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AbstractAbstractAbstractAbstract � Event-related potentials are an informative method for measuring the extent of information processing in the brain. 
The voltage deflections in an ERP waveform reflect the processing of sensory information as well as higher-level processing that 
involves selective attention, memory, semantic comprehension, and other types of cognitive activity. ERPs provide a non-invasive 
method of studying, with exceptional temporal resolution, cognitive processes in the human brain. ERPs are extracted from scalp-
recorded electroencephalography by a series of signal processing steps. The present tutorial will highlight several of the analysis 
techniques required to obtain event-related potentials. Some methodological issues that may be encountered will also be 
discussed. 
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IntroductionIntroductionIntroductionIntroduction    

Event-related potentials (ERPs) are the minute changes 

in the electrical activity of the brain that are elicited by 

a physical stimulus or a psychological event. The first 

article in this series (Tavakoli & Campbell, 2015) 

discussed the need for careful control over the physical 

characteristics of the stimulus but also the need to 

monitor psychological events – what the subject is 

doing. One of the major reasons for this is that there is 

little the researcher can do to correct errors in the 

design of the study, once the data have been collected. 

It is not possible to correct for poor stimulus-response 

control in an off-line manner. This is not the case for the 

collection of the EEG data. While care must also be 

taken to assure high quality acquisition of the EEG, as 

this second article will discuss, it is possible to clean 

and correct “noisy” EEG data. Still, as emphasized in the 

first article, prevention is better than cure. A series of 

steps should be employed to assure a high quality EEG 

signal. Nevertheless, even with exceedingly high quality 

data, the ERP “signal” will always be much smaller than 

the background “noise” of the EEG.  

Several methods exist for extracting the ERP signal 

from the background electroencephalogram (EEG) 

noise. The most powerful means to do so is through the 

use of signal averaging (Dawson, 1954). Averaging 

works best when the amount of noise is more or less 

constant from one stimulus repetition to the next. Prior 

to averaging, a series of steps can be employed to “clean 

up” the raw EEG data in an attempt to reduce the 

amplitude of the noise. There are two major sources of 

artifact within the EEG. The first is caused by 

electromagnetic fields around the subject such as 

power lines and electric transformers or motors. 

During the original recording of the EEG, these can be 

reduced substantially by placing the subject as far away 

from these sources of artifact as possible, grounding the 

subject and ensuring interelectrode impedance is low. 

The second major source of artifact is a result of the 

picking up of extraneous electrophysiological signals 

from the subject, for example, the electrocardiogram, 

skin potentials (“GSR”), muscle movement and most 

importantly, eye movement artifact. A good deal of this 

artifact can be reduced by proper electrode application 

and instructions to the subject to reduce movement and 

to fixate the eyes on a fixed point. Nevertheless, in spite 

of the best attempts, subjects will still move and blink. 

The present article will discuss the necessary steps 

required for the extraction of the ERP from the noisy 

background of the EEG and the eventual analyses and 

quantification of the ERPs. Methodological issues 

encountered throughout this process will also be 

discussed.  

Very powerful commercial software exists for the 

analysis of EEG/ERP data (e.g. Brain Products, 
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NeuroScan). Each of these commercial programs offers 

different general-purpose options for data 

quantification. Some researchers do, however, choose 

to write their own ERP analysis program often using 

open source software (e.g., EEGLAB, ERPLAB). These 

have the obvious advantage of being low cost, providing 

many of the same quantification procedures available 

in the commercial systems, albeit perhaps not as “user 

friendly”. They also allow the researcher to write their 

own software for analyses that are not available in the 

general-purpose commercial systems. The choice of 

which software to use largely depends on what type of 

analyses are being carried out. Signal processing, 

artifact correction and scoring methods that are used in 

most ERP labs will be discussed here. 

Reduction and Correction of Noise 

Filters 

Many of the sources of artifact can be largely attenuated 

through the judicious use of filters, providing the 

artifact contains frequencies that are lower or higher 

than those of the actual ERPs of interest. Two stages of 

filtering can be applied; initial real-time analog filters 

used for the recording of the EEG and subsequently, off-

line filters. Both types of filters provide for a low filter 

(attenuating low frequencies but allowing higher 

frequencies to pass) and a high filter(attenuating high 

frequencies but allowing low frequencies to pass). 

Because a low filter allows higher frequencies to pass 

while the high filter allows for lower frequencies to 

pass, they are also called high- and low-pass filters 

respectively.  

With older EEG systems, analogue filters were 

typically applied to the data by effectively adjusting the 

resistor and capacitor circuitry in the amplifier. Such 

analog filters are applied in real-time during data 

acquisition (within the EEG amplifiers), before the 

signals are converted to digital format. Analog filters 

are however imperfect and can shift the latency of 

signals causing distortions in the data. With the advent 

of modern, rapid computers, digital filtering is now the 

preferred method of choice, eliminating the need for 

precise analog filtering. For this reason, a very broad 

range of frequencies is typically allowed to pass 

unfiltered through the analog system. The EEG signals 

can then be filtered more precisely off-line using digital 

filtering techniques.  

Digital filters can be designed to avoid latency shifts 

in the signal. Because the digital filter is applied after 

data collection, its effects can be later removed and 

different filter parameters can subsequently be 

employed. They can operate in either the time or 

frequency domain. For example, a very simple time 

domain filter can be created using a smoothing or 

“moving average” algorithm. Each data point is replaced 

by the average of “n” data points. For example, in a 3-

point moving average, the second data point might be 

replaced by the average of the first, second and third 

data points; the third data point would be replaced by 

the average of the second, third and fourth data points. 

Again, with the advent of powerful and low cost 

computers, much more sophisticated time-based 

algorithms are now available. Digital filters can also 

operate in the more computational-demanding 

frequency domain. Often, the frequency spectrum of the 

EEG signal is computed using a Fourier transform. This 

algorithm would allow for different weightings for each 

of the frequencies within a signal. The EEG signal is 

then filtered by applying an inverse Fourier transform.  

Many other different digital filters can be designed, 

using different mathematical computations. Common to 

all digital filters is what is called the transfer function 

and it is the mathematical modelling of the filter that 

describes how a given input will be attenuated. There 

are now several different digital filters that are 

available and each may affect the EEG in some way, 

although these changes are often subtle. The 

computational bases for many of these digital filters are 

beyond the scope of the present article. Several other 

articles are however available that provide a detailed 

account of different filtering procedures and their 

effects on the EEG data(Cook & Miller, 1992; Luck, 

2014; Picton, Lins, & Scherg, 1995, Picton, 2011).  

Artifact containing frequencies above or below 

those of interest can be attenuated through the use of 

high and low filters, respectively. A separate “notch” 

filter is often used to attenuate line frequencies (50 or 

60 Hz). The cut-off frequency is the frequency at which 

the filtered power (can be considered as the area under 

the curve) is reduced by half (-3 dB). This corresponds 

to a 71% reduction in amplitude of the EEG. Most ERP 

components in cognitive neuroscience studies consist 

of frequencies between 0.01 and 30 Hz. Often a high 

filter between 20 to 40 Hz is thus applied to cognitive 

ERP data. The use of a high filter is illustrated in the left 

portion of Figure 1. The ERP in this figure is 

contaminated by muscle artifact (frequencies above 

100 Hz) and 60 Hz line frequency. Using a high 

frequency cut-off below 40 Hz will largely attenuate 
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these sources of artifact. In addition, the raw EEG may 

appear to slowly “drift” over a period of seconds, 

appearing as a slow waxing and waning of waveforms. 

This is often a result of skin potential artifact caused by 

perspiration. Changes in electrode impedance can also 

lead to slow drifts in the EEG signal. A low filter of 

about 0.3 Hz is often employed in clinical EEG settings 

to remove this slow drift. In the cognitive laboratory, it 

is not unusual to observe drifts in the ERP signal 

associated with long-lasting and slow mental processes 

(i.e., actual brain activity). A 0.3 Hz low filter might thus 

inadvertently remove a true brain signal of interest. In 

such cases, a 0.01 Hz low filter might be applied. It is 

usually easier to understand the low filter cut-off as a 

“time constant”, the time required for a slow frequency 

to be reduced by 50% of its power. A 0.3 Hz low filter 

corresponds to a time constant of about 0.5 s. Slow ERP 

potentials are often observed when the subject 

develops a expectancy for an upcoming stimulus. For 

example, if the subject is presented with two stimuli, S1 

and S2, the time between them being 3 s, a slow 

negative potential will develop between the onset of S1 

and the onset S2 if the subject is asked to prepare to 

respond to S2. This slow negative potential will 

therefore last about 3 s. If the 0.3 Hz low filter is used, it 

would much attenuate the true ERP negative slow 

potential. To avoid this, a time constant of perhaps 6 s 

(about 0.02 Hz) or more might be employed. Thus, a 

slowing drifting EEG would be attenuated by 50% of its 

power (again, 71% of its amplitude) after 6 s. This 

would thus allow a 3 s negative slow wave to pass 

unattenuated. The use of a low frequency filter is 

illustrated in the right portion of Figure 1. 

Although filters can be a great asset in increasing 

the signal-to-noise ratio, they can also severely distort 

ERP components. This is particularly the case when the 

frequency range of the noise and the true ERP signal 

overlap. As is apparent in Figure 1, the data becomes 

much smoother with severe high filtering (for example, 

when a 5 Hz high filter was applied). This may cause 

researchers to believe that the heavier the filter, the 

cleaner the data. Filtering will always distort the true 

    

 
Figure 1Figure 1Figure 1Figure 1 � Effects of filtering. An averaged ERP was computed beginning 100 ms prior to the onset of a stimulus and 

continuing for 600 ms following it. Different high and low filter cutoffs were applied to the raw EEG prior to 

averaging. In the left portion of the Figure, the effects of high filtering are illustrated. The ERP contains a large 

amount of high frequency noise after a 100 Hz filter is applied. Much of this is 60 Hz activity comes from the mains 

power. This is much attenuated with a 40 Hz high filter cutoff. A 20 Hz high filter further attenuates most of the 

remaining noise. A 5 Hz filter however distorts the actual ERP frequencies. In the right portion of the Figure, an ERP 

that contains a large amount of “drift” is illustrated. This can be attenuated by reducing the time constant from 1 to 

0.3 s. The use of a 0.3 s time constant may also however distort the true ERP. This is especially apparent when a 0.1 s 

time constant is employed. Thus, the use of increasingly extreme high cut-off frequencies does result in a “smoother” 

but more distorted ERP waveform. Similarly very short time constants will remove much of the slow drift in the ERP 

but may be attenuating the true ERP waveform. Caution must be taken to choose the most appropriate filter setting 

without severely distorting the ERP response of interest. 
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EEG signal, whether this is noticeable with visual 

inspection or not. In Figure 1, the progressively lower 

cut-off frequencies for the high filter have caused the 

amplitude of the positivity at about 300 ms (the “P3” 

component) to become attenuated. Similarly, the higher 

cutoff values for the time constant have caused the 

entire waveform to be shifted in a negative direction. 

Filters can also change the onset or duration of ERP 

components, turn monophasic waveforms into 

multiphasic ones, and interfere with source localization 

techniques (Cook & Miller, 1992; Luck, 2005). Luck 

(2005) describes this distortion in filtering as 

“precision in the time domain is inversely related to 

precision in the frequency domain” (p. 182). The more 

heavily the data are filtered, the more distorted the 

signal will become. Filtering can result in considerable 

distortions in the latency and amplitude of a signal and, 

therefore, should be used with great caution (see Luck, 

2014; VanRullen 2011, Widmann & Schroger, 2012 for 

detailed accounts). In most situations, some amount of 

filtering will be necessary to appropriately interpret the 

EEG/ERP data. In these instances, it is essential to know 

and understand the effects of filtering on the data and 

to carefully adjust filter-cutoff frequencies for an 

optimal balance between suppression of noise and 

distortion of the ERP waveform. 

Ocular correction 

Certain types of artifact will share the frequency 

characteristics of a true EEG signal. If filtering is used to 

attenuate these artifacts, it will also attenuate the true 

ERP signal. Other methods can be used to remove these 

sources of artifact. Signal averaging techniques 

(discussed later) will attenuate noise that is not time-

locked to the stimulus. The heart beat is a low 

frequency source of artifact that may share the same 

frequency spectra as the ERP. Filtering, hence, cannot 

be used to remove this source of artifact. The heart beat 

is however not timelocked to the stimulus or response. 

Because it occurs at random times with respect to the 

stimulus, signal averaging techniques will attenuate it, 

providing that sufficiently large number of stimuli are 

presented.  

The most prevalent types of artifact occurring in the 

EEG are blinks and eye movements. The electrical 

potentials created by these sources may be much larger 

than the EEG signal and can propagate across much of 

the scalp. The artifact is especially large near the eyes 

and over frontal regions of the scalp. To avoid these 

sources of artifact, subjects should be provided with a 

fixation point and instructed to focus on it during the 

experimental task and to avoid blinking as much as 

possible. Inevitably, however, the EEG will be 

contaminated by at least some eye movement and blink 

artifact. The frequency spectrum of eye movement 

artifact does overlap partially with the actual EEG and 

therefore filtering cannot be applied. Signal averaging 

techniques are also problematic because the eye 

movements may be time-locked to either the stimulus 

or the response. A subject might, for example, 

occasionally blink immediately following a highly 

relevant stimulus and less often following stimuli that 

are not relevant. Thus, the blink occurs at predictable 

times after stimulus onset and is not a truly random 

event (i.e., it is time-locked to the stimulus). In these 

cases, the researcher may misinterpret the much larger 

apparent ERP over the frontal regions of the cortex 

following the presentation of the very relevant 

compared to the less relevant stimulus as reflecting 

activation of the frontal lobe rather than true eye 

movement (EOG: electrooculogram) artifact 

Various methods exist for the rejection and/or 

correction of ocular artifacts within the EEG. A 

common, older method is to reject any trial in which 

eye movement artifact exceeds an amplitude voltage 

that would be considered to be abnormal for the EEG. 

Eye blinks will typically exceed 100 µV but an EEG 

signal this large would most likely be considered 

abnormal(the waking EEG rarely exceeds 100 µV). Thus 

all data in any trial in which the EOG exceeds +100 µV 

could be rejected from further analyses. Some blink 

artifacts may be missed if they do not exceed this 

predetermined threshold and for this reason, other 

researchers lower this threshold to a more 

conservative +75 µV or even +50 µV. Relying on this 

more conservative threshold will, however, result in 

increased numbers of trials being rejected because of 

artifact contamination. The artifact rejection method is 

quite effective if the amount of artifact is limited. In 

cases of young children, the elderly and different 

patient populations, a very large number of blinks and 

movements may occur. If the rejection method is used, 

much of the data might therefore be rejected.  

EOG correction, rather than rejection, methods have 

now been developed to avoid a large loss of data. 

Several ocular correction techniques have been 

developed for this particular purpose, some operating 

in the time domain (e.g., Gratton, Coles & Donchin, 

1983) while others also in the frequency domain (e.g., 

Woestenburg, Verbaten, & Slangen, 1983). Common to 
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all correction methods is the use of 

mathematical/statistical algorithms to subtract or 

partial out the EOG activity within the EEG. The EOG 

artifact is considerably larger over anterior than over 

posterior sites. EOG correction methods thus calculate 

the propagation factor of the EOG signal across all areas  

of the scalp, and subtract this proportion of activity 

from the EEG at each corresponding electrode site. 

Another method employs source localisation modelling 

to identify the sources of the artifact (EOG activity) 

independent of true brain source activity (Lins, Picton, 

Berg, & Scherg, 1993a; 1993b). A more recent 

technique employs independent component analysis 

(ICA; Jung, Makeig, Humphries, Lee, McKeown, Iragui, & 

Sejnowski, 2000; Jung, Makeig, Westerfield, Townsend, 

Courchesne, & Sejnowski, 2000). ICA aims to 

decompose data into statistically independent 

components utilizing higher-order statistical measures 

(beyond those used by principal components analysis; 

PCA). These methods represent a subclass of the blind 

source separation (BSS) algorithms (Belouchrani, 

Abed-Meraim, Cardoso, & Moulines, 1997; Joyce, 

Gorodnitsky, Kutas, 2004). Figure 2 illustrates a 10 s 

segment of ongoing EEG data that has been corrected 

for ocular artifacts using ICA procedures. The blinks in 

the data have been identified by the algorithm, and any 

blink activity deemed statistically independent of the 

brain activity has been partialled out of the EEG trace. 

ICA methods provide a more realistic outcome of ocular 

correction because they take into account the statistical 

independence of the varying components. Running this 

algorithm can, however, become quite time-consuming 

    

 

Figure 2Figure 2Figure 2Figure 2 � Independent component analysis (ICA) ocular artifact correction. A 10 second segment of continuous EEG 

data are displayed. The EOG activity is displayed on the first line (vEOG: vertical electrooculogram). As is apparent, 

two very large upward deflections (greater than +300 µV) are apparent. These are eye blinks. The uncorrected EEG 

is displayed in blue. The blink artifact is propagated to a much greater extent over anterior than posterior regions of 

the scalp. An ICA algorithm was applied to the data. It identified eye blinks and then partialled out this artifact. The 

corrected EEG is shown in black. 
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and does require a substantial amount of both EEG data 

and electrode sites. The algorithm will not be able to 

properly determine the localization and independence 

of components if too few data or electrode placements 

are provided.  

Segmentation & Baseline correction  

SegmentationSegmentationSegmentationSegmentation. Once initial filtering and correction 

methods have been applied,1 the EEG is then segmented 

into discrete “epochs” typically beginning before a 

stimulus is presented and extending for a period of time 

after it. An epoch is created for every single “trial” (i.e., 

every stimulus presentation). If 1000 stimuli had been 

presented, then 1000 different epochs would now be 

created. These will also need to be sorted for every 

stimulus and response category. Suppose the 

researcher uses an oddball paradigm in which 500 

stimuli were presented, 400 of these being frequently 

occurring “standards” and then at odd times (the 

remaining 100 trials), a “target” being presented that 

the subject is asked to detect by pressing a button. The 

single trial epochs are thus sorted into 400 standards 

and 100 targets. The targets may further be sub-divided 

on the basis of performance into targets that were 

correctly detected (“hits”) and those that were not 

(“misses”). Obviously, the cognitive processes involved 

in a hit and a miss may be very different. How does the 

researcher determine the duration of the single trial 

epoch (also called the “sweep time”)? The epoch should 

include EEG activity prior to the onset of the stimulus in 

addition to the activity following its presentation. The 

pre-stimulus period serves as a “baseline” from which 

the amplitude of the ERPs of interest will be measured. 

This is because prior to the stimulus, there should be no 

EEG activity that is related to the stimulus. In actual 

                                                                    
1 It is also possible to filter following segmentation 

of the single trials and the resulting averaged ERPs 

should be identical. The filtering of the single trials will 

be more rapid because fewer data points are involved 

in the computation. However, with the use of powerful, 

modern computers, this time difference is incidental. 

Most researchers therefore prefer to filter the raw, 

continuous EEG and doing so does have advantages. 

Attenuating high frequencies by initially filtering the 

continuous EEG better enables the researcher to 

visually identify intervals in which the EEG is obviously 

“bad”. Moreover, ICA eye correction methods best 

operate on data in which very noisy intervals in the EEG 

have already been excluded. 

 

fact, there may be some pre-stimulus activity related to 

processes such as expectation or prediction of 

occurrence of the upcoming stimulus. There may also 

be activity related to the processing of the previous 

stimulus. The length of the post-stimulus epoch will 

depend on the cognitive processes of interest. Certain 

ERP components will have very short latencies, while 

others may occur much later. It is therefore important 

to select an appropriate epoch length to ensure that the 

ERP component of interest is not excluded from the 

segment. A general rule-of-thumb used by ERP 

researchers is that the epoch should extend two to 

three times the period of the major peak of interest. For 

example, the P3 ERP component is a positive-going ERP 

component peaking at about 300 ms after the onset of a 

target. This peak may occur earlier or much later in 

different subjects. Therefore, in the case of the P3, the 

recording epoch should extend to at least 800 to 1000 

ms following stimulus onset. Another means to 

determine the poststimulus epoch length relies on the 

actual behavioural response made by the subject 

following the stimulus, assuming that it is recorded. The 

response time (RT), the delay between stimulus onset 

and the response, will vary from trial-to-trial. In this 

case, the post-stimulus epoch should also be very 

liberal and extend well beyond the mean RT. Thus, in 

the example above, if the mean RT were 450 ms, the 

post-stimulus epoch might be set to be 1000 ms.  Also, 

it is essential that the recording epoch be long enough 

to allow the ERP activity to return to baseline. Again, 

because the data are analyzed off-line, the duration of 

the epoch can always be altered in a subsequent 

analysis.  

The segmentation procedure is illustrated in Figure 

3. The Figure displays 10 s of EEG activity during which 

time a stimulus (S1) is presented 3 times. The EEG is 

thus segmented into epochs for each stimulus 

presentation. In this Figure, the shaded epoch begins 

100 ms prior to the onset of S1 and continues for 900 

ms following it. The total epoch thus lasts for 1 s. An 

ERP is elicited by each stimulus presentation but the 

amplitude of this response is very small relative to the 

ongoing EEG. Signal averaging techniques (described 

below) will be required to allow the researcher to 

visualize the minute response that is embedded in the 

much larger amplitude EEG.  

Baseline correctionBaseline correctionBaseline correctionBaseline correction. The average of all activity prior to 

the onset of the stimulus is used to compute a zero 

voltage pre-stimulus baseline. The pre-stimulus 

baseline is not necessarily identical to the voltage of the 
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ground electrode (i.e., zero Volts). If the EEG slowly 

drifts away from the true zero level, the pre-stimulus 

baseline will also drift in this direction (i.e., not be 

recorded as a true 0 voltage). This drifting in a negative 

and positive direction, therefore, needs to be corrected. 

It could, of course, be corrected by changing the low 

frequency, time constant. However, the drift may 

represent a true, slow potential ERP component. In 

such cases, baseline correction can be used. The 

algorithm is quite simple and therefore very rapid to 

compute. The average of all pre-stimulus activity is 

computed. In Figure 4, the baseline is drawn through 

the true zero voltage (the ground voltage). The pre-

stimulus activity on this trial is however “above” this 

baseline; it has drifted in a positive direction. The 

average of this pre-stimulus activity is about +5 µV. 

The +5 µV average baseline is then subtracted from 

every data point in the pre and post-stimulus interval. 

This procedure is then subsequently repeated for every 

epoch.  

Artifact rejection  

As previously indicated, several types of artifacts can 

contaminate the EEG. Among these, the most prevalent 

types of artifact include blinks, eye movements, muscle 

activity, and heartbeats. These artifacts are typically 

very large compared to an ERP signal and do not reflect 

true brain activity. Some of these artifacts, as has also 

been noted, can be corrected through filtering and 

correction procedures. Other artifact may still remain.  

The artifact rejection process involves the 

identification and rejection of epochs contaminated by 

artifact. Again, what constitutes an artifact must be 

defined. This is usually done by stating that the waking 

EEG should rarely exceed an arbitrary level, for 

example. Thus, if any of single trial epochs contain EEG 

activity that exceeds +100 µV, it would be it rejected 

and removed from further analysis. Assuming that the 

EEG has been filtered to attenuate high and low 

frequency noise and then corrected for common EOG 

artifact and pre-stimulus baseline drift, the loss of data 

due to rejection techniques should be minimal. The 

selection of the actual criterion of artifact detection, 

while arbitrary, must be sufficiently sensitive in order 

to eliminate all trials in which artifact occurs. However, 

it must also be liberal enough to avoid false alarms and 

    

 
Figure 3Figure 3Figure 3Figure 3 � Segmenting the “raw” EEG. A 10 s display of the “raw”, continuous EEG recorded from electrode sites, Fz, 

Cz and Pz is illustrated. A stimulus (S1) was presented 3 times during this 10 s period and the raw EEG is thus cut 

into 3 different single trial segments or epochs (shaded). Each epoch begins 100 ms before the onset of S1 and 

continues for 900 ms after the stimulus (i.e., a 1000 ms total duration epoch). An ERP is elicited following 

presentation of S1 but its amplitude is minute (about 5 µV) and very difficult to observe because it is embedded in 

the much higher amplitude ongoing raw EEG (about 25-50 µV ). The “signal” is thus buried in the “noise”. Signal 

averaging procedures will be required to enhance the signal-to-noise ratio, allowing the ERP to emerge. 
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an excessive loss of data. Thus, some compromise is 

inevitable.   

Signal Averaging  

Signal averaging is a procedure in which a constant 

signal (the ERP component of interest) occurring in 

repeated trials emerges from the random, ongoing 

background EEG, or noise within these trials. In most 

cases, the amplitude of the ERP is very small while the 

amplitude of the ongoing EEG can be very large. Even 

when filtering and artifact rejection methods have been 

applied to attenuate noise, ERPs will almost always be 

difficult to distinguish from the background EEG. Signal 

averaging techniques are used to reduce the amplitude 

of the background noise, resulting in an increase in the 

signal-to-noise (S/N) ratio, allowing the constant signal 

to emerge.  

Certain assumptions must be met for signal 

averaging techniques to function correctly. The EEG 

data collected in a single trial is assumed to consist of 

both the signal (the ERP) and random noise (the 

ongoing EEG + other artifact). Importantly, the ERP is 

assumed to be identical (invariant) from one trial to the 

next. Thus, its amplitude and its peak latency do not 

vary. Across the trials, the average of an invariant 

constant is constant (the average of +5, +5, +5,+5 

across 4 different trials, is of course +5). The noise is, 

however, assumed to be completely unrelated to the 

time-locking event (e.g. the stimulus or the response). 

Its amplitude across the different trials is thus random. 

It may be positive- or negative-going. Its amplitude 

might be high or low. The average of a random event 

over a sufficiently large number of trials should tend 

towards zero (on the 4 trials above, the noise might 

measure +15, -4, -26, +32, the average being +4.25). 

With a sufficiently large number of trials, the average of 

the random events should approach zero allowing the 

average of the constant signal to emerge. 

The amplitude of the random noise decreases as a 

function of the square root of the number of trials. 

Thus, after 4 stimulus presentations, the amplitude of 

the background EEG is reduced by 2 (i.e., it is now ½of 

its single trial amplitude). Therefore, if the researcher 

wishes to halve the amplitude of the noise (thus 

doubling the S/N ratio), the number of trials must 

increase 4 times. If after 16 trials, the S/N is not 

sufficient to allow the signal to emerge and the 

researchers wants to double it (make the signal twice 

as large as the noise), 64 trial presentations will now be 

needed, not 32. And, if that is still not sufficient, 256 

trials will be needed to again double the S/N ratio and 

not 128. Figure 5 illustrates the averaging procedure. 

The upper left portion of the figure illustrates 4 

unaveraged superimposed single (or “raw”) trials. 

These single trials contain both background noise and 

the signal of interest. Immediately below the single 

trials, the average of the 4 trials is presented. A positive 

component at about 200 ms is beginning to emerge. 

Again, to double the S/N ratio of the average, 4 times 

the number of trials (i.e., 16 trials) must be presented. 

The upper middle portion superimposes 4 averages of 4 

trials each. The average of these 16 trials is presented 

below the superimposed averages. Now, both the 

negative and positive components are beginning to 

emerge from the background noise. To double this S/N 

ratio, 64 trials must be presented. The upper right hand 

portion superimposes again 4 averages, but each trace 

is now the average of 16 trials. On the bottom right 

portion of the Figure, the average of the 64 trials has 

been computed. The ERP components of interest can be 

viewed much more clearly here; a negative-going peak 

at about 100 ms and a positive peak at about 200 ms. 

Compare this average to the upper left portion of the 

Figure in which 4 single trials are superimposed in 

which the ERPs of interest are embedded in the much 

higher amplitude background noise.  

    
    

Figure 4Figure 4Figure 4Figure 4 � Baseline correction procedure. A 700 ms, 

single trial epoch from the Cz electrode is displayed. 

The average of all activity in the 100 ms interval prior 

to the stimulus is used as a baseline. The Figure 

illustrates the single epoch before (in blue) and after 

(in black) baseline correction. The baseline is drawn 

through a true electronic zero volt voltage. Prior to 

baseline correction, the pre-stimulus activity on this 

trial is almost +40 µV “above” zero. The average 

activity in this pre-stimulus period is then subtracted 

from every data point in the post-stimulus interval. 
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While signal-averaging techniques provide an 

exceedingly powerful means for low amplitude ERPs to 

emerge in very high amplitude background EEG, there 

is a cost. As can be observed, the number of stimulus 

repetitions may have to be exceedingly large. This can 

be rather discouraging for the researcher and of course, 

can be very time-consuming. To reduce the number of 

stimulus presentations that will be required and still 

ensure a high S/N ratio, either the amplitude of the 

signal must be high or the amplitude of the noise must 

be low. Although the researcher does not have any 

control over the amplitude of the signal, they do have 

some control over the amplitude of the background 

EEG. It is often much easier to obtain high quality data 

by decreasing possible sources of noise during the 

collection of the raw data, rather than increasing the 

number of trials. To reiterate, priority must be given to 

obtaining the best possible clean, artifact (noise) free 

raw data. Filtering, correction of artifact and signal 

averaging techniques will reduce the amplitude of the 

background noise of the raw data. It is much better 

however to minimize sources of noise during the actual 

recording of the EEG.  

Quantifying ERPs  

The final step in an ERP experiment is the 

measurement and quantification of the different ERP 

components, and applying these measurements to 

statistical analyses. Most ERP experiments compute the 

amplitude and latency of the various components. This 

section will discuss the quantification of these 

components using different measurement techniques, 

    
    

Figure 5Figure 5Figure 5Figure 5 � Theory of signal averaging. Again, a 700 ms epoch is illustrated beginning 100 ms prior to stimulus onset. 

The upper left portion superimposes  4  unaveraged (i.e., single trial)epochs. The small amplitude ERPs are buried in 

the background noise of the EEG. Averaging procedures are subsequently used to reduce the amplitude of this noise.  

Immediately below, the average of the 4 trials is presented. This should reduce the amplitude of the background 

noise by 2 (i.e., the amplitude of the noise should be halved).  A small amplitude negativity at about 100 ms and a 

larger positive component at about 200 ms are beginning to emerge from the noise. The upper middle portion 

superimposes 4 averages of 4 trials each. The average of these 16 trials is presented immediately below this. This 

should again reduce the amplitude of the noise by 2compared to when the average was based on 4 trials. Now, the 

negative and positive components are quite apparent.  The upper right hand portion superimposes again 4 averages, 

but each trace is now the average of 16 trials. On the bottom right portion of the Figure, the average of the 64 trials 

has been computed. The ERP waveform is now clearly apparent against what is now only small amplitude noise. 
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and the statistical analysis options available. An 

important warning: the terms peaks and components 

are often interchangeably used when discussing ERP 

waveforms. Peaks and components are not the same. 

The point at which the voltage reaches a maximum 

value (the “peak”) does not necessarily reflect an ERP 

component. Certain factors such as noise and 

importantly, other and overlapping components, can 

influence the maximum voltage in a waveform.  

BaselineBaselineBaselineBaseline----totototo----Peak MeasurementPeak MeasurementPeak MeasurementPeak Measurement. Two common methods 

are used to measure the amplitude of an ERP 

component. Most labs now use a baseline-to-peak 

measure. Thus, the average of all activity in the pre-

stimulus period is used as a zero voltage baseline from 

which the various components are measured. Some 

labs also use a peak-to-peak measure (the trough of one 

peak is measured relative to the trough of the next 

peak) but if there is an experimental effect, it is difficult 

to know if this outcome is a result of an effect on the 

first or second peak.   

Peak Amplitude MeasurementPeak Amplitude MeasurementPeak Amplitude MeasurementPeak Amplitude Measurement. The first quantification 

method, peak amplitude measure, finds the maximum 

amplitude of a peak in a predetermined window of time 

for each individual subject. Thus, an auditory “N1” ERP 

component usually occurs at about 100 ms following 

stimulus presentation. It might thus be defined and 

quantified as the maximum negative peak occurring 

between 60 and 140 ms. This method can be 

problematic in that the maximum amplitude in a certain 

time interval may not reflect the actual peak of an ERP 

component (Luck, 2014; Picton et al., 2000). For 

example, there may be several peaks within a particular 

time window and some of these peaks will be 

remaining unaveraged noise. Peak amplitude measures 

will arbitrarily measure the largest of these peaks, 

regardless of whether this truly reflects the actual ERP 

component of interest or the ERP component + noise. 

The mean of all subjects’ maximum peak amplitude will 

inevitably be larger than the maximum peak that is 

apparent in the grand average (again, the average of all 

subjects’ averages). See the section below describing 

the alternate, mean amplitude measurement technique, 

for additional discussion of this issue.   

Mean Amplitude MeasurementMean Amplitude MeasurementMean Amplitude MeasurementMean Amplitude Measurement. A second method, mean 

amplitude measure, calculates the mean voltage of the 

waveform in a predetermined window of time. This 

method is often applied when there is no single distinct 

peak for an ERP component of interest within the time 

interval (Duncan et al., 2009; Luck, 2014; Picton et al., 

2000). It is also based on the fact that cognitive 

processes do not occur at a definitive point in time with 

perhaps millisecond precision. This is implicitly what 

the peak amplitude measurement however assumes. 

Rather a cognitive process occurs over several 

milliseconds and thus the averaging of all data within 

the pre-defined time period would be more 

appropriate. Another advantage of this method is that it 

is less sensitive to high-frequency noise or multi-peak 

intervals because the average of a range of data points 

is used rather than a single time point. The mean 

amplitude measure thus effectively acts as a type of 

high filter, by averaging together rapidly alternating 

negative- and positive-going peaks. A major problem 

with the maximum peak detection method is that 

background noise will often contribute to the peak in 

question. Averaging over several peaks and valleys 

overcomes this problem. The mean amplitude 

measurement technique is also a linear measure. As 

such, the mean amplitude of a component averaged 

across all subjects is equal to the mean of this 

component in the grand average (Luck, 2014). This is 

illustrated in Table 1. In this Table, an interval 

containing 5 hypothetical data points is presented for 3 

subjects. On the bottom of the Table, the grand average 

of these 3 subjects within the 5 data point interval is 

computed (i.e., the average of data point 1, the average 

Table 1Table 1Table 1Table 1 � A comparison of peak amplitude and mean amplitude measurement techniques. An interval of 5 data 

points have been “cut out” from the averaged ERP waveform. The data for 3 subjects appear in each row. The 

maximum peak is identified in italics. The grand average, calculated by averaging data points 1, 2 …5 of the 3 

subjects appears in the last row. The mean amplitude of the 5 data appears in the right column for the 3 subjects. The 

mean of this column (i.e., the mean of the mean amplitudes is identical to the mean of the 5 data points within the 

grand average). On the other hand, the mean of the peak amplitudes does not equal the mean of the data points 

within the grand average. 
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of data point 2…the average of data point 5 for the 

3subjects). In the right-column the mean peak 

detection method averages the amplitude of the 5 data 

points for the 3 subjects. The mean of the mean 

amplitude measures for the 3 subjects is identical to the 

mean of the 5 data points in the grand average. On the 

other hand, the maximum peak among the 5 data points 

is 11, 9 and 15 µV for subjects 1, 2 and 3 respectively. 

Thus, the mean of the maximum peaks (11.7) of the 3 

subjects overestimates the peak in the grand average. 

The use of the mean amplitude measurement technique 

thus makes it possible to directly compare the grand-

averaged ERP waveforms to the mean of this 

component in the statistical analyses. This is not the 

case when peak amplitude measurement techniques 

are used.  

There are also different methods to determine the 

time interval within which the mean amplitude of the 

component of interest is measured. One method is 

based on existing literature, such as the 60-140 ms time 

interval window used for the N1 example above. Thus, 

for each subject, N1 would be measured as the mean 

amplitude of all data points within the 60-140 ms 

interval in each individual subject. Another method 

uses the grand average (again, the average of all 

subjects’ average). Because the grand average should 

contain very little noise, the peak of the component of 

interest should be easily identifiable. Again, in the 

example of N1, perhaps N1 reaches a maximum 

amplitude (or “peaks”) at 100 ms in the grand average. 

N1 might then be measured as the mean of all data 

points within + 25 ms of this peak (i.e., from 85 to 135 

ms) in individual subjects.  

Latency MeasurementLatency MeasurementLatency MeasurementLatency Measurement. ERP latencies are usually 

measured at the time of when a peak reaches its 

maximum amplitude (Duncan et al., 2009; Luck, 2014; 

Picton et al., 2000).  Hence, peak latency techniques are 

commonly paired with peak amplitude measures. All of 

the disadvantages associated with peak amplitude 

measures also apply with peak latency measures. Most 

notably, if there are multiple peaks within a time 

window, or if the peak of a component is rather flat, the 

maximal voltage in that time window may not reflect a 

true measure of the ERP component’s latency   

Another method, fractional area latency, is 

analogous to mean amplitude measures. This technique 

computes the area under the ERP waveform over a 

predetermined time interval and then finds the time 

point that divides this area into a predetermined 

fraction (Hansen & Hillyard, 1980). Commonly, the 

fraction will be a half; therefore, the time point that 

divides the area under the curve in half is deemed the 

latency of the ERP component (Luck, 2014). This 

technique is not appropriate for measuring the absolute 

latency of a component, or if overlapping ERP 

components are present within the same time window. 

Measuring the latency of ERP components can thus be 

extremely difficult as all methods have multiple 

drawbacks. Therefore, whichever technique better suits 

the experimental design of an ERP study should be 

used. The method used must be clearly specified and 

extreme caution must be applied in interpreting these 

results. 

Topographical mapsTopographical mapsTopographical mapsTopographical maps. Multi-channel ERPs allow for the 

display of cognitive activity as it varies over time (the 

temporal dimension) and as it varies across the scalp 

(spatial dimension). Variations in ERPs across the scalp 

are usually displayed as multiple waveforms as a 

function of time at the different electrode locations. The 

previous Figures in this article use this convention. 

However, the spatial aspects of the various ERPs, where 

the component is maximum and where it is minimum in 

amplitude, are not easily visualized in this method. The 

spatial dimension of ERP components is better 

displayed using voltage distribution maps. Various 

kinds of maps can be computed and displayed. Of 

course, there are no actual data between electrode 

sites. Voltage maps are however made to be continuous 

by interpolating values between electrode sites where 

actual data exist. Thus, let us assume that a component 

measures 8 µV at Fz and 4 µV at Cz. One could 

interpolate the value for FCz (half way between Fz and 

Cz) to be 6 µV. Similarly, the value for a site half way 

between FCz and Cz could also be interpolated to be 5 

µV (6+4 µV/2). Interpolations of data do need to take 

into account other “nearest neighbours”, for example, 

electrodes located laterally, and weigh their values 

accordingly. The upper portion of Figure 6 provides a 

64-channel recording of an auditory ERP. The reference 

site was the tip of the nose. A brief duration, moderate 

intensity binaural auditory stimulus was presented 

every 2 s. As can be seen, a large negativity (the N1) is 

apparent at about 100 ms. An enlargement of the Fz, Cz 

and M2 electrodes is illustrated on the right portion of 

the Figure. N1 is maximum in amplitude overfrontal 

and central sites of the scalp. At inferior and lateral 

sites such as M1 and M2 (or TP9, TP10, the left and 

right mastoids), N1 inverts in polarity and is recorded 

as positive-going. In the lower, right portion of the 

Figure, a topographic map of the scalp distribution of 
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N1 is presented. A non-linear and a linear view are 

provided. The non-linear view presents both a top and 

side perspective. These linear aspects reflect the views 

of the head as seen by the human eye. Thus, in the top  

view, electrodes at the top of the head (e.g., Cz-C1-C3, 

Cz-C2-C4) are spaced farther apart than electrodes at 

lateral-inferior regions (e.g., C5-T7-C6-T8). 

Consequently, in order to obtain a better view of the 

lateral and inferior electrodes, a lateral, side projection 

is also required, in this case, the right side of the head. 

In this case, electrodes near the ears are placed farther 

apart than electrodes near the top and anterior-

posterior portions of the head, again in keeping with 

how the eye would view the side-to-top of the head. It is 

also possible to calculate topographic maps with the 

use of a linear, equidistant perspective. Thus, the 

distance between the electrodes is equal. In this view, 

the projection may be extended down 20º below the 

Fp1-T7-Oz-T8-Fp2 circumference to show data from 

the most inferior electrodes. A top, linear equidistance 

map extended down 20º is illustrated in the bottom 

right portion of the Figure.  

As mentioned, the simplest maps are computed 

using a “nearest neighbour” algorithm (Duffy, Burchfiel, 

& Lombroso, 1979). Most often, a four nearest 

neighbours algorithm is used. A serious issue with the 

nearest neighbours approach is that discontinuities 

may appear in the maps. Spline interpolations provide 

for smoothly changing maps. Because the head is 

spherically shaped, spherical spline maps (Perrin, 

    

Figure 6Figure 6Figure 6Figure 6 � Scalp distribution mapping. Left portion: a 64-multichannel recording. The reference site was the tip of 

the nose. The ERP was elicited by a 200 ms moderate intensity auditory stimuli presented every 2 s. The waveforms 

are “grand” averages based on 8 subjects (the average of the 8 subjects’ averages). To the right of the 64 channel 

array, a zoom of the Fz, Cz and M2 electrodes is presented. The downward deflection at about 100 ms is the auditory 

N1. It was largest in amplitude over fronto-central areas of the scalp. At sites inferior to the Sylvain fissure (e.g., M1 

and M2), N1 inverts in polarity and is recorded as a positive-going component. The scalp distribution of N1 is best 

displayed in a map. These are illustrated to the right of the Figure. A spline-interpolated algorithm was used to 

compute a continuous topographic map of N1. Nonlinear and linear views are illustrated. The non-linear view 

provides a visualization of the electrodes as would be observed by the human eye from, in this example, the top and 

the side of the head. Thus, in the top view, electrodes over the lateral and inferior scalp are closely spaced. In the side 

view, electrodes near the top of the head are closely spaced. In the linear top view, electrodes are evenly spaced and 

the projection continues farther down the scalp to include very inferior FT9 and FT10 and the two mastoid (TP9 and 

TP10) electrode sites. In both nonlinear and linear views, the map indicates that the amplitude of N1 is maximum 

over frontocentral areas of the scalp while a polarity inversion (N1 is recorded as a positive potential) is apparent at 

inferior regions. 
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Pernier, Bertrand, & Echallier, 1989) currently tend to 

be most often used. The maps in Figure 6 were 

computed using spline-interpolated maps.  

A major issue with the use of maps is that they are 

often misinterpreted as reflecting underlying sources 

or “generators”. In the Figure above, N1 was maximum 

over frontal regions of the scalp. Maps of the scalp 

voltage distribution are not however maps of the 

sources! Although N1 might be maximum in amplitude 

over frontal regions, it is not necessarily the frontal 

regions that were most activated by the auditory 

stimulus. Indeed, in the case of N1, it has long been 

known that its fronto-central scalp distribution is 

probably best explained by the orientation of source 

dipoles in and around the auditory (not the frontal) 

cortex (Scherg, Vajsar, Picton, 1989). Scalp distribution 

maps do not directly provide a map of the areas of the 

brain activated in a particular condition. Nevertheless, 

even if the scalp distribution maps cannot be used as 

maps of the underlying sources, they can be used in a 

different way. Components whose scalp topographies 

vary must have different intra-cranial generators. Thus, 

it also logically follows that if the scalp distribution of 

an ERP component is different in two conditions, then 

the underlying cerebral generators must be different in 

these conditions. It does not logically follow however 

that if the scalp distribution is the same in two different 

conditions, then the underlying sources must be the 

same. It is possible to have identical scalp maps as a 

result of different source dipole activity (Picton et al., 

1995).  

Statistical Analyses of Scalp Distribution DataStatistical Analyses of Scalp Distribution DataStatistical Analyses of Scalp Distribution DataStatistical Analyses of Scalp Distribution Data. 

Statistical analyses of the scalp distributions of the ERP 

components across conditions or between groups need 

to be interpreted with caution (Picton, 1988). These 

analyses are fraught with difficulties. Most of the data in 

the scalp distribution maps are not “real” data. Rather 

they are interpolated. In the example above, the 

researcher did not have any real data for the FCz 

placement. Rather it was interpolated using a nearest 

neighbor computation. Statistical analyses should only 

be applied to the actual data.  

One of the major reasons for collecting data from 

multiple electrode sites is to determine if an 

experimental manipulation affects the scalp 

distribution of an ERP component. This would usually 

be compared by a 2-way analysis of variance (ANOVA) 

to examine the interaction between the experimental 

condition and the scalp distribution. Unfortunately, the 

ANOVA procedure is poorly suited for this purpose. An 

assumption for the use of the ANOVA is that the 

experimental manipulation will result in an additive 

effect (a constant is added to each variable). The 

experimental manipulation causes a multiplicative 

effect on ERP scalp voltages. This issue has been 

discussed by McCarthy and Wood (1985) and Picton et 

al. (1995). Again, let us assume that the amplitude of 

the N1 component measures -8 µV at the frontal 

electrodes site (where N1 is largest) when the subject 

actively attends to the auditory stimuli. At central sites, 

it might measure half this amplitude, -4 µV, and at 

parietal sites, -2 µV. Note that this is a multiplicative 

effect (the voltage drops by ½from Fz to Cz to Pz), not a 

linear one (the voltage does not drop by 4 µV at each 

equidistant electrode site as one moves in an anterior 

to posterior direction). Now, let us suppose that in a 

second “ignore” condition, the amplitude at Fz drops to 

-4 µV. In short, the amplitude decreases by 4 µV. The 

additive model of the ANOVA procedure would also 

examine if the amplitude also decreases by 4 µV at both 

Cz and Pz. Thus, N1 would now measure 0 and +2 µV at 

Cz and Pz respectively. If so, this would be reflected in a 

significant main effect of the experimental condition 

and a non-significant condition x electrode site 

interaction (i.e., the effect is the same across all 

electrode sites). In reality, the amplitude would tend to 

be halved (a multiplicative effect) at Cz and Pz, thus 

measuring -2 and -1 µV respectively. Thus, the ANOVA 

might point to a significant condition x electrode site 

interaction because the effect was larger at Fz (a 4 µV 

difference) than at Pz (a 1 µV difference). This would 

lead to a false interpretation of the experimental effect. 

The experimental effect had the same, constant 

multiplicative effect at all electrode sites. The ignoring 

of the stimuli caused the amplitude of N1 to be reduced 

by 50% at all sites. The presence or absence of a 

significant interaction cannot therefore be easily 

interpreted. McCarthy and Wood (1985) have provided 

a scaling method to normalize the scalp distribution 

data. Unfortunately, the McCarthy and Wood 

normalization procedure has also been demonstrated 

to potentially produce erroneous results and cannot 

correct for the multiplicative effects on interactions 

involving an electrode factor (Urbach and Kutas, 2002).  

ConclusionConclusionConclusionConclusion    

The two articles in this series have described the real-

time recording of the EEG from multiple electrode sites 

and how these are affected by various cognitive 

paradigms. The present article discussed the basic 
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approaches for the analysis of ERP data. The advent of 

extremely powerful, but inexpensive, microcomputers 

and low cost multichannel amplifier systems hasmade 

the collection of both the performance and 

physiological data almost exponentially easier than in 

the past. ERP research has a long history dating back to 

the pioneers in the 1950s and 1960s. One of the major 

benefits of modern computer systems is that many 

complex off-line analyses can now be carried out on the 

data. An advantage of the off-line approach is that the 

raw data are not altered. Thus, any analyses that are 

carried out can later be reversed and modified. The EEG 

data are typically examined for artifacts. Many sources 

of artifact can be removed using digital filtering 

techniques. A common artifact is that caused by eye 

blinks and movements. This source of contamination is 

especially problematic over anterior regions of the 

scalp. Sophisticated algorithms, such as independent 

component analysis, can be used to correct for eye 

movement artifact, although the EEG does need to be 

recorded from a large number of scalp electrodes. The 

filtered and corrected continuous EEG data then need 

to be “cut” into segments, or epochs, of varying lengths 

and sorted according to the different stimuli that have 

been presented and types of responses made by the 

subject. Waxing and waning of the EEG within the 

epoch can be corrected. Epochs in which the amplitude 

of the EEG is unusually large are often rejected. The 

amplitude of the actual change in the electrical activity 

that is elicited by the physical stimulus or cognitive task 

demands (i.e., the ERP signal) is usually much smaller 

than the ongoing EEG in which it is embedded. Signal 

averaging techniques have long been employed to 

reduce the amplitude of the background noise, allowing 

the ERP signal to emerge. If the amplitude of the ERP is 

very small and the amplitude of the ongoing EEG is very 

large, many stimulus repetitions will probably be 

required and the time required to collect the data may 

thus be quite long.  

With the arrival of modern imaging techniques such 

as PET and the fMRI, it was thought that ERP research 

would fade away unable to compete with the spatial 

resolution capabilities of these (much more expensive) 

systems. As discussed in this article, it is possible to 

map the scalp distribution of the different ERP 

components. Nevertheless, the scalp distribution maps 

should not be interpreted to be maps of the underlying 

intracranial sources. Source localization techniques that 

rely on the scalp distribution maps can be used to 

mathematically compute the possible intracranial 

dipole sources. Source localization methods do require 

considerable human expertise and are not fully 

automated and for this reason, were not discussed in 

this article. There are several disadvantages to the use 

of hemodynamic measures imaging systems. Most 

importantly, their temporal resolution is much slower 

(in the order of seconds) than that afforded by ERP 

methods (millisecond resolution). For this reason, if 

anything, there are now many more ERP researchers 

than in the past. ERPs have thus become an integral 

part of the cognitive neuroscientist’s toolbox and 

modern imaging systems can now record ERPs 

concurrently during the fMRI imaging procedure.  

Ease of data collection and analysis is no substitute 

for carefully designed studies and the collection of high 

quality raw data. It is best to remove sources of noise 

and artifact during the actual data collection. In spite of 

the best efforts of the researcher, subjects will blink 

and move. Modern systems also allow for the low cost 

collection of data from many different scalp sites. Even 

though data are now routinely recorded from 64, 128 

and 256 electrode sites, how these multichannel data 

are to be analyzed is still however much debated. 
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