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Inference for the Weibull Distribution: A tutorial
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Abstract This tutorial deals with the 2-parameter Weibull distribution. In particular it covers the construction of confi-
dence bounds and intervals for various parameters of interest, the Weibull scale and shape parameters, its quantiles and
tail probabilities. These bounds were pioniered in Thoman, Bain, and Antle, 1969, Thoman, Bain, and Antle, 1970, Bain,
1978, and Bain and Engelhardt, 1991, where tables for their computation were given. These tables were based on simu-
lations and show occasional irregularities. In conjunction with this tutorial we provide R code to perform various tasks
(generating plots, perform simulations). It greatly simplifies the application of these methods over trying to use the tables
available so far. Today’s computing availability and speed makes this very viable. For the freely available R computing
platform we refer to R Core Team, 2015. The text identifies R code by using courier font in appropriate places.
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Introduction

For parameters α > 0 and β > 0 the 2-parameter Weibull
cumulative distribution function (cdf) is defined as

Fα,β(x) =
{

1−exp
[
−( x

α

)β]
for x ≥ 0

0 for x < 0.

We also write X ∼ W (α,β) when X has this distribution
function, i.e., P (X ≤ x) = Fα,β(x). The parameters α and β

are referred to as scale and shape parameter, respectively.
The Weibull density has the following form

fα,β(x) = F ′
α,β(x) = d

d x
Fα,β(x) = β

α

( x

α

)β−1
exp

[
−

( x

α

)β]
.

For β= 1 the Weibull distribution coincides with the expo-
nential distribution with mean α. In general, α represents
the .632-quantile of the Weibull distribution regardless of
the value ofβ since Fα,β(α) = 1−exp(−1) ≈ .632 for allβ> 0.
Figure 1 (produced by densities()) shows a represen-
tative collection of Weibull densities. Note that the spread
of the Weibull distributions around α gets smaller as β in-
creases. The reason for this will become clearer later when
we discuss the log-transform of Weibull random variables.

The mth moment of the Weibull distribution is

E(X m) =αmΓ(1+m/β)

and thus the mean and variance are given by

µ= E(X ) =αΓ(1+1/β)

and
σ2 =α2 [

Γ(1+2/β)− {Γ(1+1/β)}2] .

Its p-quantile, defined by P (X ≤ xp ) = p, is

xp =α(− log(1−p))1/β .

For p = 1 − exp(−1) ≈ .632 (i.e., − log(1 − p) = 1) we have
xp = α regardless of β, as pointed out previously. For that
reason one also calls α the characteristic life of the Weibull
distribution. The term life comes from the common use of
the Weibull distribution in modeling lifetime data. More on
this later.

For parameters τ ∈ R, α > 0 and β > 0 the 3-parameter
Weibull cdf is defined as

Fα,β(x) =
{

1−exp
[
−( x−τ

α

)β]
for x ≥ τ

0 for x < τ.

We will not deal with this more general form of the Weibull
distribution. The method of maximum likelihood does not
work well in this context.

Minimum Closure and Weakest Link Property

The Weibull distribution has the following minimum clo-
sure property: If X1, . . . , Xn are independent and identically
distributed (i.i.d.) with Xi ∼W (αi ,β), i = 1, . . . ,n, then

P (min(X1, . . . , Xn) > t ) = P (X1 > t , . . . , Xn > t ) =
n∏

i=1
P (Xi > t )

=
n∏

i=1
exp

[
−

(
t

αi

)β]

= exp

[
−tβ

n∑
i=1

1

α
β

i

]
= exp

[
−

(
t

α?

)β]
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Figure 1 A Collection of Weibull Densities with α= 10000 and Various Shapes

with

α? =
(

n∑
i=1

1

α
β

i

)−1/β

,

i.e., min(X1, . . . , Xn) ∼ W (α?,β). This is reminiscent of the
closure property for the normal distribution under summa-
tion, i.e., if X1, . . . , Xn are independent with Xi ∼ N (µi ,σ2

i )
then

n∑
i=1

Xi ∼N

(
n∑

i=1
µi ,

n∑
i=1

σ2
i

)
.

This summation closure property plays an essential role in
proving the central limit theorem: Sums of independent
random variables (not necessarily normally distributed)
have an approximate normal distribution, subject to some
mild conditions concerning the distribution of such ran-
dom variables. There is a similar result from Extreme
Value Theory, see Gumbel, 1958, Coles, 2001,Embrechts,
Klüppelberg, and Mikosch, 1997, Castillo, 1988, that says:
The minimum of n independent, identically distributed
random variables (not necessarily Weibull distributed, but
subject to some mild conditions concerning the distribu-
tion of such random variables) has for large n one of three
possible approximate distributions: the above Weibull dis-
tribution, the Gumbel distribution (specified later), and the
negative Weibull distribution (of little interest in reliability
theory). This extreme value theory result is also referred to
as the “weakest link” motivation for the Weibull distribu-
tion.

The Weibull distribution is appropriate when trying to
characterize the random strength of materials or the ran-
dom lifetime of some system. This is related to the weakest

link property as follows. A piece of material can be viewed
as a concatenation of many smaller material cells, each
of which has its random breaking strength Xi when sub-
jected to tensile stress. Thus the strength of the concate-
nated total piece is the strength of its weakest link, namely
min(X1, . . . , Xn), i.e., approximately Weibull.

Similarly, a system can be viewed as a collection of
many parts or subsystems, each of which has a random life-
time Xi . If the system is defined to be in a failed state when-
ever any one of its parts or subsystems fails, then the sys-
tem lifetime is min(X1, . . . , Xn), i.e., approximately Weibull.

Publications concerning the Weibull distribution, its
theoretical properties and practical applications have seen
a dramatic rise as is illustrated gaphically by Heller (1985)
over the period 1939-1975. Googling “Weibull distribu-
tion” in 2008 produced 185,000 hits while “normal distri-
bution” had 2,420,000 hits. In 2015 these counts had risen
to 426,000 and 6,020,000, respectively. Figure 21 shows the
“real thing,” a reference to a remark by Weibull that he is
of Hungarian origin and that the Hungarian “Valodi” trans-
lates to “real thing”, see Heller (1985).

The Weibull distribution is very popular among engi-
neers. One reason for this is that the Weibull cdf has a
closed form which is not the case for the normal cdf Φ(x).
However, in today’s computing environment one could ar-
gue that point since typically the computation of even
exp(x) requires computing. That this can be accomplished
on most calculators is also moot since many calculators
also give you Φ(x). For some limited period this popularity
explanation may have been quite valid. Another reason for
the popularity of the Weibull distribution among engineers

1Many thanks to Sam Saunders for this photo.
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may be that Weibull’s most famous paper, Weibull, 1951,
originally submitted to a statistics journal and rejected, was
eventually published in an engineering journal.

Quoting Göran W. Weibull, 1981, http://www.garfield.
library.upenn.edu/classics1981/A1981LD32400001.pdf :
“. . . he tried to publish an article in a well-known British
journal. At this time, the distribution function proposed
by Gauss was dominating and was distinguishingly called
the normal distribution. By some statisticians it was even
believed to be the only possible one. The article was re-
fused with the comment that it was interesting but of no
practical importance. That was just the same article as the
highly cited one published in 1951.”

Saunders, 1975: ‘Professor Wallodi (sic) Weibull re-
counted to me that the now famous paper of his “A Statis-
tical Distribution of Wide Applicability”, in which was first
advocated the “Weibull” distribution with its failure rate a
power of time, was rejected by the Journal of the American
Statistical Association as being of no interest. Thus one of
the most influential papers in statistics of that decade was
published in the Journal of Applied Mechanics. See [35].
(Maybe that is the reason it was so influential!)’

The Hazard Function

The hazard function for any nonnegative random variable
with cdf F (x) and density f (x) is defined as h(x) = f (x)/(1−
F (x)). It is usually employed for distributions that model
random lifetimes and it relates to the probability that a life-
time comes to an end within the next small time increment
of length d given that the lifetime has exceeded x so far,
namely

P (x < X ≤ x +d |X > x) = P (x < X ≤ x +d)

P (X > x)

= F (x +d)−F (x)

1−F (x)

≈ d × f (x)

1−F (x)
= d ×h(x) .

In the case of the Weibull distribution we have

h(x) = fα,β(x)

1−Fα,β(x)
= β

α

( x

α

)β−1
.

Various other terms are used equivalently for the haz-
ard function, such as hazard rate, failure rate (function), or
force of mortality. In the case of the Weibull hazard rate
function we observe that it is increasing in x when β > 1,
decreasing in x when β< 1 and constant when β= 1 (expo-
nential distribution with memoryless property).

When β > 1 the part or system, for which the lifetime
is modeled by a Weibull distribution, is subject to aging in
the sense that an older system has a higher chance of fail-
ing during the next small time increment d than a younger
system.

For β< 1 (less common) the system has a better chance
of surviving the next small time increment d as it gets older,
possibly due to hardening, maturing, or curing. Often one
refers to this situation as one of infant mortality, i.e., after
initial early failures the survival gets better with age. How-
ever, one should keep in mind that we may be modeling
parts or systems that consist of a mixture of defective or
weak parts and of parts that practically can live forever. A
Weibull distribution with β < 1 may not do full justice to
such a mixture distribution. When Weibull analysis indi-
catesβ< 1 one should pay especially close attention to data
quality. Often enough the following situation has been en-
countered. An aircraft part shows unexpected early failures
and was subsequently improved/fixed by replacing it with
a new part under a different part number. Lumping these
early failures together with subsequent ones just because
they related to the “same” functional part can lead to find-
ing β< 1.

For β= 1 there is no aging, i.e., the system is as good as
new given that it has survived beyond x, since for β= 1 we
have

P (X > x +h|X > x) = P (X > x +h)

P (X > x)

= exp(−(x +h)/α)

exp(−x/α)

= exp(−h/α) = P (X > h) ,

i.e., it is again exponential with same mean α. One also
refers to this as a random failure model in the sense that
failures are due to external shocks that follow a Poisson pro-
cess with rate λ = 1/α. The random times between shocks
are exponentially distributed with meanα. Given that there
are k such shock events in an interval [0,T ] one can view
the k occurrence times as being uniformly distributed over
the interval [0,T ], hence the allusion to random failures.

Location-Scale Property of log(X )

Another useful property, of which we will make strong
use, is the following location-scale property of the log-
transformed Weibull distribution. By that we mean that:
X ∼ W (α,β) =⇒ log(X ) = Y has a location-scale distribu-
tion, namely its cumulative distribution function (cdf) is

P (Y ≤ y) = P (log(X ) ≤ y) = P (X ≤ exp(y))

= 1−exp

[
−

(
exp(y)

α

)β]
= 1−exp

[−exp
{
(y − log(α))×β}]

= 1−exp

[
−exp

(
y − log(α)

1/β

)]
= 1−exp

[
−exp

( y −u

b

)]
with location parameter u = log(α) and scale parameter b =
1/β. The reason for referring to such parameters this way is
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Figure 2 Ernst Hjalmar Waloddi Weibull

the following. If Z ∼ G(z) then Y = µ+σZ ∼ G((y −µ)/σ)
since

H(y) = P (Y ≤ y) = P (µ+σZ ≤ y)

= P (Z ≤ (y −µ)/σ) =G((y −µ)/σ)

The form Y = µ + σX should make clear the notion of
location-scale parameter, since Z has been scaled by the
factor σ and is then shifted by µ. Two prominent location-
scale families are
1. Y = µ+ σZ ∼ N (µ,σ2), where Z ∼ N (0,1) is stan-

dard normal with cdf G(z) = Φ(z) and thus Y has cdf
H(y) =Φ((y −µ)/σ),

2. Y = u+bZ where Z has the standard extreme value dis-
tribution with cdf G(z) = 1−exp(−exp(z)) for z ∈ R, as
in our log-transformed Weibull example above.
This distribution G , also known as the Gumbel distribu-

tion, plays a central role in extreme value theory, see Gum-

bel, 1958, Coles, 2001,Embrechts et al., 1997, Castillo, 1988.
In any such a location-scale model there is a simple

relationship between the p-quantiles of Y and Z , namely
yp = µ+σzp in the normal model and yp = u +bwp in the
extreme value model (using the location and scale parame-
ters u and b resulting from log-transformed Weibull data).
We just illustrate this in the extreme value location-scale
model.

p = P (Z ≤ wp ) = P (u +bZ ≤ u +bwp )

= P (Y ≤ u +bwp )

=⇒ yp = u +bwp

with wp = log(− log(1 − p)). Thus yp is a linear function
of wp = log(− log(1−p)), the p-quantile of G . While wp is
known and easily computable from p, the same cannot be
said about yp , since it involves the typically unknown pa-
rameters u and b. However, for appropriate pi = (i − .5)/n
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one can view the i th ordered sample value Y(i ) (Y(1) ≤ . . . ≤
Y(n)) as a good approximation for ypi . Thus the plot of Y(i )

against wpi should look approximately linear. This is the
basis for Weibull probability plotting (and the case of plot-
ting Y(i ) against zpi for normal probability plotting), a very
appealing graphical procedure which gives a visual impres-
sion of how well the data fit the assumed model (normal or
Weibull) and which also allows for a crude estimation of the
unknown location and scale parameters, since they relate
to the slope and intercept of the line that may be fitted to
the perceived linear point pattern.

Maximum Likelihood Estimation

There are many ways to estimate the parameters θ = (α,β)
based on a random sample X1, . . . , Xn ∼W (α,β). Maximum
likelihood estimation (MLE) is generally the most versatile
and popular method. Although MLE in the Weibull case
requires numerical methods and a computer, that is no
longer an issue in today’s computing environment. Pre-
viously, estimates that could be computed by hand had
been investigated, but they are usually less efficient than
mle’s (estimates derived by MLE). By efficient estimates we
loosely refer to estimates that have the smallest sampling
variance. MLE tends to be efficient, at least in large sam-
ples. Furthermore, under regularity conditions MLE pro-
duces estimates that have an approximate normal distribu-
tion in large samples. These properties hold in particular
for random samples from a 2-parameter Weibull distribu-
tion.

When X1, . . . , Xn ∼ Fθ(x) with density fθ(x) then the
maximum likelihood estimate of θ is that value θ = θ̂ =
θ̂(x1, . . . , xn) which maximizes the likelihood

L(x1, . . . , xn ,θ) =
n∏

i=1
fθ(xi )

over θ, i.e., which gives highest local probability to the ob-
served sample (X1, . . . , Xn) = (x1, . . . , xn)

L(x1, . . . , xn , θ̂) = sup
θ

{
n∏

i=1
fθ(xi )

}
.

Often such maximizing values θ̂ are unique and one can
obtain them by solving, i.e.,

∂

∂θ j

n∏
i=1

fθ(xi ) = 0 j = 1, . . . ,k ,

where k is the number of parameters involved in θ =
(θ1, . . . ,θk ). These above equations reflect the fact that a
smooth function has a horizontal tangent plane at its maxi-
mum (minimum or saddle point). Thus solving such equa-
tions is necessary but not sufficient, since it still needs to
be shown that it is the location of a maximum.

Since taking derivatives of a product is tedious (product
rule) one usually resorts to maximizing the log of the likeli-
hood, i.e.,

`(x1, . . . , xn ,θ) = log(L(x1, . . . , xn ,θ)) =
n∑

i=1
log

(
fθ(xi )

)
since the value of θ that maximizes L(x1, . . . , xn ,θ) is the
same as the value that maximizes `(x1, . . . , xn ,θ), i.e.,

`(x1, . . . , xn , θ̂) = sup
θ

{
n∑

i=1
log

(
fθ(xi )

)}
.

It is a lot simpler to deal with the likelihood equations

∂

∂θ j
`(x1, . . . , xn , θ̂) = ∂

∂θ j

n∑
i=1

log( fθ(xi ))

=
n∑

i=1

∂

∂θ j
log( fθ(xi )) = 0 j = 1, . . . ,k

when solving for θ = θ̂ = θ̂(x1, . . . , xn).
In the case of a normal random sample we have θ =

(µ,σ) with k = 2 and the unique solution of the likelihood
equations results in the explicit expressions

µ̂= x̄ =
n∑

i=1
xi /n and σ̂=

√
n∑

i=1
(xi − x̄)2/n

and thus θ̂ = (µ̂, σ̂) .
In the case of a Weibull sample we take the further sim-

plifying step of dealing with the log-transformed sample
(y1, . . . , yn) = (log(x1), . . . , log(xn)). Recall that Yi = log(Xi )
has cdf F (y) = 1−exp(−exp((x −u)/b)) =G((y −u)/b) with
G(z) = 1−exp(−exp(z)) with g (z) =G ′(z) = exp(z −exp(z)).
Thus

f (y) = F ′(y) = d

d y
F (y) = 1

b
g ((y −u)/b))

with

log( f (y)) =− log(b)+ y −u

b
−exp

( y −u

b

)
.

As partial derivatives of log( f (y)) with respect to u and b we
get

∂

∂u
log( f (y)) =− 1

b
+ 1

b
exp

( y −u

b

)
∂

∂b
log( f (y)) =− 1

b
− 1

b

y −u

b
+ 1

b

y −u

b
exp

( y −u

b

)
and thus as likelihood equations
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0 = −n

b
+ 1

b

n∑
i=1

exp
( yi −u

b

)
or

n∑
i=1

exp
( yi −u

b

)
= n or exp(u) =

[
1

n

n∑
i=1

exp
( yi

b

)]b

,

0 = − n

b
− 1

b

n∑
i=1

yi −u

b
+ 1

b

n∑
i=1

yi −u

b
exp

( yi −u

b

)
.

i.e., we have a solution u = û once we have a solution b = b̂.
Substituting this expression for exp(u) into the second like-
lihood equation we get (after some cancelation and manip-
ulation)

0 =
∑n

i=1 yi exp(yi /b)∑n
i=1 exp(yi /b)

−b − 1

n

n∑
i=1

yi .

Analyzing the solvability of this equation is more conve-
nient in terms of β= 1/b and we thus write

0 =
n∑

i=1
yi wi (β)− 1

β
− ȳ

where

wi (β) = exp(yiβ)∑n
j=1 exp(y jβ)

with
∑n

i=1 wi (β) = 1. Note that the derivative of these
weights with respect to β take the following form

w ′
i (β) = d

dβ
wi (β) = yi wi (β)−wi (β)

n∑
j=1

y j w j (β) .

Hence

d

dβ

{
n∑

i=1
yi wi (β)− 1

β
− ȳ

}
=

n∑
i=1

yi w ′
i (β)+ 1

β2

=
n∑

i=1
y2

i wi (β)−
(

n∑
j=1

y j w j (β)

)2

+ 1

β2 > 0

since

varw (y) =
n∑

i=1
y2

i wi (β)−
(

n∑
j=1

y j w j (β)

)2

= Ew (y2)− [
Ew (y)

]2 ≥ 0

can be interpreted as a variance of the n values of y =
(y1, . . . , yn) with weights or probabilities given by w =
(w1(β), . . . , wn(β)). Thus the reduced second likelihood
equation

∑
yi wi (β)−1/β− ȳ = 0 has a unique solution (if it

has a solution at all) since the equation’s left side is strictly
increasing.

Note that wi (β) → 1/n as β→ 0. Thus
∑

yi wi (β)−1/β−
ȳ ≈−1/β→−∞ as β→ 0.

Furthermore, with M = max(y1, . . . , yn) and β→ ∞ we
have

wi (β) = exp(β(yi −M))/
n∑

j=1
exp(β(y j −M))

when yi < M and wi (β) → 1/r when yi = M where r ≥ 1 is
the number of yi coinciding with M . Thus∑

yi wi (β)−1/β− ȳ ≈ M −1/β− ȳ → M − ȳ > 0

as β→∞ where M − ȳ > 0 assumes that not all yi coincide
(a degenerate case with probability 0). That this unique so-
lution corresponds to a maximum and thus a unique global
maximum takes some extra effort and we refer to Scholz,
1996 (revised 2001) for an even more general treatment that
covers Weibull analysis with right censored data and co-
variates.

However, a somewhat loose argument can be given
as follows. If we consider the likelihood of the log-
transformed Weibull data we have

L(y1, . . . , yn ,u,b) = 1

bn

n∏
i=1

g
( yi −u

b

)
.

Contemplate this likelihood for fixed y = (y1, . . . , yn) and for
parameters u with |u| →∞ (the location moves away from
all observed data values y1, . . . , yn) and b with b → 0 (the
spread becomes very concentrated on some point and can-
not simultaneously do so at all values y1, . . . , yn , unless they
are all the same, excluded as a zero probability degeneracy)
and b →∞ (in which case all probability is diffused thinly
over the whole half plane {(u,b) : u ∈ R,b > 0}), it is then
easily seen that this likelihood approaches zero in all cases.
Since this likelihood is positive everywhere (but approach-
ing zero near the fringes of the parameter space, the above
half plane) it follows that it must have a maximum some-
where with zero partial derivatives. We showed there is only
one such point (uniqueness of the solution to the likelihood
equations) and thus there can only be one unique (global)
maximum, which then is also the unique maximum likeli-
hood estimate θ̂ = (û, b̂).
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In solving 0 = ∑
yi exp(yi /b)/

∑
exp(yi /b) − b − ȳ , it is

numerically advantageous to solve the equivalent equation
0 = ∑

yi exp((yi − M)/b)/
∑

exp((yi − M)/b) − b − ȳ where
M = max(y1, . . . , yn). This avoids overflow or accuracy loss
in the exponentials when the yi tend to be large.

The above derivations go through with very little
change when instead of observing a full sample Y1, . . . ,Yn

we only observe the r ≥ 2 smallest sample values Y(1) <
. . . < Y(r ). Such data is referred to as type II censored data.
This situation typically arises in a laboratory setting when
several units are put on test (subjected to failure exposure)
simultaneously and the test is terminated (or evaluated)
when the first r units have failed. In that case we know
the first r failure times X(1) < . . . < X(r ) and thus Y(i ) =
log(X(i )), i = 1, . . . ,r , and we know that the lifetimes of the
remaining units exceed X(r ) or that Y(i ) > Y(r ) for i > r . The
advantage of such data collection is that we do not have to
wait until all n units have failed. Furthermore, if we put
a lot of units on test (high n) we increase our chance of
seeing our first r failures before a fixed time y . This is a
simple consequence of the following binomial probability
statement:

P (Y(r ) ≤ y) = P (at least r failures ≤ y in n trials)

=
n∑

i=r

(
n

i

)
P (Y ≤ y)i (1−P (Y ≤ y))n−i

which is strictly increasing in n for any fixed y and r ≥ 1.
The joint density of Y(1), . . . ,Y(n) at (y1, . . . , yn) with y1 <

. . . < yn is

f (y1, . . . , yn) = n!
n∏

i=1

1

b
g

( yi −u

b

)
= n!

n∏
i=1

f (yi )

where the multiplier n! just accounts for the fact that all
n! permutations of y1, . . . , yn could have been the order
in which these values were observed and all of these or-
ders have the same density (probability). Integrating out
yn > yn−1 > . . . > yr+1(> yr ) and using F̄ (y) = 1−F (y) we

get after n − r successive integration steps the joint density
of the first r failure times y1 < . . . < yr as

f (y1, . . . , yn−1) =n!
n−1∏
i=1

f (yi )×
∫ ∞

yn−1

f (yn)d yn

= n!
n−1∏
i=1

f (yi )F̄ (yn−1)

f (y1, . . . , yn−2) =n!
n−2∏
i=1

f (yi )×
∫ ∞

yn−2

f (yn−1)F̄ (yn−1)d yn−1

= n!
n−2∏
i=1

f (yi )× 1

2
F̄ 2(yn−2)

f (y1, . . . , yn−3) =n!
n−3∏
i=1

f (yi )×
∫ ∞

yn−3

f (yn−2)F̄ 2(yn−2)/2d yn−2

= n!
n−3∏
i=1

f (yi )× 1

3!
F̄ 3(yn−3)

. . .

f (y1, . . . , yr ) =n!
r∏

i=1
f (yi )× 1

(n − r )!
F̄ n−r (yr )

=
[

n!

(n − r )!

r∏
i=1

f (yi )

]
× [

1−F (yr )
]n−r

=r !
r∏

i=1

1

b
g

( yi −u

b

)
×

(
n

r

)[
1−G

( yr −u

b

)]n−r

with log-likelihood

`(y1, . . . , yr ,u,b) = log

(
n!

(n − r )!

)
−r log(b)+

r∑
i=1

yi −u

b
−

r∑
i=1

? exp
( yi −u

b

)
where we use the notation

r∑
i=1

? xi =
r∑

i=1
xi + (n − r )xr .

The likelihood equations are

0 = ∂

∂u
`(y1, . . . , yr ,u,b) = − r

b
+ 1

b

r∑
i=1

? exp
( yi −u

b

)
or exp(u) =

[
1

r

r∑
i=1

? exp
( yi

b

)]b

0 = ∂

∂b
`(y1, . . . , yr ,u,b) = − r

b
− 1

b

r∑
i=1

yi −u

b
+ 1

b

r∑
i=1

? yi −u

b
exp

( yi −u

b

)
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where again the transformed first equation gives us a solu-
tion û once we have a solution b̂ for b. Using this in the sec-
ond equation, it transforms to a single equation in b alone,
namely ∑r

i=1
? yi exp(yi /b)∑r

i=1
? exp(yi /b)

−b − 1

r

r∑
i=1

yi = 0 .

Again it is advisable to use the equivalent but computation-
ally more stable form∑r

i=1
? yi exp((yi − yr )/b)∑r

i=1
? exp((yi − yr )/b)

−b − 1

r

r∑
i=1

yi = 0 .

As in the complete sample case one sees that this equation
has a unique solution b̂ and that (û, b̂) gives the location of
the (unique) global maximimum of the likelihood function,
i.e., (û, b̂) are the mle’s.

Computation of Maximum Likelihood Estimates inR

The computation of the mle’s of the Weibull parameters α
and β is facilitated by the function survreg which is part
of the R package survival. Here survreg is used in its
most basic form in the context of Weibull data (full sam-
ple or type II censored Weibull data). survreg does a
whole lot more than compute the mle’s but we will not deal
with these aspects here, at least for now. Listing 1 gives an
R function, called Weibull.mle, that uses survreg to
compute these estimates. Note that it tests for the existence
of survreg before calling it. This function is part of the
Weibull R functions that accompany this article.

Note that survreg analyzes objects of class Surv.
Here such an object is created by the function Surv and
it basically adjoins the failure times with a status vector
of same length. The status is 1 when a time corresponds
to an actual failure time. It is 0 when the corresponding
time is a censoring time, i.e., we only know that the unob-
served actual failure time exceeds the reported censoring
time. In the case of type II censored data these censoring
times equal the r th largest failure time.

To get a sense of the calculation speed of this function
we ran Weibull.mle a 1000 times, which tells us that
the time to compute the mle’s in a sample of size n = 10
is roughly 1.53/1000 = .00153. This fact plays a significant
role later on in the various inference procedures which we
will discuss.

system.time(for(i in 1:1000){
Weibull.mle(rweibull(10,1))

})
user system elapsed
1.35 0.03 1.53

These results were obtained with an Intel(R)
Core(TM) i5-4460 3.20 GHz CPU with 16 GB RAM.
For n = 100,500,1000,5000 the elapsed times came to
1.71,3.47,7.15 and 26.68, respectively. The relationship of
computing time to n appears to be quite linear, as Figure 3
shows, produced by timing.plot().

Location and Scale Equivariance of Maximum Likelihood
Estimates

The maximum likelihood estimates û and b̂ of the location
and scale parameters u and b have the following equivari-
ance properties which will play a strong role in the later
pivot construction and resulting confidence intervals.

Based on data z = (z1, . . . , zn) we denote the estimates
of u and b more explicitly by û(z1, . . . , zn) = û(z) and
b̂(z1, . . . , zn) = b̂(z). If we transform z to r = (r1, . . . ,rn) with
ri = A +B zi , where A ∈ R and B > 0 are arbitrary constant,
then

û(r1, . . . ,rn) = A+Bû(z1, . . . , zn)

or
û(r) = û(A+Bz) = A+Bû(z)

and
b̂(r1, . . . ,rn) = Bb̂(z1, . . . , zn)

or
b̂(r) = b̂(A+Bz) = Bb̂(z) .

These properties are naturally desirable for any location
and scale estimates and for mle’s they are indeed true.

Proof: Observe the following defining properties of the
mle’s in terms of z = (z1, . . . , zn) and r = (r1, . . . ,rn)

sup
u,b

{
1

bn

n∏
i=1

g ((zi −u)/b)

}
= 1

b̂n(z)

n∏
i=1

g ((zi − û(z))/b̂(z))

sup
u,b

{
1

bn

n∏
i=1

g ((ri −u)/b)

}

= 1

b̂n(r)

n∏
i=1

g ((ri − û(r))/b̂(r))

= 1

B n

1

(b̂(r)/B)n

n∏
i=1

g ((zi − (û(r)− A)/B)/(b̂(r)/B))

but also
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Figure 3 Weibull Parameter MLE Computation Time in Relation to Sample Size n
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sup
u,b

{
1

bn

n∏
i=1

g ((ri −u)/b)

}
= sup

u,b

{
1

bn

n∏
i=1

g ((A+B zi −u)/b)

}

= sup
u,b

{
1

B n

1

(b/B)n

n∏
i=1

g ((zi − (u − A)/B)/(b/B))

}
ũ = (u − A)/B

b̃ = b/B
⇒ = sup

ũ,b̃

{
1

B n

1

b̃n

n∏
i=1

g ((zi − ũ)/b̃)

}
= 1

B n

1

b̂n(z)

n∏
i=1

g ((zi − û(z))/b̂(z))

Thus by the uniqueness of the mle’s we have

û(z) = (û(r)− A)/B and b̂(z) = b̂(r)/B

or
û(r) = û(A+Bz) = A+Bû(z)

and
b̂(r) = b̂(A+Bz) = Bb̂(z) q.e.d .

The same equivariance properties hold for the mle’s in the
context of type II censored samples, as is easily verified.

Tests of Fit Based on the Empirical Distribution Function

Relying on subjective assessment of linearity in Weibull
probability plots in order to judge whether a sample comes
from a 2-parameter Weibull population takes a fair amount
of experience. It is simpler and more objective to employ a

formal test of fit which compares the empirical distribution
function F̂n(x) of a sample with the fitted Weibull distribu-
tion function F̂ (x) = Fα̂,β̂(x) using one of several common
discrepancy metrics.

The empirical distribution function (EDF) of a sample
X1, . . . , Xn is defined as

F̂n(x) = # of observations ≤ x

n
= 1

n

n∑
i=1

I{Xi≤x}

where I A = 1 when A is true, and I A = 0 when A is false. The
fitted Weibull distribution function (using mle’s α̂ and β̂) is

F̂ (x) = Fα̂,β̂(x) = 1−exp

(
−

( x

α̂

)β̂)
.

From the law of large numbers (LLN) we see that for any
x we have that F̂n(x) −→ Fα,β(x) as n −→ ∞, provided the
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random sample X1, . . . , Xn ∼ W (α,β). Just view F̂n(x) as a
binomial proportion or as an average of Bernoulli random
variables.

From MLE theory we also know that F̂ (x) = Fα̂,β̂(x) −→
Fα,β(x) as n −→∞ (also derived from the LLN).

Since the limiting cdf Fα,β(x) is continuous in x one can
argue that these convergence statements can be made uni-
formly in x, i.e.,

sup
x

|F̂n(x)−Fα,β(x)| −→ 0 and sup
x

|Fα̂,β̂(x)−Fα,β(x)| −→ 0

as n −→∞ and thus

sup
x

|F̂n(x)−Fα̂,β̂(x)| −→ 0

as n −→∞ for all α> 0 and β> 0. The distance

DKS(F,G) = sup
x

|F (x)−G(x)|

is known as the Kolmogorov-Smirnov distance between
two cdf’s F and G .

Figures 4 and 5 give illustrations of this Kolmogorov-
Smirnov distance between EDF and fitted Weibull distri-
bution and show the relationship between sampled true
Weibull distribution, fitted Weibull distribution, and em-
pirical distribution function. These plots were generated
by the supplied function edf.plot using edf.plot(n
= 10, alpha = 10000, beta = 2) and n = 20,
50 and 100.

Some comments:
1. It can be noted that the closeness between F̂n(x) and

Fα̂,β̂(x) is usually more pronounced than their respec-
tive closeness to Fα,β(x), in spite of the sequence of the
above convergence statements.

2. This can be understood from the fact that both F̂n(x)
and Fα̂,β̂(x) fit the data, i.e., try to give a good represen-
tation of the data. The fit of the true distribution, al-
though being the origin of the data, is not always good
due to sampling variation.

3. The closeness between all three distributions improves
as n gets larger.
Several other distances between cdf’s F and G have

been proposed and investigated in the literature, see
Stephens, 1986. We will only discuss two of them,
the Cramér-von Mises distance DCvM and the Anderson-
Darling distance DAD. They are defined respectively as fol-
lows

DCvM(F,G) =
∫ ∞

−∞
(F (x)−G(x))2 dG(x)

=
∫ ∞

−∞
(F (x)−G(x))2 g (x) d x

and

DAD(F,G) =
∫ ∞

−∞
(F (x)−G(x))2

G(x)(1−G(x))
dG(x)

=
∫ ∞

−∞
(F (x)−G(x))2

G(x)(1−G(x))
g (x) d x .

Rather than focussing on the very local phenomenon of
a maximum discrepancy at some point x as in DKS, these
alternate distances or discrepancy metrics integrate these
distances in squared form over all x, weighted by g (x) in the
case of DCvM(F,G) and by g (x)/[G(x)(1−G(x))] in the case
DAD(F,G). In the latter case, the denominator increases
the weight in the tails of the G distribution, i.e., compen-
sates to some extent for the tapering off in the density g (x).
Thus DAD(F,G) is favored in situations where judging tail
behavior is important, e.g., in risk situations. Because of
the integration nature of these last two metrics they have
more global character. There is no easy graphical represen-
tation of these metrics, except to suggest that when view-
ing the previous figures illustrating DKS one should look at
all vertical distances (large and small) between F̂n(x) and
F̂ (x), square them and accumulate these squares in the
appropriately weighted fashion. For example, when one
cdf is shifted relative to the other by a small amount (no
large vertical discrepancy), these small vertical discrepan-
cies (squared) will add up and indicate a moderately large
difference between the two compared cdf’s.

We point out the asymmetric nature of these last two
metrics, i.e., we typically have

DCvM(F,G) 6= DCvM(G ,F ) and DAD(F,G) 6= DAD(G ,F ) .

When using these metrics for tests of fit one usually takes
the cdf with a density (the estimated model distribution to
be tested) as the one with respect to which the integration
takes place, while the other cdf is taken to be the EDF.

As complicated as these metrics may look at first glance,
their computation is quite simple. We will give the follow-
ing computational expressions (without proof):

DKS(F̂n(x), F̂ (x)) = D

= max
[
max

{
i /n −V(i )

}
, max

{
V(i ) − (i −1)/n

}]
where V(1) ≤ . . . ≤ V(n) are the ordered values of Vi =
F̂ (Xi ), i = 1, . . . ,n.

For the other two test of fit criteria we have

DCvM(F̂n(x), F̂ (x)) =W 2 =
n∑

i=1

{
V(i ) − 2i −1

2n

}2

+ 1

12n

and

DAD(F̂n(x),F̂ (x)) = A2

=−n − 1

n

n∑
i=1

(2i −1)
[
log(V(i ))+ log(1−V(n−i+1))

]
.
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Figure 4 Illustration of Kolmogorov-Smirnov Distance for n = 10 and n = 20

(a) n = 10

(b) n = 20

In order to carry out these tests of fit we need to know
the null distributions of D , W 2 and A2. Quite naturally
we would reject the hypothesis of a sampled Weibull dis-
tribution whenever D or W 2 or A2 are too large. The null
distributions of D , W 2 and A2 do not depend on the un-
known parameters α and β, being estimated by α̂ and β̂ in
Vi = F̂ (Xi ) = Fα̂,β̂(Xi ). The reason for this is that the Vi have
a distribution that is independent of the unknown param-
eters α and β. This is seen as follows. Using our prior nota-
tion we write log(Xi ) = Yi = u +bZi and since

F (x) = P (X ≤ x) = P (log(X ) ≤ log(x))

= P (Y ≤ y) = 1−exp(−exp((y −u)/b))

and thus

Vi = F̂ (Xi ) = 1−exp(−exp((Yi − û(Y))/b̂(Y)))

= 1−exp(−exp((u +bZi − û(u +bZ))/b̂(u +bZ)))

= 1−exp(−exp((u +bZi −u −bû(Z))/[b b̂(Z])))

= 1−exp(−exp((Zi − û(Z))/b̂(Z)))

and all dependence on the unknown parameters u = log(α)
and b = 1/β has canceled out.

This opens up the possibility of using simulations to
find good approximations to these null distributions for
any n, especially in view of the previously reported tim-
ing results for computing the mle’s α̂ and β̂ of α and β.
Just generate samples X? = (X?

1 , . . . , X?
n ) from W (α = 1,β =

1) (standard exponential distribution), compute the corre-
sponding α̂? = α̂(X?) and β̂? = β̂(X?), then V ?

i = F̂ (X?
i ) =

Fα̂?,β̂? (X?
i ) (where Fα,β(x) is the cdf of W (α,β)) and from

that the values D? = D(X?), W 2? = W 2(X?) and A2? =
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Figure 5 Illustration of Kolmogorov-Smirnov Distance for n = 50 and n = 100

(a) n = 50

(b) n = 100

A2(X?). Calculating all three test of fit criteria makes sense
since the main calculation effort is in getting the mle’s α̂?

and β̂?. Repeating this a large number of times, say Nsim =
10000, should give us a reasonably good approximation to
the desired null distribution and from it one can determine
appropriate p-values for any sample X1, . . . , Xn for which
one wishes to assess whether the Weibull distribution hy-
pothesis is tenable or not. If C (X) denotes the used test of fit
criterion then the estimated p-value of the observed sam-
ple x is simply the proportion of C (X?) that are ≥C (x).

Prior to the ease of current computing, Stephens, 1986
provided tables for the (1−α)-quantiles q1−α of these null
distributions. For the n-adjusted versions A2(1 + .2/

p
n)

and W 2(1+ .2/
p

n) these null distributions appear to be in-
dependent of n and (1 −α)-quantiles were given for α =
.25, .10, .05, .025, .01. Plotting log(α/(1 − α)) against q1−α
shows a mildly quadratic pattern which can be used to in-
terpolate or extrapolate the appropriate p-value (observed

significance level α) for any observed n-adjusted value
A2(1 + .2/

p
n) and W 2(1 + .2/

p
n), as is illustrated in Fig-

ure 6.
For

p
nD the null distribution still depends on n (in

spite of the normalizing factor
p

n) and (1 −α)-quantiles
for α = .10, .05, .025, .01 were tabulated for n = 10,20,50,∞
by Stephens, 1986. Here a double inter- and extrapolation
scheme is needed, first by plotting these quantiles against
1/
p

n, fitting quadratics in 1/
p

n and reading off the four
interpolated quantile values for the needed n0 (the sample
size at issue) and as a second step perform the interpola-
tion or extrapolation scheme as it was done previously, but
using a cubic this time. This is illustrated in Figure 7.

The functions for computing these p-values (via inter-
polation from Stephens’ tabled values) areGOF.KS.test,
GOF.CvM.test, and GOF.AD.test. They compute p-
values for n-adjusted test criteria

p
nD , W 2(1+.2/

p
n) , and

A2(1 + .2/
p

n), respectively. These functions have an op-
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tional argument graphic where graphic = T causes
the interpolation graphs shown in Figures 6 and 7 to be pro-
duced, otherwise only the p-values are given. The function
Weibull.GOF.test does a Weibull goodness of fit test
on any given sample, returning p-values for all three test
criteria.

One could easily reproduce and extend the tables given
by Stephens (1986) so that extrapolations becomes less of
an issue. For n = 100 it should take about 17 seconds to
simulate the null distributions based on Nsim = 10,000 and
the previously given timing of 1.71 sec for Nsim = 1,000.
This timing estimate ignores the calculation of D,W 2, and
A2.

Pivots

For the following generic discussion of pivots assume that
the data vector X has a distribution governed by an un-
known set of parameters (ξ,ϑ) where ϑ is real valued but
ξmay be vector valued or of arbitrary form. ϑ is the param-
eter of interest and often it is possible to reparametrize a
given problem to fit this format.

A pivot forϑ is a known functionϕ(X ,ϑ) of the data vec-
tor X and the unknown parameter ϑ of interest with the fol-
lowing two properties
1. The cdf H of the random variable ϕ(X ,ϑ) is continuous

and does not depend on any unknown parameters, i.e.,
does not depend on (ξ,ϑ).

2. For any fixed values of X the function ϕ(X ,ϑ) is strictly
monotone increasing in ϑ. Denote its inverse by
ϕ−1(·, X ), i.e., ϕ−1(ϕ(X ,ϑ), X ) = ϑ or ϕ(X ,ϕ−1(h, X )) =
h.
The concept of a pivot is best examplified by its prime

examples in the context of a normal random sample
X1, . . . , Xn ∼ N (µ,σ2), namely by

p
n(X̄ −µ)/s and s2/σ2,

where X̄ and s2 are the sample mean and sample vari-
ance. These two pivots respectively have the known tn−1

and χ2
n−1/(n −1) distributions, independent of (µ,σ2).

Returning to the generic pivot discussion, for a known
H and p-quantile hp of H one can invert the following
probability statement as shown

p = H(hp ) = P (ϕ(X ,ϑ) ≤ hp ) = P (ϕ−1(ϕ(X ,ϑ), X )

≤ϕ−1(hp , X )) = P (ϑ≤ϕ−1(hp , X ))

Thus ϕ−1(hp , X ) serves as a 100p% upper confidence
bound for the unknown parameter ϑ. Finding ϕ−1(hp , X )
just means solving ϕ(X ,ϑ) = hp for ϑ=ϕ−1(hp , X ).

We may also allow ϕ(X ,ϑ) to be strictly decreasing in ϑ

instead. That would only result in some reversed inequali-
ties above, i.e., 100p% upper bounds would become 100p%
lower bounds.

The distribution H is either known explicitly (as in the

normal example case above) and p-quantiles hp can be
computed or H and its quantiles can be approximated em-
pirically for some conveniently chosen value of (ξ,ϑ) by
simulating the data vector X and thus ϕ(X ,ϑ) a large num-
ber of times from the distribution characterized by the cho-
sen (ξ,ϑ). By assumption the distribution ofϕ(X ,ϑ) will not
depend on the conveniently chosen value (ξ,ϑ). This will
all become less abstract in the examples presented below
or should be familiar from the normal example presented
above.

Returning from the generic situation, recall that for
a Weibull random sample X = (X1, . . . , Xn) we have Yi =
log(Xi ) ∼ G((y −u)/b) with b = 1/β and u = log(α). Then
Zi = (Yi −u)/b ∼G(z) = 1−exp(−exp(z)), which is the stan-
dard Gumbel distribution. In its standard form it does not
depend on unknown parameters. This is seen as follows:

P (Zi ≤ z) = P ((Yi −u)/b ≤ z) = P (Yi ≤ u +bz)

=G(([u +bz]−u)/b) =G(z) .

It is this known distribution of Z = (Z1, . . . , Zn) that is instru-
mental in knowing (via simulation) the distribution of the
four pivots that we discuss below. There we utilize the rep-
resentation Yi = u +bZi or Y = u +bZ in vector form.

Pivot for the Scale Parameter b

As natural pivot for the scale parameter ϑ= b we take

W1 = b̂(Y)

b
= b̂(u +bZ)

b
= bb̂(Z)

b
= b̂(Z) .

The right side, being a function of Z alone, has a distribu-
tion that does not involve unknown parameters and W1 =
b̂(Y)/b is strictly monotone in b.

How do we obtain the distribution of b̂(Z)? An ana-
lytical approach does not seem possible. The approach
followed here is that presented in Bain, 1978, Bain and
Engelhardt, 1991 and originally in Thoman et al., 1969
and Thoman et al., 1970, which provided tables for this
distribution (and for those of the other pivots discussed
here) based on Nsim simulated values of b̂(Z) (and û(Z)),
where Nsim = 20000 for n = 5, Nsim = 10000 for n =
6,8,10,15,20,30,40,50,75, and Nsim = 6000 for n = 100.

In these simulations one simply generates samples
Z? = (Z1, . . . , Zn) ∼ G(z) and finds b̂(Z?) (and û(Z?) for
the other pivots discussed later) for each such sample Z?.
By simulating this process Nsim = 10000 times we obtain
b̂(Z?1 ), . . . , b̂(Z?Nsim

). The empirical distribution function of

these simulated estimates b̂(Z?i ), denoted by Ĥ1(w), pro-
vides a fairly reasonable estimate of the sampling distribu-
tion H1(w) of b̂(Z) and thus also of the pivot distribution of
W1 = b̂(Y)/b. From this simulated distribution we can es-
timate any γ-quantile of H1(w) to any practical accuracy,
provided Nsim is sufficiently large. Values of γ closer to 0 or
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Figure 6 Interpolation & Extrapolation for A2(1+ .2/
p

n) and W 2(1+ .2/
p

n)

(a)

(b)

1 require higher Nsim. For .005 ≤ γ≤ .995 a simulation level
of Nsim = 10000 should be quite adequate.

If we denote the γ-quantile of H1(w) by η1(γ), i.e.,

γ= H1(η1(γ)) = P (b̂(Y)/b ≤ η1(γ)) = P (b̂(Y)/η1(γ) ≤ b)

we see that b̂(Y)/η1(γ) can be viewed as a 100γ% lower
bound to the unknown parameter b. We do not know
η1(γ) but we can estimate it by the corresponding quan-
tile η̂1(γ) of the simulated distribution Ĥ1(w) which serves
as proxy for H1(w). We then use b̂(Y)/η̂1(γ) as an approxi-
mate 100γ% lower bound to the unknown parameter b. For
large Nsim, say Nsim = 10000, this approximation is practi-
cally quite adequate.

We note here that a 100γ% lower bound can be viewed
as a 100(1−γ)% upper bound, because 1−γ is the chance
of the lower bound falling on the wrong side of its target,
namely above. The chance for equality is zero since the

distribution of b̂(Y) is continuous (no proof of that is given
here). To get 100γ% upper bounds one simply constructs
100(1 − γ)% lower bounds by the above method. Similar
comments apply to the pivots obtained below, where we
only give one-sided bounds (lower or upper) in each case.

Based on the relationship b = 1/β the respective 100γ%
approximate lower and upper confidence bounds for the
Weibull shape parameter would be

η̂1(1−γ)

b̂(Y)
= η̂1(1−γ)×β̂(X) and

η̂1(γ)

b̂(Y)
= η̂1(γ)×β̂(X)

and an approximate 100γ% confidence interval forβwould
be [

η̂1((1−γ)/2)× β̂(X), η̂1((1+γ)/2)× β̂(X)
]

since (1+γ)/2 = 1− (1−γ)/2. Here X = (X1, . . . , Xn) is the
untransformed Weibull sample.
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Pivot for the Location Parameter u

For the location parameter ϑ = u we have the following
pivot

W2 = û(Y)−u

b̂(Y)
= û(u +bZ)−u

b̂(u +bZ)
= u +bû(Z)−u

bb̂(Z)
= û(Z)

b̂(Z)
.

It has a distribution that does not depend on any unknown
parameters, since it only depends on the known distribu-
tion of Z. Furthermore W2 is strictly decreasing in u. Thus
W2 is a pivot with respect to u. Denote this pivot distri-
bution of W2 by H2(w) and its γ-quantile by η2(γ). As be-
fore this pivot distribution and its quantiles can be approx-
imated sufficiently well by simulating û(Z?)/b̂(Z?) a suffi-
cient number Nsim times and using the empirical cdf Ĥ2(w)
of the û(Z?i )/b̂(Z?i ) as proxy for H2(w).

As in the previous pivot case we can exploit this pivot
distribution as follows

γ= H2(η2(γ)) = P

(
û(Y)−u

b̂(Y)
≤ η2(γ)

)
= P (û(Y)−b̂(Y)η2(γ) ≤ u)

and thus we can view û(Y) − b̂(Y)η2(γ) as a 100γ% lower
bound for the unknown parameter u. Using the γ-quantile
η̂2(γ) obtained from the empirical cdf Ĥ2(w) we then treat
û(Y)− b̂(Y)η̂2(γ) as an approximate 100γ% lower bound for
the unknown parameter u.

Based on the relation u = log(α) this translates into an
approximate 100γ% lower bound

exp(û(Y)− b̂(Y)η̂2(γ)) = exp(log(α̂(X))− η̂2(γ)/β̂(X))

= α̂(X)exp(−η̂2(γ)/β̂(X)) for α.

Upper bounds and intervals for u orα are handled as in the
previous situation for b or β.

Pivot for the p-quantile yp

With respect to the p-quantile ϑ = yp = u +b log(− log(1−
p)) = u +bwp of the Y distribution the natural pivot is

Wp = ŷp (Y)− yp

b̂(Y)
= û(Y)+ b̂(Y)wp − (u +bwp )

b̂(Y)

= û(u +bZ)+ b̂(u +bZ)wp − (u +bwp )

b̂(u +bZ)

= u +bû(Z)+bb̂(Z)wp − (u +bwp )

bb̂(Z)

= û(Z)+ (b̂(Z)−1)wp

b̂(Z)
.

Again its distribution only depends on the known distri-
bution of Z and not on the unknown parameters u and
b and the pivot Wp is a strictly decreasing function of
yp . Denote this pivot distribution function by Hp (w) and
its γ-quantile by ηp (γ). This pivot distribution and its
quantiles can be approximated sufficiently well by simu-
lating

{
û(Z)+ (b̂(Z)−1)wp

}
/b̂(Z) a sufficient number Nsim

times. Denote the empirical cdf of such simulated values
by Ĥp (w) and the corresponding γ-quantiles by η̂p (γ).

As before we proceed with

γ= Hp (ηp (γ)) = P

(
ŷp (Y)− yp

b̂(Y)
≤ ηp (γ)

)
= P

(
ŷp (Y)−ηp (γ)b̂(Y) ≤ yp

)
and thus we can treat ŷp (Y)−ηp (γ)b̂(Y) as a 100γ% lower

bound for yp . Again we can treat ŷp (Y)− η̂p (γ)b̂(Y) as an
approximate 100γ% lower bound for yp .

Since

ŷp (Y)−ηp (γ)b̂(Y) = û(Y)+wp b̂(Y)−ηp (γ)b̂(Y)

= û(Y)−kp (γ)b̂(Y)

with kp (γ) = ηp (γ)−wp , we could have obtained the same
lower bound by the following argument that does not use a
direct pivot, namely

γ= P (û(Y)−kp (γ)b̂(Y) ≤ yp )

= P (û(Y)−kp (γ)b̂(Y) ≤ u +bwp )

= P (û(Y)−u −kp (γ)b̂(Y) ≤ bwp )

= P

(
û(Y)−u

b
−kp (γ)

b̂(Y)

b
≤ wp

)
= P (û(Z)−kp (γ)b̂(Z) ≤ wp )

= P

(
û(Z)−wp

b̂(Z)
≤ kp (γ)

)
and we see that kp (γ) can be taken as the γ-quantile of the

distribution of (û(Z)−wp )/b̂(Z ).
This distribution can be estimated by the empirical cdf

of Nsim simulated values (û(Z?i )−wp )/b̂(Z?i ), i = 1, . . . , Nsim

and its γ-quantile k̂p (γ) serves as a good approximation to
kp (γ).

It is easily seen that this produces the same quantile
lower bound as before. However, in this approach one sees
one further detail, namely that h(p) =−kp (γ) is strictly in-
creasing in p2, since wp is strictly increasing in p.

2Suppose p1 < p2 and h(p1) ≥ h(p2) withγ= P (û(Z)+h(p1)b̂(Z) ≤ wp1 ) andγ= P (û(Z)+h(p2)b̂(Z) ≤ wp2 ) = P (û(Z)+h(p1)b̂(Z) ≤ wp1+(wp2−wp1 )+
(h(p1)−h(p2))b̂(Z)) ≥ P (û(Z)+h(p1)b̂(Z) ≤ wp1 +(wp2 −wp1 )) > γ (i.e., γ> γ, a contradiction) since P (wp1 < û(Z)+h(p1)b̂(Z) ≤ wp1 +(wp2 −wp1 )) > 0.

A thorough argument would show that b̂(z) and thus û(z) are continuous functions of z = (z1, . . . , zn ) and since there is positive probability in any neigh-
borhood of any z ∈ R there is positive probability in any neighborhood of (û(z), b̂(z)).
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Of course it makes intuitive sense that quantile lower
bounds should be increasing in p since its target p-
quantiles are increasing in p. This strictly increasing prop-
erty allows us to immediately construct upper confidence
bounds for left tail probabilities as is shown in the next sec-
tion.

Since xp = exp(yp ) is the corresponding p-quantile of
the Weibull distribution we can view

exp
(
ŷp (Y)− η̂p (γ)b̂(Y)

)= α̂(X)exp
(
(wp − η̂p (γ))/β̂(X)

)
= α̂(X)exp

(−k̂p (γ)/β̂(X)
)

as an approximate 100γ% lower bound for xp = exp(u +
bwp ) =α(− log(1−p))1/β.

Since α is the (1−exp(−1))-quantile of the Weibull dis-
tribution, lower bounds for it can be seen as a special case
of quantile lower bounds. Indeed, this particular quantile
lower bound coincides with the one given previously.

Upper Confidence Bounds for the Tail Probability
p(y) = P (Y ≤ y)

As far as an appropriate pivot for p(y) = P (Y ≤ y) is con-
cerned, the situation here is not as straightforward as in the
previous three cases. Clearly

p̂(y) =G

(
y − û(Y)

b̂(Y)

)
is the natural estimate (mle) of

p(y) = P (Y ≤ y) =G
( y −u

b

)
and one easily sees that the distribution function H of this
estimate depends on u and b only through p(y), namely

p̂(y) =G

(
y − û(Y)

b̂(Y)

)
=G

(
(y −u)/b − (û(Y)−u)/b

b̂(Y)/b

)
=G

(
G−1(p(y))− û(Z)

b̂(Z)

)
∼ Hp(y).

Thus by the probability integral transform it follows that

Wp(y) = Hp(y)
(
p̂(y)

)∼U (0,1)

i.e., Wp(y) is a true pivot, contrary to what is stated in Bain,
1978 and Bain and Engelhardt, 1991.

Rather than using this pivot we will go a more direct
route as was indicated by the strictly increasing property
of h(p) = hγ(p) in the previous section. Denote by h−1(·)
the inverse function to h(·). We then have

γ= P (û(Y)+h(p)b̂(Y) ≤ yp ) = P (h(p) ≤ (yp − û(Y))/b̂(Y))

= P
(
p ≤ h−1 (

(yp − û(Y))/b̂(Y)
))

,

for any p ∈ (0,1). If we parameterize such p via p(y) =
P (Y ≤ y) =G((y −u)/b) we have yp(y) = y and thus also

γ= P
(
p(y) ≤ h−1 (

(y − û(Y))/b̂(Y)
))

for any y ∈ R and u ∈ R and b > 0. Hence p̂U (y) =
h−1

(
(y − û(Y))/b̂(Y)

)
can be viewed as 100γ% upper con-

fidence bound for p(y) for any given threshold y .
The only remaining issue is the computation of such

bounds. Does it require the inversion of h and the con-
comitant calculations of many h(p) = −k(p) for the iter-
ative convergence of such an inversion? It turns out that
there is a direct path just as we had it in the previous three
confidence bound situations.

Note that h−1(x) solves −kp = x for p. We claim that

h−1(x) is the γ-quantile of the G(û(Z)+ xb̂(Z)) distribution
which we can simulate by calculating as before û(Z) and
b̂(Z) a large number Nsim times. The above claim concern-
ing h−1(x) is seen as follows. If for any x = h(p) we have

P (G(û(Z)+xb̂(Z)) ≤ h−1(x)) = P (G(û(Z)+h(p)b̂(Z)) ≤ p)

= P (û(Z)+h(p)b̂(Z) ≤ wp )

= P (û(Z)−kγ(p)b̂(Z) ≤ wp ) = γ ,

as seen in the previous section. Thus h−1(x) is the γ-
quantile of the G(û(Z)+xb̂(Z)) distribution.

If we observe Y = y and obtain û(y) and b̂(y) as our max-
imum likelihood estimates for u and b we get our 100γ%
upper bound for p(y) = G((y − u)/b) as follows: For the
fixed value of x = (y − û(y))/b̂(y) = G−1(p̂(y)) simulate the
G(û(Z) + xb̂(Z)) distribution (with sufficiently high Nsim)
and calculate the γ-quantile of this distribution as the de-
sired approximate 100γ% upper bound for p(y) = P (Y ≤
y) =G((y −u)/b).

Tabulation of Confidence Quantiles η(γ)

For the pivots for b, u and yp it is possible to carry out
simulations once and for all for a desired set of confidence
levels γ, sample sizes n and choices of p, and tabulate
the required confidence quantiles η̂1(γ), η̂2(γ), and η̂p (γ).
This has essentially been done (with

p
n scaling modifica-

tions) and such tables are given in Bain, 1978, Bain and
Engelhardt, 1991, Thoman et al., 1969 and Thoman et al.,
1970. Similar tables for bounds on p(y) are not quite possi-
ble since the appropriate bounds depend on the observed
value of p̂(y), which varies from sample to sample. Instead
Bain, 1978, Bain and Engelhardt, 1991 and Thoman et al.,
1970 tabulate confidence bounds for p(y) for a reasonably
fine grid of values for p̂(y), which can then serve for inter-
polation purposes with the actually observed value of p̂(y).

It should be quite clear that all this requires extensive
tabulation. The use of these tables is not easy. Table 4
in Bain, 1978 does not have a consistent format and us-
ing these tables would require delving deeply into the text
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for each new use, unless one does this kind of calcula-
tion all the time. In fact, in the second edition Bain and
Engelhardt, 1991 Table 4 has been greatly reduced to just
cover the confidence factors dealing with the location pa-
rameter u, and it now leaves out the confidence factors for
general p-quantiles. For the p-quantiles one is referred to
the same interpolation scheme that is needed when getting
confidence bounds for p(y), using Table 7 in Bain and En-
gelhardt, 1991. The example that they present (page 248)
would have benefitted by showing some intermediate steps
in the interpolation process. They point out that the re-
sulting confidence bound for xp is slightly different (14.03)
from that obtained using the confidence quantiles of the
original Table 4, namely 13.92. They attribute the differ-
ence to round-off errors or other discrepancies. Among the
latter one may consider that possibly different simulations
were involved.

Further, note that some entries in the tables given in
Bain, 1978 seem to have typos. Presumably they were tran-
scribed by hand from computer output, just as the book
(and its second edition) itself is typed and not typeset. We
just give a few examples. In Bain, 1978 Table 4A, p.235, bot-
tom row, the second entry from the right should be 3.625
instead of 3.262. This discrepancy shows up clearly when
plotting the row values against log(p/(1−p)), see a similar
plot for a later example. In Table 3A, p.222, row 3 column
5 shows a double minus sign (still present the second edi-
tion Bain and Engelhardt, 1991). In comparing the values
of these tables with our own simulation of pivot distribu-
tion quantiles, just to validate our simulation for n = 40,
we encountered an apparent error in Table 4A, p. 235 with
last column entry of 4.826. Plotting log(p/(1− p)) against
the corresponding row value (γ-quantiles) one clearly sees
a change in pattern, see the top plot in Figure 8. We sus-
pect that the whole last column was calculated for p = .96
instead of the indicated p = .98. The bottom plot shows our
simulated values for these quantiles as solid dots with the
previous points (circles) superimposed. Both plots were
produced by test40().

The agreement is good for the first 8 points. Our sim-
ulated γ-quantile was 5.725 (corresponding to the 4.826
above) and it fits quite smoothly into the pattern of the pre-
vious 8 points. Given that this was the only case chosen for
comparison it leaves some concern in fully trusting these
tables. However, this example also shows that the great ma-
jority of tabled values are valid.

TheR Function WeibullPivots

Rather than using these tables we will resort to direct
simulations ourselves since computing speed and avail-
ability have advanced sufficiently over what was com-
mon prior to 1978. This is implemented in the function

WeibullPivots.
The call

system.time(WeibullPivots(
Nsim=10000,n=10,r=10,graphics=F))

gave an elapsed time of 15.28 seconds. Here the de-
fault sample size n = 10 was used and r = 10 (also de-
fault) indicates that the 10 lowest sample values are given
and used, i.e., in this case the full sample. Also, an inter-
nally generated Weibull data set was used, since the default
in the call to WeibullPivots is weib.sample=NULL.
For sample sizes n = 100 with r = 100 and n =
1000 with r = 1000 the corresponding calls resulted in
elapsed times of 17.78 and 56.59 seconds, respectively.
These three computing times suggest strong linear be-
havior in n as is illustrated in Figure 9, produced by
WeibullPivot.timing.plot(). The intercept 14.24
and slope of .04229 given here are fairly consistent with the
intercept .001402 and slope of 5.072×10−6 given in Figure 3.
The latter give the calculation time of a single set of mle’s
while in the former case we calculate Nsim = 10000 such
mle’s, i.e., the previous slope and intercept for a single mle
calculation need to be scaled up by the factor 10000.

For all the previously discussed confidence bounds, be
they upper or lower bounds for their respective targets, all
that is needed is the set of (û(zi ), b̂(zi )) for i = 1, . . . , Nsim.
Thus we can construct confidence bounds and intervals for
u and b, for yp for any collection of values p, and for p(y)
and 1 − p(y) for any collection of threshold values y and
we can do this for any set of confidence levels that make
sense for the simulated distributions, i.e., we don’t have to
run the simulations over and over for each target parame-
ter, confidence level, p or y , unless one wants independent
simulations for some reason.

Proper use of this function only requires understand-
ing the calling arguments, purpose, and output of this
function, and the time to run the simulations. The time
for running the simulation should easily beat the time
spent in dealing with tabulated confidence quantiles in
order to get desired confidence bounds, especially since
WeibullPivots does such calculations all at once for a
broad spectrum of yp and p(y) and several confidence lev-
els without greatly impacting the computing time. Further-
more, WeibullPivots does all this not only for full sam-
ples but also for type II censored samples, for which ap-
propriate confidence factors are available only sparsely in
tables.

We now explain input and output of the function
WeibullPivots. The calling sequence with all argu-
ments given with their default values is as follows:

WeibullPivots(weib.sample=NULL,
alpha=10000,beta=1.5,n=10,r=10,
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Nsim=1000,threshold=NULL,graphics=T)

Here Nsim = Nsim has default value 1000 which is ap-
propriate when trying to get a feel for the function for any
particular data set. The sample size is input as n = n and
r= r indicates the number of smallest sample values avail-
able for analysis. When r < n we are dealing with a type II
censored data set where observation stops as soon as the
smallest r lifetimes have been observed.

We need r > 1 and at least two distinct observations
among X(1), . . . , X(r ) in order to estimate any spread in the
data. The available sample values X1, . . . , Xr (not necessar-
ily ordered) are given as vector input to weib.sample.
When weib.sample=NULL (the default), an internal
data set is generated as input sample from W (α,β) with
α = alpha = 10000 (default) and β = beta = 1.5 (default),
either by using the full sample X1, . . . , Xn or a type II cen-
sored sample X1, . . . , Xr when r < n is specified. The input
thresh (= NULL by default) is a vector of thresholds y for
which we desire upper confidence bounds for p(y). The
input graphics (default T) indicates whether graphical
output is desired.

Confidence levels γ are set internally as
.005, .01, .025, .05, .10, .02, .8, .9, .95, .975, .99, .995 and these
levels indicate the coverage probability for the indi-
vidual one-sided bounds. A .025 lower bound is re-
ported as a .975 upper bound, and a pair of .975 lower
and upper bounds constitute a 95% confidence inter-
val. The values of p for which confidence bounds or
intervals for xp are provided are also set internally as
.001, .005, .01, .025, .05, .1, (.1), .9, .95, .975, .99, .995, .999.

The output from WeibullPivots is a list with com-
ponents:

$alpha.hat
$beta.hat
$alpha.beta.bounds
$p.quantile.estimates
$p.quantile.bounds
$Tail.Probability.Estimates
$Tail.Probability.Bounds

The structure and meaning of these components will be-
come clear from the example output given in Outputs 1, 2
and 3.

These outputs were produced with

WeibullPivots(
threshold=seq(6000,15000,1000),
Nsim=10000,graphics=T)

Since we entered graphics=T as argument we also got
two pieces of graphical output. The first gives the two in-
trinsic pivot distributions of û/b̂ and b̂ in Figure 10. The
second gives a Weibull plot of the generated sample with

a variety of information and with several types of confi-
dence bounds, see Figure 11. The legend in the upper left
gives the mle’s ofα, β (agreeing with the output above), and
the mean µ = αΓ(1 + 1/β) together with 95% confidence
intervals, based on respective normal approximation the-
ory for the mle’s. The legend in the lower right explains
the red fitted line (representing the mle fit) and the vari-
ous point-wise confidence bound curves, giving 95% confi-
dence intervals (blue dashed curves) for p-quantiles xp for
any p on the ordinate and 95% confidence intervals (green
dot-dashed line) for p(y) for any y on the abscissa. Both
of these interval types use normal approximations from
large sample mle theory. Unfortunately these two types of
bounds are not dual to each other, i.e., don’t coincide or to
say it differently, one is not the inverse to the other.

A third type of bound is presented in the orange curve
which simultaneously provides 95% confidence intervals
for xp and p(x), depending on the direction in which the
curves are used. We either read sideways from p and down
from the curve (at that p level) to get upper and lower
bounds for xp , or we read vertically up from an abscissa
value x to read off upper and lower bounds for p(x) on the
ordinate axis as we go from the respective curves at that x
value to the left. These latter bounds are also based on nor-
mal mle approximation theory and the approximation will
naturally suffer for small sample sizes. However, the princi-
ple behind these bounds is a unifying one in that the same
curve is used for quantile and tail probability bounds. If in-
stead of using the approximating normal distribution one
uses the parametric bootstrap approach Scholz, 1994(sim-
ulating samples from an estimated Weibull distribution)
the unifying principle reduces to the pivot simulation ap-
proach, i.e., is basically exact except for the simulation as-
pect Nsim <∞.

The curves representing the latter (pivots with simu-
lated distributions) are the solid black lines connecting the
solid black dots which represent the xp 95% confidence
intervals (using the 97.5% lower and upper bounds to xp

given in our output example above. Also seen on these
curves are solid red dots that correspond to the abscissa
values x = 6000,(1000),15000 and viewed vertically they
represent 95% confidence intervals for p(x). This illustrates
that the same curves are used.

Figure 12 represents an extreme case where we have a
sample of size n = 2 and here another issue arises. Both
of the first two types of bounds (blue and green) are no
longer monotone in p or x respectively. This is the result
of a poor normal approximation for these two approaches.
Thus we could not (at least not generally) have taken ei-
ther to take the role of serving both purposes, i.e., as pro-
viding bounds for xp and p(x) simultaneously. However,
the orange curve is still monotone and still serves that dual
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Output 1: Parameter estimates and parameter bounds

$alpha.hat $beta.hat
(Intercept)

8976.2 [1] 1.95

$alpha.beta.bounds
alpha.L alpha.U beta.L beta.U

99.5% 5094.6 16705 0.777 3.22
99% 5453.9 15228 0.855 3.05
97.5% 5948.6 13676 0.956 2.82
95% 6443.9 12608 1.070 2.64
90% 7024.6 11600 1.210 2.42
80% 7711.2 10606 1.390 2.18

purpose, although its coverage probability properties are
bound to be affected badly by the small sample size n = 2.
The pivot based curves are also strictly monotone and they
have exact coverage probability, subject to the Nsim < ∞
limitation.

The supplied R function WeibullPivots is part of
the collection of R code and data sets supplied in the file
Weibull.txt available on the journal’s web site. To
make them available within an R session execute

source("Weibull.txt")

assuming that Weibull.txt resides in the folder from
which the R session was started. This collection contains
all functions that were used in creating the plots in this tu-
torial and much more. These functions are documented
internally. Also provided are some functions that allow us-
age not just for complete Weibull samples but also for type
I censored Weibull data accompanied by covariates. For
more information on this we refer to Scholz, 1996 (revised
2001).
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Output 2: Quantiles estimates and quantile bounds

$p.quantile.estimates
0.001-quantile 0.005-quantile 0.01-quantile 0.025-quantile 0.05-quantile

259.9 593.8 848.3 1362.5 1957.0
0.1-quantile 0.2-quantile 0.3-quantile 0.4-quantile 0.5-quantile

2830.8 4159.4 5290.4 6360.5 7438.1
0.6-quantile 0.7-quantile 0.8-quantile 0.9-quantile 0.95-quantile

8582.7 9872.7 11457.2 13767.2 15756.3
0.975-quantile 0.99-quantile 0.995-quantile 0.999-quantile

17531.0 19643.5 21107.9 24183.6

$p.quantile.bounds
99.5% 99% 97.5% 95% 90% 80%

0.001-quantile.L 1.1 2.6 6.0 12.9 28.2 60.1
0.001-quantile.U 1245.7 1094.9 886.7 729.4 561.4 403.1
0.005-quantile.L 8.6 16.9 31.9 57.4 106.7 190.8
0.005-quantile.U 2066.9 1854.9 1575.1 1359.2 1100.6 845.5
0.01-quantile.L 20.1 36.7 65.4 110.1 186.9 315.3
0.01-quantile.U 2579.8 2361.5 2021.5 1773.9 1478.4 1165.8
0.025-quantile.L 62.8 103.5 169.7 259.3 398.1 611.0
0.025-quantile.U 3498.8 3206.6 2827.2 2532.5 2176.9 1783.5
0.05-quantile.L 159.2 229.2 352.6 497.5 700.0 1011.9
0.05-quantile.U 4415.7 4081.3 3673.7 3329.5 2930.0 2477.2
0.1-quantile.L 398.3 506.3 717.4 962.2 1249.5 1679.1
0.1-quantile.U 5584.6 5261.9 4811.6 4435.7 3990.8 3474.1
0.2-quantile.L 1012.6 1160.2 1518.8 1882.9 2287.1 2833.2
0.2-quantile.U 7417.1 6978.2 6492.8 6031.2 5543.2 4946.9
0.3-quantile.L 1725.4 1945.2 2383.9 2820.0 3305.0 3929.0
0.3-quantile.U 8919.8 8460.0 7939.8 7384.1 6865.0 6211.4
0.4-quantile.L 2548.0 2848.2 3345.2 3806.6 4353.9 5008.2
0.4-quantile.U 10616.3 10130.4 9380.3 8778.2 8139.3 7421.2
0.5-quantile.L 3502.4 3881.1 4415.1 4873.3 5443.0 6107.3
0.5-quantile.U 12809.0 11919.1 10992.9 10226.8 9485.1 8703.4
0.6-quantile.L 4694.0 5022.6 5573.8 6052.8 6624.4 7300.4
0.6-quantile.U 15626.1 14350.6 12941.3 11974.8 11041.1 10106.2
0.7-quantile.L 6017.1 6399.0 6876.6 7345.8 7938.2 8628.0
0.7-quantile.U 19271.6 17679.9 15545.8 14181.1 12958.0 11784.2
0.8-quantile.L 7601.3 7971.0 8465.4 8933.5 9504.0 10244.2
0.8-quantile.U 24765.2 22445.0 19286.0 17236.0 15605.6 13952.2
0.9-quantile.L 9674.7 10033.7 10538.6 11031.1 11653.0 12460.3
0.9-quantile.U 35233.4 31065.3 26037.4 22670.5 19835.3 17417.5
0.95-quantile.L 11203.6 11584.6 12145.2 12660.2 13365.5 14311.2
0.95-quantile.U 46832.9 40053.3 32863.1 27904.7 23903.9 20703.0
0.975-quantile.L 12434.7 12833.5 13449.7 14030.5 14781.8 15909.1
0.975-quantile.U 59783.1 49209.9 39397.8 33118.7 27938.4 23773.7
0.99-quantile.L 13732.6 14207.7 14876.0 15530.0 16431.7 17783.1
0.99-quantile.U 76425.0 61385.4 48625.4 40067.3 33233.8 27729.8
0.995-quantile.L 14580.4 15115.4 15810.0 16530.6 17551.8 19081.0
0.995-quantile.U 89690.9 71480.4 55033.4 45187.1 36918.7 30505.0
0.999-quantile.L 16377.7 16885.9 17642.5 18557.1 19792.4 21744.7
0.999-quantile.U 121177.7 95515.7 71256.5 56445.5 45328.1 36739.2

The Quantitative Methods for Psychology 1672



¦ 2015 Vol. 11 no. 3

Output 3: Tail probability estimates and tail probability bounds

$Tail.Probability.Estimates
p(6000) p(7000) p(8000) p(9000) p(10000) p(11000) p(12000) p(13000)
0.36612 0.45977 0.55018 0.63402 0.70900 0.77385 0.82821 0.87242

p(14000) p(15000)
0.90737 0.93424

$Tail.Probability.Bounds
99.5% 99% 97.5% 95% 90% 80%

p(6000).L 0.12173 0.13911 0.16954 0.19782 0.23300 0.28311
p(6000).U 0.69856 0.67056 0.63572 0.59592 0.54776 0.49023
p(7000).L 0.17411 0.20130 0.23647 0.26985 0.31017 0.36523
p(7000).U 0.76280 0.73981 0.70837 0.67426 0.62988 0.57670
p(8000).L 0.23898 0.26838 0.30397 0.34488 0.38942 0.44487
p(8000).U 0.82187 0.80141 0.77310 0.74260 0.70414 0.65435
p(9000).L 0.30561 0.33149 0.37276 0.41748 0.46448 0.52203
p(9000).U 0.87042 0.85462 0.82993 0.80361 0.77045 0.72545
p(10000).L 0.36871 0.39257 0.44219 0.48549 0.53589 0.59276
p(10000).U 0.91227 0.89889 0.87805 0.85624 0.82667 0.78641
p(11000).L 0.41612 0.45097 0.50030 0.54631 0.59749 0.65671
p(11000).U 0.94491 0.93318 0.91728 0.89891 0.87425 0.83973
p(12000).L 0.46351 0.50388 0.55531 0.60133 0.65374 0.71215
p(12000).U 0.96669 0.95936 0.94650 0.93210 0.91231 0.88377
p(13000).L 0.50876 0.54776 0.60262 0.65055 0.70218 0.76148
p(13000).U 0.98278 0.97742 0.96794 0.95756 0.94149 0.91745
p(14000).L 0.54668 0.58696 0.64619 0.69359 0.74451 0.80178
p(14000).U 0.99201 0.98837 0.98205 0.97459 0.96267 0.94321
p(15000).L 0.58089 0.62534 0.68389 0.73194 0.78068 0.83590
p(15000).U 0.99653 0.99449 0.99092 0.98596 0.97764 0.96268
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Listing 1 Computation of the maximum likelihood estimates of alpha and beta for complete or type II censored samples
assumed to come from a 2-parameter Weibull distribution

Weibull.mle <- function (x = NULL, n = NULL){
# x is the sample the full sample or the first r observations of a type II
# censored sample. In the latter case one must specify the full sample
# size n, otherwise x is treated as a full sample.
# If x is not given then a default full sample of size n=10, namely
# c(7,12.1,22.8,23.1,25.7,26.7,29.0,29.9,39.5,41.9) is analyzed;
# the returned results should be: # In the type II censored usage with n=10:
# $mles # $mles
# alpha.hat beta.hat # alpha.hat beta.hat
# 28.914017 2.799793 # 30.725992 2.432647
if(is.null(x)) x <- c(7,12.1,22.8,23.1,25.7,26.7,29.0,29.9,39.5,41.9)
r <- length(x)
if(is.null(n)){

n <- r} else {
if(r > n || r < 2){

return("x must have length r with: 2 <= r <= n")
}

}
xs <- sort(x)
if(!exists("survreg"))library(survival)
# tests whether survival package is loaded, if not, then it loads survival
if( r < n ){

statusx <- c(rep(1,r),rep(0,n-r))
dat.weibull <- data.frame(c(xs,rep(xs[r],n-r)),statusx)
}else{
statusx <- rep(1,n)
dat.weibull <- data.frame(xs,statusx)

}
names(dat.weibull)<-c("time","status")
out.weibull <- survreg(Surv(time,status)~1,dist="weibull",data=dat.weibull)
alpha.hat <- exp(out.weibull$coef)
beta.hat <- 1/out.weibull$scale
parms <- c(alpha.hat,beta.hat)
names(parms)<-c("alpha.hat","beta.hat")
list(mles=parms)}
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Figure 7 Interpolation & Extrapolation for
p

n ×D

(a)

(b)
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Figure 8 Abnormal Behavior of Tabulated Confidence Quantiles

(a)

(b)

Figure 9 Timings for WeibullPivots for Various n
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Figure 10 Pivot Distributions of û/b̂ and b̂

(a) (b)

Figure 11 Weibull Plot Corresponding to Previous Output
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Figure 12 Weibull Plot for Weibull Sample of Size n = 2
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