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AbstractAbstractAbstractAbstract � Applying linear mixed effects regression (LMER) models to psycholinguistic data was made popular by Baayen, 
Davidson, and Bates (2008). However, applied researchers sometimes encounter model specification difficulties when using such 
models. This article presents a multilevel specification of LMERs customized for typical psycholinguistic studies. The proposed 
LMER specifications with crossed random effects allow different combinations of random intercept effects or random slope 
effects to be specified directly for subject and item covariates. As a result, this approach allows researchers to describe, specify, 
and interpret a wide range of effects in an LMER more easily. Next, the syntax and steps involved in using the PROC MIXED 
procedure in SAS to fit the discussed models are illustrated.  Thirdly, various issues relating to model selection, specifically for the 
random component of LMER models with crossed random effects, are discussed. Finally, this article concludes with remarks 
about model specification and selection of the random structure in the context of analyzing psycholinguistic data using LMERs 
specifically. This paper provides readers conducting psycholinguistic research with a complete tutorial on how to select, apply, 
and interpret the multilevel specification of LMERs. 
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IntroductionIntroductionIntroductionIntroduction    

In a typical psycholinguistic study, the experimenter 

presents multiple test items to multiple subjects, and 

the subjects respond to each item. The classical analysis 

of such data uses two analysis of variance (ANOVA) 

tests: F1 analysis (by subject) and F2 analysis (by item) 

(Clark, 1973). 
 

and 
 

analyses investigate the 

condition means obtained for each subject and each 

item, respectively, and the  criterion is achieved 

when both analyses are significant. This standard 

approach implicitly treats the materials used in an 

experiment as fixed factors, but Clark (1973) coined the 

term "language-as-fixed-effect fallacy" to argue that 

random effects may be more appropriate for analyzing 

linguistic data. The quasi-F ratio ( ) is a random 

effects model that takes into account both item and 

subject variability, but this ratio cannot be computed 

when the data are unbalanced or when responses are 

missing for certain item/subject combinations. 

Therefore, the  (Clark, 1973) was proposed to be 

the minimum bound of the  and was used as a 

criterion in the analysis.  

The application of linear mixed-effects regression 

(LMER) models to psycholinguistic data was recently 

made popular by Baayen, Davidson, and Bates (2008). 

They offer a general introduction to the modeling 

framework and discuss the advantages LMER has over 

traditional methods. They describe how models can be 

fitted using the lmer package in R (R Development Core 

Team, 2008). Since the time that this introductory 

paper and free software was made available, LMER has 

rapidly become a preferred analysis method in 

psycholinguistics and related fields (e.g., Kuperman & 

Van Dyke, 2011; Moreton, 2012; Staub, 2009). The 

popularity of the method is evidenced by the fact that 

since 2007, the Baayen and colleagues’ article (2008) is 

the most cited article in the Journal of Memory and 

Language (JML), thus demonstrating the method’s 

popularity. In addition, from November 2008 (vol. 59, 

issue 4) through November 2012 (vol. 67, issue 4), 67 

(22%) of the articles in JML used LMER or related 

techniques. A number of studies have demonstrated the 

various advantages mixed effects models have over 

traditional random-effects ANOVAs (e.g., Baayen et al., 

2008; Quené & van den Bergh, 2008). The key in the 

LMER is to have fixed and random effects in the model 

to account for the variation observed in the data. The 

different types of effects in LMER serve the context of 

psycholinguistic studies well and are discussed next.  

Tous
Stamp
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Experimental factors can be viewed as arising from 

effects that are either fixed or random. Different 

treatment manipulations are usually treated as 

different levels of a fixed effect. When an effect is 

treated as fixed, the inferential results are valid for the 

particular levels selected in the experiment. As 

information is limited to a particular sample, the error 

is usually underestimated when generalizing to another 

sample (e.g., the estimated confidence intervals are too 

narrow). Hence, assuming an effect is fixed when it is 

actually random produces overly optimistic estimates 

of the reliability of the effect in a new sample, resulting 

in inflated Type 1 error rates. Erroneously treating 

either subject or item effects as fixed in a recognition 

memory paradigm can cause surprisingly large Type 1 

error rates (Baayen et al., 2008; Rouder, 2005).  

In the context of analyzing psycholinguistic data 

using LMERs, random effects can be imposed on 

subjects and/or items. Including random subject effects 

is quite common and easy for psychologists because 

individual differences are the fundamental assumption 

in psychological studies. Situating this concept in a 

statistical context, random subject effects can be 

conceptualized as subjects that are sampled with 

replacements from a parametric distribution. For 

example, the gender (male, female) can be included as a 

subject covariate, and gender differences can be 

considered a systematic random subject effect. On the 

other hand, an example of random item effects can be 

found in word recognition studies. When a set of words 

is presented to subjects, these words may vary in some 

lexical dimensions of interest (e.g., phonological 

neighborhood density). As an example, the word 

frequency (high, low) can be treated as an item 

covariate, and the familiarity of the word stimuli can 

lead to systematic random item effects.   

Variations due to individual differences are usually 

treated as random effects. Random effects differ from 

fixed effects in several ways. First, instead of point 

estimates for parameters, the distribution (usually the 

variance) of the effect is estimated. Second, instead of 

assuming effects at specific levels, the random effects 

"explain" variations in the data. These two 

characteristics lead to the possible usages of random 

effects. If the degree of variation among the subjects or 

among the items is the research question, then 

estimating that variation and its structure is the 

primary task. On the other hand, the random effects can 

be treated as nuisance variables if the random 

component is used to account for as much variation 

(among items and/or subjects) as possible in the data. 

The Specification of LMER in Baayen et al. (2008)The Specification of LMER in Baayen et al. (2008)The Specification of LMER in Baayen et al. (2008)The Specification of LMER in Baayen et al. (2008)    

The specification of LMER promoted by Baayen et al. 

(2008) has the form of a regression equation, and the 

parameters and covariates are in matrix form. 

Specifically, it has the following form:  

  (1) 

where the vector represents the responses of 

subject i to item j, and denotes the design matrix 

consisting of ones in the first column and covariates in 

the other columns.  and  denote subject and item 

matrices, which are identical to the specifications of  

and  is the vector of the coefficients associated with

.  and are subject and item random effects 

assumed to be normally distributed with mean 0 and 

variance  and , respectively, and is the normally 

distributed residual term with mean 0 and variance .  

The specification in Equation (1) is not particularly 

intuitive or easy for applied researchers for the 

following reasons: (1) the subject and item covariates 

are both included in the design matrix ( ), although 

their effects are preferred to be discussed separately in 

practice; (2) the random intercept and random slope 

are not clearly represented in terms of whether they 

are associated with subject or item covariates; and (3) 

the vector of ones in the first column of , , and  

may not be familiar to applied researchers. Therefore, 

an alternative specification that is rooted in multilevel 

modeling is proposed and illustrated in this paper.  

The multilevel modeling techniques applied to item 

analysis in psycholinguistic research have been 

discussed in Locker, Hoffman, and Bovaird (2007). 

However, the specification proposed here uses a two-

layer representation to describe different effects. The 

first layer describes the relationship between the 

outcome and the covariates of interest. The second 

layer describes how the parameters of the first layer 

relate to the fixed and/or random components. This 

two-layer representation offers a simple and explicit 

presentation of the various effects researchers may 

wish to test.  

Multilevel Specifications of an LMER modelMultilevel Specifications of an LMER modelMultilevel Specifications of an LMER modelMultilevel Specifications of an LMER model    

The LMER offers a better approach to address the three 

issues of using the traditional univariate ANOVA 

approach. In this section, a multilevel specification of 

ij
y
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LMER models is described. The SAS PROC MIXED 

syntax for fitting each of the discussed models is also 

included. 

The multilevel framework consists of two layers. 

The first layer specifies a multiple linear regression 

model for the outcome variable where the subject and 

item covariates are represented as different terms. 

Specifically, the first layer is represented as 

 
,
 (2) 

where  is the residuals, as specified earlier in Baayen 

et al. (2008),  is the intercept coefficient, and   and 

 are the slope coefficients for the subject covariate 

( ) and item covariate ( ), respectively. For ease of 

illustration and interpretation, the illustration used 

here includes only one subject covariate and one item 

covariate1, and each has two levels. For example, two 

levels of the subject covariate ( ) might be 

participant gender (male, female), and two levels of the 

item covariate ( ) might be word frequency (high, 

low). Both covariates are coded using an effect coding 

scheme (e.g., -0.5 and 0.5). Centering at zero under the 

effect coding scheme allows easier and more intuitive 

interpretation of the effects, especially in interpreting 

                                                                    
1 The terms “covariates,” “predictors,” and “factors” are 

used interchangeably in preferring the X in the model 

to represent the experimental design, subject 

characteristics, or item properties. In this paper, the 

term “covariate” is used. 

 

the average effects and the effects between levels.  

In practice, studies have multiple subject and item 

covariates. The multiple covariates can be represented 

by adding additional terms to Equation (2). Specifically, 

the terms ( , , , ) and ( ) 

can be added in the first layer, with the associated 

coefficients representing the p subject and q item 

covariates.  

The second layer specifies the effects associated 

with the parameters in the first layer (i.e.,  , , and 

 ). The simplest case, a model without random effects, 

is specified using these equations: 

  (3) 

The model in Equation (3) is usually referred to as the 

baseline model or fixed effects only model because no 

random effects are included. The intercept ( ) is the 

sum of the intercept for the subjects ( ) and the 

intercept for the items ( ). But these two coefficients 

cannot be estimated separately, so the  is used in the 

equation to represent the additive effect of intercepts 

from subjects and items.  and  represent the mean 

effect of the subject covariate ( ) and the item 

covariate ( ) on the dependent variable y, 

respectively, after controlling for all other terms in the 

equation.  

Random Intercept Models 

When there are systematic variations in data (e.g., due 

to participant gender or the experimental 

manipulations), random effects can be included to 

Table 1Table 1Table 1Table 1 � Example of Long Format Data Structure 

 

SubID ItemID 
1ix  1j

x  
ij
y   

1 1 1 -0.5 123  

1 2 0 -0.5 145  

1 3 0 -0.5 225  

. . . . .  

1 10 1 -0.5 165  

. . . . .  

. . . . .  

. . . . .  

10 1 1 0.5 221  

10 2 0 0.5 167  

10 3 0 0.5 196  

. . . . .  

10 10 1 0.5 246  

 



 ¦ 2015 � vol. 11 � no. 2 

 

 

 

 TTTThe QQQQuantitative MMMMethods for PPPPsychology 

  

  

  
  
  

T 

Q 

M 

P 

  
    

  

  

  
  
  

  
    

81 

capture the patterns of variation. Variation can be 

associated with the subject characteristics, the item 

characteristics, or both. Let  and  denote 

independent random variables with the same assumed 

distribution that capture subject- and item-associated 

variation. More specifically, the random intercept 

effects for subjects ( ) and items ( ) are assumed to 

be normally distributed with a mean of zero and a 

variance of  and , respectively. They are also 

assumed to be independent from the residuals ( ). 

and  are also called subject and item residuals 

because they represent the degree of deviation from the 

overall mean.  

When we specify an intercept coefficient for 

subjects as , we have a random subject 

intercept model. By including a subject coefficient, we 

allow the outcome variable to vary by subject. The 

interpretation of such a model is that when all other 

factors are kept constant, subject i can deviate from the 

mean of the outcome variable Y by , where  is a 

realization of the random variable .  

Using PROC MIXED to fit this model requires the 

data to be structured in long format. Specifically, each 

row contains information about the responses (e.g., 

outcome, covariates, subject ID, item ID, etc.) of a trial. 

In other words, the number of rows in the data file for 

each subject equals the number of trials that subject 

responded to. An example of the long format data 

structure is illustrated in Table 1.  

The random subject intercept model described 

earlier can be represented in this two-layer 

specification: 

  (4) 

The random intercept effects for subject can be 

indicated by including the subject identification 

variable (SubID) in the random statement. Specifically, 

the PROC MIXED syntax for this model is: 

PROC MIXED data=Data1 method=REML ic; 

CLASS SubID ItemID; 

MODEL y = X_i X_j /solution; 

RANDOM intercept /subject=SubID; 

RUN; 

Like several other modeling procedures in SAS, 

PROC MIXED includes a CLASS statement and a 

MODEL statement. The solution option is used to 

request the printing of the estimates for all the fixed 

effects in the model together with standard errors, t-

statistics, and corresponding p-values for testing their 

significance. The CLASS statement names the 

classification variables to be used in the model. The 

MODEL statement is used to specify the fixed effects in 

the model. In this example, they are X_i and X_j subject 

and item covariates. The RANDOM statement is where 

users can specify the random effects they want to 

estimate. The random intercept effects for subjects 

(  ) is specified in the RANDOM statement: 

RANDOM intercept /subject=SubID;. The subject= 

option in the RANDOM statement is used to indicate 

the clustering/grouping variables.  

The same approach applies to the items; the model 

that includes random intercept effects for items, 

, implies that a particular item j may have 

a unique effect on the score Y by a degree of . Using 

the multilevel specification, this model is 

  (5) 

The SAS syntax to fit this random item intercept 

model is 

PROC MIXED data=Data1 method=REML ic; 

CLASS SubID ItemID; 

MODEL y = X_i X_j /solution; 

RANDOM intercept /subject=ItemID; 

RUN; 

The random intercept effects for items ( ) is 

specified in the RANDOM statement with the option 

set to be subject=ItemID.  

In addition, both subjects and items can have 

simultaneous systematic effects on the outcome 

variable through the specification of 

, which means that the outcome 

variable Y receives a unique effect from a particular 

subject answering to a specific item. Specifically, both 

RANDOM statements for the random intercept effect 

of subjects and items need to be included in the PROC 

MIXED procedure:  

PROC MIXED data=Data1 method=REML ic; 

CLASS SubID ItemID; 
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MODEL y = X_i X_j /solution; 

RANDOM intercept /subject=SubID; 

RANDOM intercept /subject=ItemID; 

RUN; 

Random intercept and slope models 

In addition to effects that can be attributed to either 

subject or item covariates (e.g., from gender or 

experimental manipulations), other systematic 

variations may exist in data. To account for otherwise 

unexplained individual subject or item variation, 

random slope effects can be included. Random slope 

effects are specified in the model by parameters  and 

 in Equation (2) for the effects of the subjects and 

items, respectively. The term "slope" can be somewhat 

confusing in the context of LMER. "Random slope 

effects" can be conceptualized as meaning that 

individual subjects (or items) behave differently when 

other factors are equal. That is, random effects on the 

slope parameters of  and  allow the slope of 

covariates  and  to vary in a systematic fashion. 

Like the random intercept effects, the random slope 

effects are assumed to be normally distributed with a 

mean of zero and a variance of  for subjects and  

for items.  

To formally define the random slope effects, let  

and  denote the random variables representing the 

random slope effects for subjects and the random slope 

effects for items. The random slope effects for subjects 

and items can be included in the model individually or 

simultaneously. A model that allows the response 

variable, Y, to differ due to systematic variations in the 

data (random intercepts) and individual differences 

(random slopes) for subject covariates is  

  (6) 

A model that allows the response variable, Y, to 

differ due to systematic variations in the data (random 

intercepts) and individual differences (random slopes) 

for item covariates is  

  (7) 

Moreover, a model that has random intercepts 

effects and random slopes for both subject and item 

covariates to the subject and item covariate 

respectively is  

  (8) 

Since the model specified in Equations (6)–(8) has 

both random intercept and random slope effects, the 

covariance between the random intercept and random 

slope effects must also be included in the model and are 

assumed to have the following form:  

  (9a) 

and 

  (9b) 

where  and  are the covariances between the 

random intercept and random slope effects for the 

subjects and items, respectively. The variances and 

covariances between the subjects and items are 

assumed to be independent, and all the random effects 

are also assumed to be independent of residuals.  

The random slope effects for subjects/items are 

specified by adding the subject/item covariate variables 

(X_i,X_j) to the corresponding random statements. The 

three sets of PROC MIXED syntax to fit the models in 

Equations (6)–(8) are as follows. 

For the model in Equation (6): 

PROC MIXED data=Data1 method=REML ic; 

CLASS SubID ItemID; 

MODEL y = X_i X_j /solution; 

RANDOM intercept X_i /subject=SubID type=UN; 

RANDOM intercept     /subject=ItemID; 

RUN; 

For the model in Equation (7): 

PROC MIXED data=Data1 method=REML ic; 

CLASS SubID ItemID; 

MODEL y = X_i X_j /solution; 

RANDOM intercept     /subject=SubID; 

RANDOM intercept X_j /subject=ItemID 
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type=UN; 

RUN; 

For the random intercept and random slope effects 

for the subjects and items in Equation (8): 

PROC MIXED data=Data1 method=REML ic; 

CLASS SubID ItemID; 

MODEL y = X_i X_j /solution; 

RANDOM intercept X_i /subject=SubID type=UN; 

RANDOM intercept X_j /subject=ItemID 

type=UN; 

RUN; 

The most complex model is to include both random 

subject and item intercept effect, and random slopes 

effects for both subject and item covariate 

simultaneously is 

  (10) 

The PROC MIXED syntax to fit this model in 

Equation (10) is 

PROC MIXED data=Data1 method=REML ic; 

CLASS SubID ItemID; 

MODEL y = X_i X_j /solution; 

RANDOM intercept X_i X_j/subject=SubID 

type=UN; 

RANDOM intercept X_i X_j /subject=ItemID 

type=UN; 

RUN; 

The system of specification equations presented 

above is similar to the two-level specification in a 

multilevel modeling framework. That is, in the current 

specification, the level 1 model specifies a regression 

model for the dependent variable explained by the 

covariates in this level. The parameters of the level 1 

model are specified at level 2 by including covariates 

and/or random effects. As the subject and item 

covariates are in the same level, the current structure is 

usually referred to as a crossed random effects model 

(Raudenbush, 1993), which is different from the 

traditional nested structure usually found in multilevel 

modeling (where the subject and item covariates are in 

different levels). 

In sum, the specifications of the LMER in the current 

paper explicitly separate the sources of the subject and 

item effects (subject and item covariates) and also the 

types of effects (fixed or random) with dedicated terms 

so that models can be specified with different 

combinations of random intercept or random slope 

effects on subject or item covariates. These 

specifications can be easily specified in the PROC 

MIXED statements. As a result, this framework allows 

researchers to more easily represent and specify a wide 

range of effects in an LMER2. 

The SAS output 

The SAS output for the previous specified models will 

include several parts. First of all, an “Estimation 

Iteration History” table is given to describe the 

iteration history. Second, the “Model Fitting 

Information” table shows general information of fit 

statistics (e.g., LL, AIC, BIC, -2LL, …). Next, a table 

labeled “Covariance Parameter Estimates (REML)” is 

given which contains parameter estimates for all 

random components in the model. Finally, due to the 

specification of the solution option in the MODEL 

statement, a table “Solution for Fixed Effects” is 

presented, which contains the parameter estimates, 

estimated standard errors, and t-tests for all fixed 

effects in the model. 

As has been discussed above, the different types of 

random effects in LMERs serve the context of 

psycholinguistic studies well. An LMER is an intuitive 

and flexible tool for model conceptualizations and 

specifications in data analysis. The second part of this 

paper will focus on the issues related to model selection 

under the framework of LMERs, with special attention 

paid to the random component. 

Model Selection for LMER ModelsModel Selection for LMER ModelsModel Selection for LMER ModelsModel Selection for LMER Models    

Model selection is an important step of any statistical 

analysis (for a general introduction to model selection 

see Hélie, 2006). In the context of LMERs, the task of 

model selection amounts to the selection of relevant 

explanatory variables (and interactions) in the fixed 

component and the structure of the random intercept 

and slope (with their covariance patterns) in the 

random component. The methods of model selection 

are usually discussed and studied separately for fixed 

effects and random effects; however, these two 

                                                                    
2 Sample SAS Code and toy dataset for the illustrated 

models are available upon request from the author.  
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components are related to each other as a change in the 

fixed effects component may affect the structure of the 

random component. This dependency between the 

fixed and random components also affects the 

estimations of parameters and therefore the statistical 

tests and predictions (Verbeke & Molenberghs, 2000). 

Consequently, the dependency between the fixed and 

random component should also be taken into 

consideration during the model selection process. 

A survey of journal articles suggests that most 

applications that have employed LMERs did not provide 

theoretical or empirical justifications for the decision 

about how the random structure would be determined 

in the final model. One main reason for this is because, 

to date, the process for determining the "best fit" 

random structure has not been well studied and, in 

terms of random components, the general guidelines 

for model selection still need to be formulated.  

The decision about the random structure in the 

LMER models is related to the role of the random 

effects. For most applications to psycholinguistic data, 

the "random component" is meant to account for or 

allow variability for subjects and/or items. By 

introducing the random effects, the dependency and 

variations in data can be better "modeled," "expressed," 

or "explained." For empirical data, we do not know the 

"true" structure of the random component; the best 

practice is to try to find the "best one" among the 

available candidate structures. 

The importance of considering fixed and random 

components jointly is well acknowledged and 

supported. In this paper, the discussion is limited to the 

structure of the random component, which has not 

been studied extensively, especially with regard to its 

psycholinguistic data applications. The next section 

discusses two general approaches to deciding the 

structure of the random component of an LMER—

hypothesis testing and using information criteria. 

Hypothesis Testing 

Likelihood ratio tests (LRTs) are commonly used when 

selecting between two nested models (Hox, 2002; 

Snijders & Bosker, 1999). The major advantage of an 

LRT is that it is not affected by the parameterization of 

the model (Hox, 2002). More specifically, the accuracy 

of the LRT does not depend on the estimates of the 

variances and their standard errors. However, the 

hypotheses testing approach may not be a desired 

framework for model selection for some applications 

(Burnham & Anderson, 2002, p. 36). For example, one 

would not use this approach for an LMER to select the 

random structure of the model because in this context, 

model selection is used to test whether the variance (or 

covariance) terms are equal to zero. Self and Liang 

(1987) refer to this type of hypothesis as a nonstandard 

testing condition because the parameters of the null 

hypothesis fall at the boundary of the parameter space. 

Based on Self and Liang's (1987) results, Stram and Lee 

(1994, 1995) show that the asymptotic null 

distribution for the LRT statistics for testing a 

hypothesis of this type often consist of a mixture of chi-

square distributions rather than the classical single chi-

squared distribution. Under more general conditions, 

for example, comparing models with k and k+k' (k'>1) 

 random effects, the null distribution is a mixture of  

random variables, and the weights for each component 

can only be calculated analytically in a number of 

special cases (Raubertas, Lee, & Nordheim, 1986; 

Shapiro, 1988). 

In the context of mixed effects modeling, several 

model selection methods using the hypothesis testing 

approach have been proposed. For example, 

Raudenbush and Bryk (2002) use chi-squared tests for 

random intercepts and slopes; Stoel, Garre, Dolen, and 

van den Wittenboer (2006) discuss the use of this 

mixture of chi-squared approaches in a more general 

context using the chi-bar-square  distribution; and 

Verbeke and Molenberghs (2003) propose using the 

score test to test the variance components. Although 

the LRT was also suggested for LMERs (Baayen et al., 

2008; Pinheiro & Bates, 2000, p. 83), there are no 

details as to whether corrections or adjustments to the 

test statistics should be made in order to test null 

hypotheses with boundary problems.  

It is important to note that when examining changes 

in model fit where the models differ in their random 

effects, the models need to be estimated using 

restricted maximum likelihood (REML). This is 

different when testing the significance of fixed effects 

where the parameters need to be estimated using 

maximum likelihood (ML). To test the significance of 

the random effects, the covtest option is included as a 

PROC MIXED option and is used to generate hypothesis 

testing output for variance and covariance components. 

Information Criteria 

Comparing the values of information criteria (IC) 

among candidate models is a common method of model 

selection for non-nested models. The IC are based on 

the log-likelihood value. A likelihood function describes 
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the probability of observing the sampled data. The main 

idea behind IC is to compare models based on their 

maximized log-likelihood value and to penalize for the 

use of too many parameters. Specifically, the idea is to 

arrive at a model that describes the observed data to a 

satisfactory extent but without unnecessary 

complications. This approach is consistent with the 

general preference of parsimonious theories and 

models.  

IC take the general form of 

  (11) 

where the  represents the degree of inaccuracy, 

the badness of the fit, or the bias when the ML 

estimates of the parameters of a model are used 

(Bozdogan, 1987, p. 356). The information criterion 

shown in Equation (11) suggests that, in addition to the 

badness of fit embedded in , the fit also 

penalizes for model complexity. The amount of penalty 

relating to model complexity is denoted as C. Therefore, 

the IC aim to find a good balance between model fitness 

(trying to maximize the likelihood function) and 

parsimony (penalizing additional complexity). It should 

be strongly emphasized that IC only provide rules of 

thumb to discriminate between several statistical 

models; they should never be used or interpreted as 

formal statistical tests of significance. 

The Akaike Information Criterion (AIC) (Akaike, 

1973) was one of the earlier IC propositions for model 

selection. AIC prefers a model that minimizes Equation 

(11) with C = 2 p, where p is the number of parameters 

in the model. Corrected Akaike Information Criterion 

(AICC) is a finite sample corrected version of AIC 

proposed by Hurvich and Tsai (1989). The consistent 

AIC (CAIC), where , was proposed by 

Bozdogan (1987). CAIC has the property of selecting 

models with fewer parameters than AIC. 

Deriving from a different theoretical background, 

the Bayesian Information Criterion (BIC) (Schwarz, 

1978) is also a common criterion used in model 

selection. Using the formulation in Equation (11), the 

penalty term for the BIC is . In addition, the 

Hannan-Quinn information criterion (HQIC) proposed 

by Hannan and Quinn (1979) is available in the output 

of the PROC MIXED statement. These IC are provided in 

the output when the ic option is included in the PROC 

MIXED options statement.  

The IC discussed are summarized in Table 2. As can 

be seen, AIC depends only on the number of 

parameters, while other measures depend on both the 

number of parameters and the sample size. The penalty 

term of BIC is more stringent than the penalty term of 

AIC for sample sizes larger than eight (  exceeds 

2 p). Consequently, the BIC tends to favor smaller 

models compared to the AIC. Note that when applying 

IC in an LMER context, additional attention is required 

for the determination of "N". Specifically, when using 

ML as the estimation method for fitting the model, the 

total sample (N) should be used as "N" in computing IC, 

while N – p should be used when using the restricted 

maximum likelihood method (REML) in the estimation 

(Verbeke & Molenberghs, 2000, p.75). It is also 

important to know that different statistical software 

may use different "N" and "p" when calculating IC, so 

values provided in the standard output need to be used 

carefully. Further discussion of this can be found in 

Gurka (2006). 

Remarks about Model Selection in LMER 

In terms of model selection, hypothesis testing and the 

use of IC methods offer two different approaches for 

choosing the best model. The hypothesis testing 

approach usually employs sequential tests to arrive at 

the final model. On the other hand, the IC approach 

proceeds by comparing the fit for several (if not all) 

candidate models and selecting the best fit among those 

choices. This approach is more in line with the 

"simultaneous" concept of model selection. However, 

other approaches have been suggested for LMER. For 

example, Wolfinger (1992) and Diggle, Liang, and Zeger 

Table 2Table 2Table 2Table 2 � Summary of Information Criteria 

 

Criterion Definition Reference 

AIC  Akaike (1973) 

AICC  Hurvich and Tsai (1989) 

CAIC  Bozdogan (1987) 

BIC  Schwarz (1978) 

HQIC  Hannan and Quinn (1979) 
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(1994) have suggested a two-step approach where an 

over-fitted fixed effects model (the most complex mean 

structure) is fitted using ML, and then the covariance 

structures (random effects) are selected using REML 

estimation by IC. Verbeke and Molenberghs (2000) 

propose an iterative approach in which the procedure 

iterates between mean structure (fixed effect) and 

covariance structure (random effects) or even residual 

covariance structure. They also encourage the use of 

graphs and plots to guide the selection process. For 

example, typical plots are the ordinary least squares 

(OLS) residual profile and the smoothed average trend 

of the squared OLS residuals. 

The decisions made in the model selection process 

can be either substantive-driven or data-driven. With a 

substantive-driven decision, researchers may base their 

decision on field knowledge, existing theory, detailed 

problem formation, and common sense in forming a 

specific structure of the random component. One may 

wish to test whether such a structure is appropriate or 

supported by the collected data. On the other hand, a 

data-driven decision when selecting random 

components is not guided by specific theories or 

hypotheses. A data-driven decision in model selection 

aims to search for what the random structure is, based 

on the collected data. A common practice for this 

approach is to propose several candidate models and 

have each fitted to the data. The "best" one is then 

identified according to a chosen criterion. 

No mechanical procedures for evaluating model fit 

should override human judgment (Brown, 2000). 

Similarly, no criteria or tests should be used blindly; 

considerations such as experimental designs, research 

goals, or substantive theories should be taken into 

account in evaluating model fit. For example, 

researchers need to decide whether the focus is on 

fixed or random effects. In most cases, fixed effects are 

the primary concern of studies; therefore, the 

appropriate random structure is desired to provide 

more accurate parameter estimations for fixed effects. 

However, researchers might want to include all 

relevant fixed effects in a model when random effects 

are the focus. 

Discussion and ConclusionDiscussion and ConclusionDiscussion and ConclusionDiscussion and Conclusion    

In this paper, an alternative multilevel specification of 

LMERs in the application of psycholinguistic data was 

described. This paper also illustrated how these models 

can be specified and estimated using PROC MIXED in 

SAS. Although previous papers have illustrated the 

LMERs using R (e.g., Baayen et al, 2008) and SPSS (e.g., 

Carson & Beeson, 2013), no paper has used the two-

level specification approach to systematically illustrate 

how different models can be specified using PROC 

MIXED in SAS. The only exception is Locker et al. 

(2007), who took the multilevel approach but only 

focused on the item analysis aspect, also using SAS 

PROC MIXED. The illustrated multilevel specifications 

in this paper separate the item and subject factors 

(covariates) for the fixed and random components. As a 

result, the effects deriving from different sources can be 

clearly represented and distinguished. The distinction 

between the item and subject covariates is especially 

helpful in selecting the appropriate fixed and random 

effects structures in the context of psycholinguistic 

studies. For example, different effects are specified in 

the "random" statement of the PROC MIXED in SAS.  

The issues relating to model selection in the context 

of LMERs were also discussed. Specifically, whether the 

focus should be on fixed or random effects and whether 

the decision should be either substantive- or data-

driven. Given one data set, a researcher may come up 

with more than one model, each of which can be an 

apparently satisfactory model according to a specific 

model selection procedure or criterion. This reflects the 

basic indeterminacy that is inherent in model fitting 

based on empirical data. It is quite possible to have 

several different models but no compelling argument in 

favor of any particular one. In such cases, it is better to 

accept this indeterminacy and leave it to future 

research to resolve than to make an unwarranted 

decision. There is no universal standard guideline or 

rule governing model selection, but this review and 

discussion of the concept of model selection could offer 

new insights for researchers when analyzing empirical 

data.  

The theoretical development of statistical tests and 

methods has consistently advanced the understanding 

of model selection; however, the practitioners and 

applied researchers who use these methods do not 

typically keep track of new developments in 

quantitative methodologies. Many developments 

require substantial statistical knowledge and 

programming skills in order to apply the new methods 

to empirical studies. Therefore, the newly developed 

methods are usually not very user-friendly for applied 

researchers in terms of empirical applications. Thus, 

this paper is helpful for researchers who wish to apply 

the methods using standard statistical packages, such 

as SAS. This paper offers a bridge to connect the gap 
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between method development and applying LMERs to 

empirical research.  

In summary, LMERs have many desirable properties 

in analyzing psycholinguistic data. Comprehensive 

statistical knowledge is essential when applying LMERs 

to ensure accurate inferences and conclusions. This 

paper not only illustrated how PROC MIXED in SAS can 

be used to specify various LMER models but also 

provided detailed information about selecting the 

proper structure of the random component. The 

discussion and illustration in this paper aim to help 

researchers apply LMERs in the field of 

psycholinguistics both in model specification and on the 

issue of model selection. 
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