Factor 1 and Factor 2. This plot 

helps us to visualize the relationships between the 

predictors and the extracted factors. Note that a similar 

plot is automatically produced showing the factor 

loadings for each response variable; this plot is not 

presented here because we are attempting to predict 

only one response variable and, therefore, the plot is 

uninformative. We can see that some predictors load 

heavily, in absolute terms, onto Factor 1 and minimally 

onto Factor 2, such as the variables PCLR and AFO. 

Next, we want to determine whether or not all 16 

variables are important to the model or if some can be 

pruned. The variable importance for the projection 

(VIP) statistic is defined as a weighted sum of squares 

of the weights (Wold, 1995). The higher a variable’s VIP 

score, the more influential it is in determining the PLSR 

model for both predictors and responses. Although VIP 

cut-off points vary throughout the literature, 

traditionally variables with VIP scores lower than 0.8 

are deemed as non-influential in the model. As shown 

in the VIP plot in Figure 4, 9 of the 16 variables have 

VIP lower than 0.8. For a variable to be considered for 

removal from the model, however, one must also look 

at its regression coefficient. 

The VIP versus coefficient plot is shown in Figure 5. 

The regression coefficient represents a predictor 

variables’ importance in predicting the response. While 

JMP will produce the VIP versus coefficient plots for 

both the original data and the centered and scaled data, 

one should only consider the latter, if indeed the data 

were centered and scaled (Cox & Gaudard, 2013). 

 

Figure 1 Figure 1 Figure 1 Figure 1 ���� NIPALS scores plots and percent variation explained plots for 15 extracted factors (in JMP). X-Y scores 

plots shown for first seven factors only. 
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Again, 9 of the 16 variables have VIP lower than the cut-

off of 0.8. We can also see that the absolute values of the 

regression coefficients for five of these variables (MSS, 

TI, Chld, In, Ch) are near zero. On the other hand, four of 

the nine variables with low VIP (Arr, CA, SA, NA) have 

absolute values that are relatively high and comparable 

to the other variables with VIP greater than 0.8. In 

general, if a predictor has a VIP less than 0.8 and a small 

regression coefficient, it can be confidently removed 

from the model. For this reason, five variables with low 

VIP and small coefficients (MSS, TI, Chld, In, Ch) are 

removed from the model. We will err on the side of 

caution and retain the other four variables with low VIP 

because their coefficients indicate that they may be 

influential in our model. The SAS/STAT User’s Guide 

provides the statements necessary to generate the VIP 

and regression coefficients (SAS Institute Inc., 1999). 

We are now going to run the pruned model using 

the same PLSR procedures as above while 

including only 11 of the 16 predictors. With 

the removal of these five predictors, the 

two-factor model explains a greater 

proportion of the variance of X and Y than 

the one-factor model: 69% and 90%, 

respectively (see Figure 6). As such, the 

model with the reduced number of 

predictor variables is a better fit. The 

reduced model is also preferable for the 

researchers who wish to predict RPS scores 

based on a fewer number of variables.  

The new prediction formula should be 

saved (under NIPALS options). Doing so 

adds a new column to the data set: the 

predicted response score (pred log_rps). 

From this score, we generated the antilog scores (pred 

rps) to facilitate the comparison of the actual and 

predicted RPS (see Table 1). Note that the prediction 

score will be generated for all observations, even if the 

observation was excluded from the analysis. Looking at 

Table 1, the actual and predicted RPS scores appear to 

be fairly similar. For example, the actual RPS score for 

offender 1 (ID 1) is 5 and his predicted RPS score is 4. 

To evaluate our prediction formula, we will assess 

the test set. To do so, we hide and exclude the rows of 

the offenders from Penitentiary A and make available 

the rows of the offenders from Penitentiary B. A visual 

comparison of the actual versus predicted RPS scores 

allows us to visually compare the scores and gauge the 

accuracy of the two-factor prediction model. The JMP 

graph builder can be used to plot the predicted versus 

actual scores (pred rps vs. rps). Figure 7 shows the 

accuracy of the model. The dotted line is the line of 

 
Figure 2 Figure 2 Figure 2 Figure 2 ���� PRESS and van der Voet statistics 

produced by cross validation (in JMP). 

 

 

Figure 3Figure 3Figure 3Figure 3    ���� Overlay loadings plot for the X predictors (in JMP). 

 

Factor 1 

Factor 2 

 
Figure 4Figure 4Figure 4Figure 4    ���� Variable importance plot (in JMP). 
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best-fit, where a slope of 1 would indicate that the 

model is highly accurate at predicting the response. The 

closer the data points (i.e., observations) are to the grey 

diagonal reference line, the more accurate the 

prediction formula. Also, if the prediction formula were 

completely accurate in predicting RPS, the line of best 

fit would overlap with the diagonal line. Altogether, this 

graph indicates that our prediction formula is fairly 

accurate at predicting RPS scores, particularly for lower 

scores where the points fall closer to the diagonal and 

best fit lines.  

In JMP, there are several other plots that can be 

produced to determine the acceptability of the 

predictive model (e.g., diagnostic plots; see Cox & 

Gaudard, 2013). It is up to the researcher to decide, 

based on the interpretability of the data, the degree of 

accuracy that is acceptable. In this hypothetical 

example it may in fact be more important to accurately 

predict lower response scores than higher response 

scores because the accuracy of decision-making 

regarding parole and sentencing may be more critical 

for offenders with low RPS scores. 

Using PLSR, we have been able to determine that 

indeed a subset of variables can be used to predict RPS. 

We now know that it would be worthwhile to attempt 

to replicate these findings using a larger sample of 

offenders. Once more data has been gathered, other 

prediction techniques could be employed to increase 

our confidence in the model and to better understand 

the relationships between the predictor and response 

variables and the underlying factors. 

ConclusionConclusionConclusionConclusion    

The primary focus of this paper was to outline PLSR as 

a predictive technique through factor extraction. As 

discussed in our introduction, PLSR is a powerful tool 

for generating and testing models in complex datasets. 

By using regression analysis as its base, and through its 

distinct way of producing latent variables, PLSR can 

help produce generalizable models across multiple 

predictors and responses. We highlighted how PLSR 

compares to and can help overcome issues found in 

other statistical procedures (e.g., MLR, PCR), and finally 

we presented guidelines on how PLSR can be applied.  

Our hypothetical example was produced using the 

JMP statistical software package. JMP is a powerful 

statistical package, designed as a more visual and 

interactive companion to SAS. We chose JMP precisely 

due to its ability to produce intuitive and informative 

graphical information. Wherever possible, we made 

reference to SAS—while providing additional 

references for those who are interested—because it is a 

 
Figure 5Figure 5Figure 5Figure 5 � NIPALS with two extracted factors for the 

pruned model (in JMP). 
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popular and versatile statistical program. 

We hope that this brief introduction to PLSR will 

encourage social sciences researchers to continue to 

learn about this technique and to discover its many 

uses (e.g., data exploration). As previously noted, PLS 

has additional nuances and variants that we did not 

cover. We focused on the application of PLSR to 

datasets with many predictors and a single response, 

but PLSR can also be used when the predictors and 

responses are multivariate. For those interested in 

more in-depth information, we would point to 

additional references (e.g., Abdi, 2007; Geladi & 

Kowalski, 1986; Helland, 1988; Rosipal & Krämer, 

2006; Wold, Ruhe, Wold, & Dunn, 1984).  
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