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New statistical inference for the Weibull distribution
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Abstract Weibull distribution has become a popular tool for modeling life data and improving growth in the field of
reliability. The successful application of Weibull distribution to real data depends on the statistical power of hypotheses
tests to a large extent. Here we propose two methods to test the shape parameter of a two-parameter Weibull distribution,
and its confidence interval is considered. Simulation studies show that coverage of the confidence intervals is close to its
desired confidence level, and the two proposed methods exhibited satisfactory performance. A real example employing a
Boeing air-conditioning system development study is presented to illustrate the proposed methods.
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Introduction

Demands on electronic products or components (e.g.,
weapon system, airplane generator, and electronic en-
gines) have become increasingly strict in recent years.
Weibull distribution, as one of the most widely used life
distribution tools, has been extensively studied in the field
of reliability growth research and is often employed to im-
prove data reliability.

Various classical procedures, such as point estimates,
hypotheses tests, and confidence intervals, have been pro-
posed for statistical inference. For instance, estimations of
unknown parameters, using methods such as the method
of moment, the likelihood approach, least square methods,
nonlinear regression estimators, robust estimation meth-
ods, and Bayesian methods, have been applied to Weibull
distribution (Bain & Engelhardt, 1980; Duffy, Starlinger,
& Powers, 1993; Lockhart & Stephens, 1994; Kuo & Yang,
1996; Ryan, 2003; Verma & Kapur, 2006; Sürücü & Sazak,
2009). In hypotheses tests, Lockhart and Stephens (1994)
introduced the empirical distribution function methods
to test whether the considered sample follows the three-
parameter Weibull distribution. However, for n < 10, such
a goodness-of-fit test have insufficient power. Applications
of the Weibull distribution to the assessment of hardware
or software reliability growth have been extensively inves-
tigated by various authors (Bai & Mu, 2011; Ren, Yang, &
Meng, 2012).

The remainder of this paper is organized as follows:
the first section presents proof of the relationship between
Weibull distribution and other common distributions. The
subsequent section proposes two original and novel meth-
ods to test the shape parameter based on the relation-
ship among some theoretical distributions. Next, we re-

port the results of simulation studies. Finally, the last sec-
tion presents an analysis of the failure times of the air-
conditioning system of Boeing aircrafts to illustrate the
proposed testing method.

Relationship between Weibull distribution and other
common distributions

Weibull distribution

Let X be a random variable (r.v.). The probability distribu-
tion function (pdf) of two-parameter Weibull distribution
WE(β,λ) with the shape and scale parameters β > 0 and
λ> 0, respectively, is defined as

fX (x) =λβxβ−1e−λxβ , x > 0 (1)

The Weibull distribution is an exponential distribution
E(λ) with scale parameter λ when β= 1.

If FX (x) indicates the Weibull distribution function, we
will use F̄X (x) to denote the corresponding survival func-
tion. Thus, the survival function F̄X (x) takes the following
form:

F̄X (x) = P (X ≥ x) = e−λxβ , x > 0

and the failure rate function of X , say r (x), is given by

r (x) =λβxβ−1, x > 0.

Gamma distribution

Let X be a r.v. The pdf of the two-parameter Gamma distri-
bution Ga(α,λ) with shape and scale parameters α> 0 and
λ> 0, respectively, is defined as

pX (x) = λα

Γ(α)
xα−1e−λx , x > 0, (2)
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Figure 1 Vertex (a) and edge (b) methods of the rejection regions of H0 for x ∈ R3

(a) (b)

where Γ(α) =
∫ ∞

0
xα−1e−x dx is the gamma function (α >

0), such that Ga(1,λ)=E(λ).

Dirichlet distribution

The Dirichlet distribution of order n ≥ 2 with parameters
α1, · · · ,αn has a pdf with r.v. X = (X1, · · · , Xn) given by (Kotz,
Balakrishnan, & Johnson, 2000)

f (x1, · · · , xn−1;α1, · · · ,αn) = 1

B(α)

n∏
i=1

xαi−1
i (3)

which will be denoted by X ∼ D(α1, · · · ,αn) on the open
(n −1)-dimensional simplex defined by:

x1 > 0, · · · , xn−1 > 0

x1 +·· ·+xn−1 < 1

xn = 1−x1 −·· ·−xn−1

and zero elsewhere.
The normalizing constant B(α) is the multinomial Beta

function, which can be expressed in terms of the gamma
function:

B(α) =

n∏
i=1

Γ(αi )

Γ
( n∑

i=1
αi

) ,α= (α1, · · · ,αn).

Relations

Theorem 1. Suppose {Xi ; i = 1,2, ...,n} is a sequence of in-
dependent and identically distributed non-negative r.v. Let

Xi vWE(β,λ). Define Yi = X β

i , then
(a) Yi v E(λ),

(b) T =
n∑

i=1
Yi vGa(n,λ),

(c) Zi = Yi

T
vD(1,1, · · · ,1).

Proof:
(a)

FYi (y) = P (Yi ≤ y) = P (X β

i ≤ y) = 1−e−λy .

(b) (i) When n = 1, the proof is immediate.
(ii) When n = 2, for T ≤ 0, pT (t ) = 0, whereas for T > 0,

pT (t ) =λ2
∫ t

0
e−λ(t−y) ·e−λy dy =λ2te−λt , t > 0,

such that we have T vGa(2,λ).
(iii) Furthermore, when n > 2, the formula can be ex-

tended to Y1 +Y2 +·· ·+Yn , we obtain
n∑

i=1
Yi vGa(n,λ) im-

mediately.
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(c) The joint pdf of (T, Z1, · · · , Zn) is given by

f (t , z1, · · · , zn−1) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂Y1

∂T

∂Y1

∂Z1
· · · ∂Y1

∂Zn−1
∂Y2

∂T

∂Y2

∂Z1
· · · ∂Y2

∂Zn−1
...

... · · · ...
∂Yn

∂T

∂Yn

∂Z1
· · · ∂Yn

∂Zn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
·

n∏
i=1

fYi (t zi ) = t n−1λne−λt

such that we obtain the joint pdf of (Z1, · · · , Zn) as follows:

f (z1, · · · , zn−1) =
∫ ∞

0
f (t , z1, · · · , zn)dt = Γ(n)

Thus, (c) is immediately obtained. �

Hypotheses test

From Theorem 1, we found that the r.v. Zi only depend on
the shape of the Weibull distribution and is independent of
the scale parameter λ. Thus, for r.v.x ∼ WE(β,λ), the fol-
lowing null hypothesis can be considered:

H0 :β=β0,

where β0 is the hypothesized shape parameter value.
Suppose

∆= {x = (x1, · · · , xn)′ :
n∑

i=1
xi = 1, xi > 0,x ∈ Rn}.

Based on (3), the pdf of X becomes

f (x) = I∆(x)n!, x ∈ Rn

where I∆(x) is the indicator function.
Let

∆(γ) = {x = (x1, · · · , xn)′ :
n∑

i=1
xi = r (γ) < 1, xi > 0,x ∈ Rn}.

P (X ∈∆(γ)+a(γ)) = γ< 1,

where a(γ) = 1

n
− r 2(γ)

n
,∆(γ)+a = {x : x = a1+y,y ∈∆(γ)}.

Note that the normal direction of the hyperplane L :∑n
i=1 xi = 1 is

f = (
1p
n

,
1p
n

, · · · ,
1p
n

)′,

The hyperplane L can also be expressed as

{x : f′x = 1p
n

}, ∆= {x : xi > 0,x ∈ L},

The intersection of hyperplane L and normal f is
( 1

n , 1
n , · · · , 1

n )′, which is called the central point. ∆ has n ver-
tices. The i -th coordinate of i -th vertex is described as 1,
and the other n −1 coordinate of the i -th vertex is 0.

For any point z=(z1, · · · , zn)′ ∈ ∆, if β0 = 0, it means z is
the central point of ∆, whereas for β0 =∞, z is close to the
vertex of ∆ or edge of ∆. Therefore, the rejection region of
H0 refers to the areas near to the central point and vertex
of ∆ or edge of ∆. For example, the rejection regions of the
vertex method for x ∈ R3 are the green parts shown in Fig.
1(a) and the rejection regions of the edge method for x ∈ R3

are the green parts shown in Fig. 1(b).
The key to express the rejection regions is to describe

the green parts. For the vertex method, let the area of the
central area be γ/2 and the area of each vertex region be
γ/(2n). Then, for a given significant level γ, the rejection
regions are given by

Wv = {∀zi ∈∆, zi ≥
1− n−1

√
γ
2

n , i = 1, · · · ,n}

∪ {∃zi ∈∆, zi ≥ 1− n−1
√

γ
2n , i = 1, · · · ,n}.

For the edge method, let the areas of the center and the
edge parts be γ/2.

We = {∀zi ∈∆, zi ≥
1− n−1

√
γ
2

n , i = 1, · · · ,n}

∪
{
∀zi ∈∆, zi ≥

1− n−1

√
1− γ

2
n

, i = 1, · · · ,n
}

.

Simulation

Hypotheses test on β

We consider the following null hypothesis:

H0 :β=β0,

under the following conditions of λ = 1,β0 = 0.5, dimen-
sion n = 10,30,40,50,100 and significance levelγ= 0.1. Un-
der these specified values, powers with different dimen-
sions of the hypotheses test are obtained from 3,000 iter-
ations of the Monte Carlo simulation. One simulation pro-
cedure is as follows:
1. One random sample Xi , i = 1, · · · ,n of size n is gener-

ated from WE(λ,β);

2. Zi =
X β0

i
n∑

i=1
X β0

i

is calculated;

3. if Zi falls in the rejection regions Wv (or We when the
second method is evaluated), the null hypothesis is re-
jected for that sample.

4. Power is calculated as the proportion of rejection out of
the 3000 simulation runs.
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Table 1 Simulation of significance levels by different methods when β0 = 0.5 and 1.5.

β0 = 0.5 β0 = 1.5
n Method γ= 0.01 γ= 0.05 γ= 0.1 γ= 0.01 γ= 0.05 γ= 0.1
5 vertex 0.007 0.054 0.101 0.011 0.050 0.103

edge 0.014 0.054 0.102 0.010 0.052 0.104
likelihood ratio 0.015 0.057 0.094 0.020 0.057 0.109

7 vertex 0.011 0.045 0.100 0.015 0.047 0.107
edge 0.009 0.053 0.107 0.010 0.053 0.102

likelihood ratio 0.012 0.060 0.109 0.016 0.057 0.110
9 vertex 0.009 0.051 0.106 0.009 0.045 0.099

edge 0.010 0.045 0.103 0.013 0.042 0.107
likelihood ratio 0.012 0.063 0.108 0.011 0.061 0.108

15 vertex 0.005 0.060 0.100 0.007 0.051 0.099
edge 0.006 0.055 0.101 0.005 0.047 0.103

likelihood ratio 0.005 0.063 0.115 0.017 0.062 0.106
30 vertex 0.012 0.042 0.097 0.007 0.052 0.099

edge 0.008 0.049 0.099 0.010 0.046 0.088
likelihood ratio 0.013 0.036 0.086 0.014 0.054 0.078

Figs. 2(a) to 2(e) shows the estimated power for the ver-
tex and the edge methods with n = 10,30,40,50 and 100 re-
spectively.

From Figs. 2(a) to 2(c), we find that the edge method
outperforms the vertex method at either n = 10 or 30 when
the null hypothesis is H0 : β = 0.5. Figs. 2(d) to 2(e) show
that the power of the vertex method is higher than the edge
method when n is greater than 30.

Finally, Fig. 3 compares power between the likelihood
ratio method and the proposed methods using 1,000 itera-
tions of a Monte Carlo simulation under the following con-
ditions ofλ= 1,β0 = 0.5,n = 50, tested forβ ∈ (0.01,2.5) and
significance level γ= 0.1.

Table 2 compares simulated significance levels among
the likelihood ratio method and the proposed methods.
From the table we can see that the simulated significance
levels produced by the vertex method and edge method are
closer to the given significance levels than the likelihood ra-
tio method for small sample sizes.

Confidence interval on β

The rejection region and confidence interval are mutually
complementary, such that the latter can be derived from
the former. Therefore, for a given confidence level 1−γ, a
lower bound for the β is the maximum value of it when any
zi satisfies

zi ≥
1− n−1

√
γ

2
n

.

An upper bound for the β is the minimum value of it when
exist one zi satisfies

zi ≥ 1− n−1

√
γ

2n
.

To estimate a lower bound for the shape parameter β,
we propose the following steps:
1. Random samples Xi , i = 1, · · · ,n are generate from

WE(λ,β0) after 1000 times, where β0 is the true value
of β;

2. βL0 and βU0 are denoted as the initial lower and upper
bounds of β, respectively, and

β= βL0 +βU0

2

is taken as the initial value of β;

3. zi =
X β

i
n∑

i=1
X β

i

is calculated as well as l eng th =βU0 −βL0 ;

4. While leng th > eps, if for any i = 1, · · · ,n, zi ≥
1− n−1

√
γ

2
n

, let βL0 =β and return to Step 2; else βU0 =β
and return to Step 2;

5. When leng th ≤ eps, βL = βU0 , and βL is the lower
bound of β.
To estimate an upper bound for the β, we propose the

following steps:
1. Random samples Xi , i = 1, · · · ,n are generated from

WE(λ,β0) after 1000 iterations, where β0 is the true
value of β;

2. βL0 and βU0 are denoted as the initial lower and upper
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Table 2 Summary of the results for the confidence interval of β as a function of the significance level γ for different methods.

γ= 0.1 γ= 0.05 γ= 0.02
n β0 Method leng th MSE coverage leng th MSE coverage leng th MSE coverage
30 0.2 vertex 0.2076 0.0177 90.0% 0.2521 0.0236 94.9% 0.2968 0.0308 97.9%

edge 0.1887 0.0028 89.6% 0.2402 0.0047 95.4% 0.2840 0.0061 98.1%
0.5 vertex 0.5144 0.1014 90.4% 0.6167 0.1332 95.2% 0.7784 0.2208 98.3%

edge 0.4831 0.0137 90.1% 0.6177 0.0243 95.8% 0.7169 0.0281 98.3%
50 0.2 vertex 0.1611 0.0068 90.7% 0.1950 0.0091 94.5% 0.2471 0.0139 98.0%

edge 0.1690 0.0016 89.2% 0.2049 0.0025 94.8% 0.2501 0.0034 98.5%
0.5 vertex 0.4251 0.0511 89.0% 0.5118 0.0646 95.1% 0.6130 0.0816 97.7%

edge 0.4247 0.0079 91.8% 0.5166 0.0116 94.9% 0.6424 0.0186 98.2%
75 0.2 vertex 0.1473 0.0058 90.6% 0.1746 0.0062 95.6% 0.2071 0.0081 96.8%

edge 0.1577 0.0011 89.2% 0.1927 0.0015 95.7% 0.2329 0.0026 97.9%
0.5 vertex 0.3614 0.0328 90.2% 0.4391 0.0433 95.4% 0.5156 0.0445 97.9%

edge 0.3947 0.0059 90.3% 0.4850 0.0089 94.9% 0.5836 0.0127 97.8%
100 0.2 vertex 0.1337 0.0040 89.8% 0.1589 0.0050 94.9% 0.1909 0.0056 98.2%

edge 0.1483 0.0009 90.1% 0.1797 0.0014 95.1% 0.2183 0.0021 98.2%
0.5 vertex 0.3428 0.0277 91.2% 0.4026 0.0309 94.9% 0.4903 0.0367 98.2%

edge 0.3764 0.0046 90.8% 0.4546 0.0071 94.7% 0.5596 0.0100 98.1%

bounds of β, respectively, and

β= βL0 +βU0

2

is taken as the initial value of β;

3. zi =
X β

i
n∑

i=1
X β

i

is calculated as well as leng th =βU0 −βL0 ;

4. While leng th > eps, for the vertex method, if exist i =
i0, zi0 ≥ 1− n−1

√
γ

2n
, let βU0 =β and return to Step 2; else

βL0 =β and return to Step 2. For the edge method, if for

not all i = 1, · · · ,n, zi ≥
1− n−1

√
1− γ

2
n

, let βU0 = β and

return to Step 2; else βL0 =β and return to Step 2.
5. When leng th ≤ eps, βU = βL0 , and βU is the upper

bound of β.
Thus, for a given confidence level 1−γ, the confidence

interval for β is

[βL ,βU ] (4)

To test the performances of these estimation methods,
Monte Carlo simulations were executed using several sam-
ples of size n, and different shape parameters. Without
loss of generality, the chosen values for n were 30, 50, 75
and 100. In addition, the scale and shape parameters were
fixed at λ = 1, β0 = 0.2 and 0.5. For different combina-
tions of sample size, n, and β0, the Weibull distribution
samples were generated by performing 1000 simulations in

each case. To verify the accuracy of the proposed methods,
we calculated the actual coverage of the confidence inter-
val with the formula: coverage = N0/N where N0 represents
the number of β falling into the confidence interval. The
results of the simulations are summarized in Table 1.

The results in Table 1 indicate that:
1. Among the different methods, the edge method outper-

forms the vertex method under almost all sample sizes
and β0.

2. At different significance levels, the actual coverage rate
approximates well the corresponding confidence level.
The proposed methods for estimating confidence inter-
vals is thus efficient. In addition, the result is satisfac-
tory for decreasing γ.

3. As expected, with increasing sample sizes, the mean
length of the confidence interval and its MSE decrease.

Table 3 Summary of the results for the null hypothesis:
H0 :β=β0 by the vertex and the edge methods.

H0

β0 γ vertex edge
0.5 0.01 reject reject
2 0.01 accept accept
4 0.01 accept reject

0.5 0.05 reject reject
2 0.05 accept accept
4 0.05 reject reject

0.5 0.1 reject reject
2 0.1 accept accept
4 0.1 reject reject
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One application

Proschan (1963) reported the failure times of the air-
conditioning system of 13 Boeing aircrafts. Based on the
report, we use the data set associated with Plane 7909 in
Proschan (1963). The successive failure times are: 90, 100,
160, 346, 407, 456, 470, 494, 550, 570, 649, 733, 777, 836, 865,
983, 1008, 1164, 1474, 1550, 1576, 1620, 1643, 1705, 1835,
2043, 2113, 2214, and 2422 h.

From (4) for the vertex method, a 90% confidence in-
terval for β is [0.932, 3.541], whereas a 95% confidence in-
terval for β is [0.858, 3.940]. We can consider the following
hypothesis:

H0 :β=β0

for the following conditions of β0 = 0.5, 2, 4 and signifi-
cance level γ= 0.01,0.05,0.1. The results of the hypotheses
are shown in Table 3 using the two different testing meth-
ods.

Conclusion

In this article, we proposed two new methods for testing
hypotheses on the shape parameter of a two-parameter
Weibull distribution. The test statistics are constructed
based on the relationships among Gamma distribution,
Dirichlet distribution, and Weibull distribution. We ob-
tain two rejection regions and confidence intervals in
n−dimensional space by analyzing the variation trends of
the shape parameter and by using properties of the Dirich-
let distribution. The performances of the testing meth-
ods were investigated using Monte Carlo simulations. The
methods are observed to be satisfactory. The coverage of
the confidence interval is close to the confidence level, and
the two proposed methods exhibited satisfactory perfor-
mance.
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Figure 2 Statistical power of vertex and edge methods for various sample sizes (panels) using significance level γ = 0.1.
The vertical dash line is the position of the true shape parameter.

(a) n = 10 (b) n = 30

(c) n = 40 (d) n = 50

(e) n = 100
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Figure 3 Power of H0 :β=β0 for true β= 0.5, and tested at β0 ∈ (0.01,2.5)

The Quantitative Methods for Psychology 147�


