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Introduction

Consider the case where a researcher wants to assess math-
ematical abilities of students of a given age. For that pur-
pose, the researcher consults experts in didactics and they
determine the basic mathematical operations of students
underlying the mathematical abilities to assess. Then, they
create items, each requiring one or more of these opera-
tions to be solved. Based on the students’ responses on the
items, the researcher wants to determine, which of the pre-
viously specified mathematical operations were success-
fully applied by the students. This is the point where Cog-
nitive Diagnosis Models (CDMs; DiBello, Roussos, & Stout,
2007; Henson, Templin, & Willse, 2009) come into play.

Before delving into the technical details, let us consider
an example: The item 3+ 5 % 4 =? requires the knowledge of
(a) “add small numbers”, (b) “multiply small numbers”, and
the knowledge that (c) “multiplying precedes adding”. So,
if a student correctly responds 23, we may conclude that
he disposes of all three capacities — and this is pretty close
to what a CDM accomplishes: CDMs are a class of discrete
latent variable models, allowing to trace back the respon-
dent’s answer to an item to his possession of basic features
underlying the domain covered by the items.

Our toy example already illustrates the currently dom-
inating area of application, i.e. educational assessment.
Here, the algebraical operations, to which the items were
traced back, are frequently called skills. A famous exam-
ple in this context is the fraction subtraction analysis of
Tatsuoka (1984): First, he broke down the domain of frac-
tion subtraction into eight skills (e.g. (a) “convert a whole
number to a fraction”, (b) “separate a whole number from a
fraction”, or (c) “simplify before subtraction”). Then, he de-
veloped items, each covering selected skills and presented
these items to the respondents. Finally, a CDM analy-
sis yielded the percentage of students possessing the skills

(e.g. 58 % of the students possess “convert a whole num-
ber”) and individual skill profiles for each student (e. g. Lisa
is able to “convert a whole number” but not able to “sepa-
rate a whole number from a fraction”). These profiles might
then serve as an orientation for targeted coaching of the re-
spondents (i. e. Lisa could be instructed how to separate a
whole number from a fraction).

CDMs have sufficient generality to be applied to other
areas of research as well. Templin and Henson (2006), for
example, used a CDM in a clinical context where they an-
alyzed pathological gambling. The authors traced back the
domain of pathological gambling to behavior patterns like
(a) “needs to gamble with increasing amounts of money in
order to achieve the desired excitement”, (b) “gambles as a
way of escaping from problems or of relieving a dysphoric
mood”, or (c) “has repeated unsuccessful efforts to control,
cut back, or stop gambling”. These patterns were analyzed
by 41 items in the so-called Gambling Research Instrument
(Feasel, Henson, & Jones, 2004), to which the examinees
responded. With a CDM, they were able to estimate the
percentage of examinees showing each behavioral pattern
(e.g. 30 % of the examinees “need to gamble with increasing
amounts of money”) and yields for each person a behavioral
profile (e. g. Mark does not “need to gamble with increasing
amounts of money” but he “gambles as a way of escaping
from problems”). These profiles formed the ground for fur-
ther clinical statements: For example, counting the num-
ber of behavioral patterns an individual exhibits in a re-
spondent’s profile yields a sum, based on which clinicians
could diagnose “pathological gambling” using a previously
determined cut-off score.

Another non-educational application of CDMs is the
study of de la Torre, van der Ark, and Rossi (2015). They
proposed to use CDMs for assessing mental disorders us-
ing items of a relevant clinical questionnaire. For each item
of the questionnaire, the authors specified, which of the
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disorders (a) ‘anxiety”, (b) “somatoform”, (c) “thought dis-
order”, or (d) “major depression” are involved to respond
positively. By means of a CDM, they were able to assess,
which disorder is probably present in each patient (i. e. the
individual disorder profile) and how prevalent the disor-
ders and their combinations are in the population. The in-
dividual disorder profile could again be used for diagnos-
ing a clinical disorder in terms of a DSM diagnosis (Ameri-
can Psychiatric Association, 2013) by means of a cut-score
applied to the number of disorders in an individual disor-
der profile (for a similar approach see also Jaeger, Tatsuoka,
Berns, & Varadi, 2006).

Note that the attribution of items to more basic ele-
ments (e. g. skills in the maths example and behavioral pat-
terns or disorders in the clinical examples) was present be-
fore the items had been developed, i. e. it was not derived
from the item responses. This is a key issue when applying
CDMs: Before conducting the model, the researcher has to
determine on theoretical grounds (frequently involving ex-
perts of the field), which fundamental element is involved
in a given item. This mapping of skills to items takes place
in a design (or weight) matrix (frequently termed Q). De-
tails regarding this aspect will be presented at the begining
of the next section.

The present article explains the basics of CDMs in the
next two sections and illustrates their application using
two examples in the last section using the package CDM
(George, Robitzsch, Kiefer, Grof, & Unlii, in press) of R
(R Core Team, 2015). Compared to Ravand and Robitzsch
(2015) we (a) work with published data (available in the
CDM package), hence the reader is able to reproduce all
examples presented here, and we extend the focus to (b)
the multiple group case and (c) the usage of sampling
weights in large-scale assessments. Based on the steps pre-
sented here, readers may more easily find their way to com-
plex CDM applications.

Input and Output of a CDM analysis

Let us first consider CDMs as a black box, to which we feed
some input and obtain some output, not bothering how
such a transformation is performed (cf. next section for that
issue).

Input: Response Data and Q-Matrix

A basic specification of a CDM requires two elements: The
response data to the items of the test and a weight matrix
designed by experts from the field. To explain the basic
principles of both elements we will use the dichotomous
case; generalizations to the polytomous case are straight-
forward.

The response data is typically stored in a I x J item re-
sponse matrix X, in which the element x;; in the i-th row

and the j-th column indicates whether examinee i gave a
positive (i.e., correct) response to item j (x;; = 1) or not
(x;j = 0). There have been few concrete recommendations
in the CDM literature regarding the minimum sample size
for conducting CDM analyses. Rupp and Templin (2008)
suggest that for simple CDMs a “few hundred students” re-
sponding each item are sufficient for successfully estimat-
ing the model if the number of skills is small (i. e., four to
six). A systematic study investigating the minimum sample
size for various numbers of skills is so far missing. In each
case, the sample size should be larger than the number of
model parameters, see next section.

The construction of the weight matrix Q (usually called
Q-matrix) involves qualitative preliminary work of experts:
First, the experts subdivide the tested overall domain into
a few skills according to a well-established qualitative rela-
tionship between the skills (e. g. a competence model). In
CDM terminology these skills are termed aj, k = 1,...,K.
Secondly, based on the relationship between the skills, the
experts specify which skills a are required for giving a pos-
itive response in each test item. This specification is de-
noted in a binary J x K weight matrix Q, in which g ex-
presses whether skill k is needed (g = 1) or not (g = 0)
for enabling examinees to positively respond to item j.
Thus, the Q-matrix reflects the essential theory of how skills
contribute to responding to each item. A CDM infers the
examinees’ possession of the K skills from the examinees’
response vectors.

Consider, for example, the Examination for the Certifi-
cate of Proficiency in English (ECPE) developed by the En-
glish Language Institute of the University of Michigan. The
ECPE consists of four major sections, however we restrict
our example to the grammar section. This section com-
prises J = 28 multiple-choice items (cf. first example of
the last section), in which syntactically correct sentences
are presented with one word omitted. Students have to se-
lect the missing word from a list of four (cf. Table 1). The
data, including 2992 students, has already been analyzed
using CDM methodology in Templin and Bradshaw (2014)
and Templin and Hoffman (2013).

For the J = 28 items, educational experts (cf. Buck &
Tatsuoka, 1998) identified K = 3 underlying skills presented
in Table 2. The experts decided which item requires which
skill to be solved and thus specified the Q-matrix. Table 3
shows a portion of this Q-matrix for the ECPE items (Hen-
son & Templin, 2007). The second row of the Q-matrix in
Table 3 (g2 = [0,1,0]) describes the example item of Table
1. The item requires students to apply “cohesive rules” (a>),
but not “morphosyntactic rules” (a;) or “lexial rules” (as).

In line with this example, Li, Hunter, and Lei (2015) re-
cently emphasized the relevance of the CDM methodology
in the domain of language testing.
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Table 1 = Example item of grammar section in the Examination for the Certificate of Proficiency in English (ECPE).

Item Mary had to lean the counter to open the window.
(a) above

Response (b) over

options (c) after

(d) around

Table 2w Sub-competencies underlying the overall ability of understanding English grammar.

Parameter  Skill Description
a) morphosyntactic rules word formation; combination of words into larger units such as phrases and
sentences
a cohesive rules grammatical and lexical linking within a text or sentence
as lexical rules modification of argument structures of lexical text elements (i. e., verbs and de-

clensions)

Output: Skill Distribution, Skill Class Distribution, and
Individual Skill Profiles

CDMs aim at inferring the examinees’ possession of the K
skills. Dichotomous variants of CDMs assume respondents
to either possess a skill k or not, therefore 2X different pat-
terns arise from building all possible skill combinations.
These patterns are called skill classes a; = [a;3,..., ¥ k],
1 =1,...,2K. Each element a;; denotes whether or not
members of skill class ! dispose of skill k (i.e., a;r =1 or
ajx = 0, respectively). The ECPE data in our example com-
prises K = 3 skills and therefore allows allocating the stu-
dents into 2K = 23 = g8 different skill classes: @; = [0,0,0],
a; =[1,0,0], @3 = [0,1,0], @4 = [0,0,1], @5 = [1,1,0], ag =
[1,0,1], @7 =[0,1,1], @g = [1,1,1].

Strictly speaking, in the CDM context the formulation
“the examinees’ possession of the skills” covers three differ-
ent questions, which are addressed in the model’s output:
(Q1) The population skill possession question:

“What is the proportion of examinees possessing a spe-
cific skill ax?”

The skill distribution P(ay), k = 1,..., K, quantifies this
question.

(Q2) The population skill class distribution question:

“What is the proportion of examinees possessing a spe-
cific combination a; = [a;,..., @] of skills?”

The skill class distribution P(a;), I = 1,...,2K answers
this question.

(Q3) The individual skill possession question:

“Which skills does the i-th individual examinee pos-
sess?”

The i-th examinee’s skill profile a; = [a;1,...,aik], | =

1,...,1, provides this information.
The last section presents two examples of application
and interpretation of these three questions.

Selecting and Estimating a Specific CDM

This section refers to two basic topics lying between input
and output: (1) the selection of a specific CDM. This choice
is essential as it manages the rules according to which the
CDM transforms the input to achieve the output. This
choice also determines the statistical model equation and
the model’s likelihood.! (2) the statistical methods and al-
gorithms for estimating the model parameters.

Selecting a Specific CDM

So far, explanations referred to the basic principles of CDM
analyses. However, several variations of CDMs exist defin-
ing a CDM family of models. Let us consider an illustrative
example: Some CDMs assume that students have to pos-
sess all required skills (as defined in row j of the Q-matrix;
cf. Table 3) in order to positively respond to item j. In con-
trast, other CDMs assume that the possession of at least
one required skill is sufficient for positively responding the
item.

The model selection should be driven by experts be-
cause it involves fundamental questions of how the posses-
sion of the skills determines the response behavior. The ex-
ample above defined the compensability of the skills: Can
students compensate a lack in one required skill through
the possession of another skill? Some further distinctions
concern interaction of skills possessed together or the pos-
sibility of multiple strategies. These and other characteris-
tics are defined and explained in detail in e. g. DiBello et al.

1 Actually, the choice of which CDM to apply should have been made at the time of developing the items and defining the Q-matrix.
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Table 3w Portion of the Q-matrix for grammar section of ECPE test.

Skill
Item a; a2 a3
1 1 1 0
2 0 1 0
3 1 0 1
4 0 0 1

J=28 0 0 1

(2007) or Rupp and Templin (2008).

Table 4 gives an overview of important CDMs. The up-
per part contains specific CDMs and the lower part lists
general CDM frameworks. These general frameworks em-
brace the specific CDMs through setting parameter restric-
tions.

The CDM package in R covers all model formulations
given in Table 4. Table 5 provides an overview of the essen-
tial function calls.

Model Equation

The decisions qualitatively justified in the previous sub-
section have to be implemented quantitatively in the form
of model equations and likelihoods for enabling parame-
ter estimation and thus responding to the Questions Q1-
Q3 seen earlier. We illustrate that point using the example
of the DINA model. The DINA model has two main prop-
erties: P1 the DINA model is non-compensatory, i.e., ex-
aminees cannot compensate for a lack in one skill with a
surplus in another skill. P2 the examinees’ probability of
responding an item positively increases only if examinees
possess all skills required for the respective item, i.e., the
probability increases only if an interaction term becomes
non-zero. The model equation employs these two proper-
ties as follows:
(P1) If we knew the exact skill profile of student i, his ex-
pected response to item j would be expressed through

K .
Nij= l_[ (X?I]Ck € {0,1}.
k=1

That is, examinee i is only expected to respond to item
Jj positively (n;; = 1) if he possesses all skills required
for the item, i. e. all skills assigned to item j in Q. Anal-
ogously, the examinee is not expected to respond to the
item positively (n;; = 0) if he lacks at least one required
skill.

For example, the examinees may fail to produce a pos-
itive response, although they are expected to positively
respond to the item because they possess the required
skills (a case which is termed “slip”). Or the other way

round, they may succeed by luckily guessing the correct
response, although they are not expected to positively
respond an item. These probabilistic error components
are modeled as item specific parameters g; (for guess-
ingitem j) and s; (for slipping in item j).

Combining the expected response and the probabilis-
tic error component, the response probabilities in the
DINA model are expressed through

(P2)

o 1-ny;
P(Xij =1l @i, gjs) = (1-s)"i-g; "

_J1-s; form;;=1,
gj forn;; =0.

That is, the DINA model involves only two probabili-

ties gj and 1 - s; for responding item j. The probability

of positively responding to item j increases from g; to

1 - s; only if examinees possess all required skills and

thus 7;; is non-zero.

We would advise against interpreting the item parameters
as guessing or slipping rates. Rather, we suggest the follow-
ing two lines of interpretation:

Firstly, based on the models’ assumptions, examinees
who possess all relevant skills for a correct response to an
item, are expected to master the item. Analogously, exami-
nees who do not possess all relevant skills, are not expected
to master the item. Following these expectations, the man-
ifest item responses allow for a sharp separation of exami-
nees possessing the relevant skills or not. The item param-
eters g; and s; reflect the portion of examinees showing re-
sponses other than the expected. Large values of g; indi-
cate the portion of correct responses, although the exami-
nees were not expected to master the item, and large values
of s; indicate the portion of incorrect responses, although
the examinees possess all of the required skills. Hence, the
larger the sum of item parameters g; + s; (i. e. the smaller
1—-g;—s;), theless the skills were suitable to predict the ac-
tual item responses. Items exhibiting large values of g; + s;
were therefore not sufficiently capable of correctly sepa-
rating examinees possessing the relevant skills from those
who do not. This interpretation can be seen similar to the
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Table 4m Selected CDMs and their major references. The upper part of the table involves specific CDMs, the lower part

consists of general CDM frameworks.

Model Model name Reference

DINA Deterministic Input Noisy “And” Gate Haertel (1989)

DINO Deterministic Input Noisy “Or” Gate Templin and Henson (2006)
RRUM Reduced Reparameterized Unified Model Hartz (2002)

HO-DINA Higher Order DINA
MS-DINA  Multiple strategies DINA
MC-DINA Multiple-choice DINA

de la Torre and Douglas (2004)
de la Torre and Douglas (2008)
de la Torre (2009a)

GDM General Diagnostic Model
G-DINA Generalized DINA
LCDM Log-Linear CDM

von Davier (2005)
de la Torre (2011)
Henson, Templin, and Willse (2009)

Table 5= Functions and arguments in the functions for specifying and estimating CDM models with the R package CDM.

Model Functionin CDM  Arguments

DINA din () rule="DINA" (default)
DINO din () rule="DINO"

RRUM gdina () rule="“RRUM"

HO-DINA gdina () HOGDINA=1

MS-DINA  slca/() with appropriate design matrix
MC-DINA mcdina ()

GDM gdm ()

G-DINA gdina ()

LCDM gdina () linkfct="logit"

item discrimination parameter in the item response the-
ory framework (cf. Birnbaum, 1968), where values close to
or greater than one indicate a good separation of exami-
nees with low abilities from examinees with high abilities.
Thus we might interpret w1; = 1 - g; — s; in a similar fash-
ion as the item discrimination parameter (see also Lee, de
la Torre, & Park, 2012).

Secondly, g; describes the probability of correctly re-
sponding in case of not possessing all relevant skills, while
1 - s; describes the probability of correctly responding in
case of having all skills. Thus, the term [g;+(1—s;)]/2
might be seen as the average probability of correctly re-
sponding the item. In case g; decreases or s; increases
(i.e. 1—s; decreases) the average probability of a correct re-
sponse decreases. In this respect, one may compare wy; =
[gj+(1—sj)]/2 to the idea of item easiness and thus w,;
corresponds to the item p-values (i. e. the percentage of ex-
aminees who responded the item correct). For an example
of both interpretations see first example of the last section.

Likelihood Function

In practice, the individual skill profiles a; are not known,
therefore the item parameters gi,..., gy, S1,-.., 57 and the
skill profiles have to be estimated. One option is joint maxi-
mum likelihood estimation. However, as in traditional item

response models, joint maximization of the item parame-
ters (structural parameter) and the skill profiles (inciden-
tal parameter) may yield inconsistent estimations of the
item parameters (Neyman and Scott, 1948, for CDMs: de
la Torre, 2009b). Instead we maximize the marginal likeli-
hood

I
log L(g,s,y) = Z log L(X;; 8,5,7)
i=1

I L
=) log|) P(Xila;g s y)xPlaly)
i=1 =

with respect to the guessing parameters g = [g1,...,8J],
the slipping parameters s = [s,...,s;] and the L = 2K
skill class probabilities P(e;), where y = [P(a1),..., P(a,k)]
describes a vector of skill class probabilities. Note that
P(ayx) = 1—2%&1 P(a) and thus the model has only 2K_q
instead of 2K skill class probabilities which need to be esti-
mated. In cases where models have almost as many param-
eters as observations, which, consequently, would lead to
weakly or non identifiable skill classes, Xu and von Davier
(2008) proposed to change from the estimation of all skill
class probabilities P(a;), [ = 1,....2K to a log-linear re-
duced form (called reduced skill space).
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Estimation Algorithm

Because of desirable convergence behavior and simple es-
timation steps within iterations, the optimization is imple-
mented via an expectation-maximization-algorithm (EM-
algorithm; Dempster, Laird, & Rubin, 1977). Prior to the
first iteration of the EM-algorithm, initial item parameters
[g, s] and skill class distribution parameters P(«;) have to
be chosen. Then, the EM-algorithm alternates between the
E-step and the M-step until convergence is achieved. The
algorithm converges if a stopping criterion is fulfilled, e. g.
if the maximal change between the parameter values or the
relative change in the deviance is below a predefined value.

In the E-Step two types of expected counts are derived
from the posterior

P(X;lapP(a;ly)
YL _ P(Xilam)Planly)

The first count is the expected number of examinees which
are classified into skill classes «; for item j, [ = 1,...,L,
j=1,...,J. The second count gives the number of exam-
inees classified in skill class a; while responding to item j
positively.

In the M-Step the item parameters and the skill class
distribution parameters are updated consecutively. Pri-
marily, the first derivative of the log-likelihood with respect
to the item parameters is set to zero. The derivative in-
volves only the two counts obtained in the first step and
thus allows for updating the item parameters. Secondly,
the expected number of examinees in skill class «; is de-
termined as a basis for updating the skill class distribution
Q2 and the skill possession probabilities Q1.

Once the algorithm has converged, the individual skill
profiles may be derived from the estimated model via max-
imum likelihood (MLE), maximum a posterior (MAP) or ex-
pected a posterior (EAP) classification.

Interested readers will find statistical details of the
models and the estimation algorithm in e.g. de la Torre
(2009b), George and Robitzsch (2014), or Xu and von Davier
(2008).

PlalX;) = I=1,...,L

Examples

CDMs may be estimated with the CDM package (George,
Robitzsch, et al., in press) in R (R Core Team, 2015), a free
open source software. Both the program and the package
are available on the server cran.r-project.org. In this sec-
tion, we present two applications of CDMs together with
the respective R code. The first example analyzes the stu-
dents’ abilities in understanding grammatical rules of En-
glish. The analysis is based on the ECPE data, which were
introduced in the first subsection of the previous section.
The second example examines students’ abilities in math-
ematics. This example is more complex in that it builds on

a multiple matrix booklet design of the large scale Trends
in International Science Study (TIMSS; Martin & Mullis,
2013).

A Simple Example - Analysis of ECPE Data

This example demonstrates the basic functionality of the
CDM package, exemplified with the DINA model.

Response Data and Q-Matrix

For the ECPE, educational experts divided the ability to un-
derstand english grammatical rules into three skills, “mor-
phosyntactic rules” (a1), “cohesive rules” (a,), and “lexical
rules” (a3). Furthermore, the experts decided that students
require all skills assigned to an item in the Q-matrix to solve
the respective item. Hence, the most appropriate model
is the DINA. The R commands for the following analysis is
given in Listing 1.

First (Listing 1, Line 1), we have to load the pack-
age CDM which automatically provides the example
data set data.ecpe. It contains both the response
data data.ecpe$data and the corresponding Q-matrix
data.ecpe$qg.matrix (cf. the description in the Sec-
tion “Input and Output of a CDM analysis”).

We may now immediately apply the model (Listing
1, Line 5), which is invoked with the function din ().
This function requires at least two arguments, the name
of the data set data.ecpe$data and the Q-matrix
data.ecpe$q.matrix. Note that the data includes stu-
dent IDs in the first column, which need not to be included
in the response matrix for the din () function. The esti-
mated model is now stored in the object ecpe.

Item and Skill Characteristics

Lines 7 to 21 in Listing 1 demonstrate how to extract item
and skill related information from the ecpe results object.
We obtain the item parameters (i. e. guessing g; and slip-
ping s;), the item p-values, the statistics w j; and w ;> (as in-
troduced earlier), and the skill characteristics (according to
Q1, Q2 and Q3 seen above). For that purpose, the IRT. se
function extracts the model parameters along with their
standard errors from the result object ecpe into the data
frame param. Then, we use the split function to group
the values by parameter type, resulting in a list named p.
Finally, we extract the item parameters (Lines 13 and 14)
and the skill parameters (Lines 19 and 20), and compute
the item statistics (Line 12: p-values, Line 15: w1, and Line
16 wjp). Furthermore, line 21 shows how to extract indi-
vidual skill profiles according to MLE classification (cf. Q3
earlier).

The obtained information (Tables 6 to 9) may be inter-
preted as follows: Table 6 shows a summary of the item re-
lated values. The item p-values describe the percentage of
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Listing 1 » R commands for analyzing the ECPE data.

# load package
library (CDM)

# estimate DINA model

s ecpe <—- din(data.ecpe$datal[,-1], data.ecpe$g.matrix)

7 # parameters and standard errors of DINA model

[N

* (
* (

» newqgl3 <-— newa3[ c(2,4)]
[,

param <- IRT.se(ecpe, extended=TRUE)
p <- split (param, paramS$Spartype)

# items characteristics (cf. Table 6)

pvalues <- colMeans (data.ecpe$datal,-1], na.rm=TRUE) # item p-values

pSguess # guessing parameters

pSslip # slipping parameters
s omegal <— 1 — pSguessSest - pSslipSest # item discrimination
; omega2 <— (pSguessSest + (1 - pS$slipSest))/2 # item easiness

# skill characteristics (cf. Table 7 and 8)

pSmargprobs # skill distribution Q1
pSprobs # skill class distribution Q2
IRT.factor.scores (ecpe, type="MLE") [1:5,] # individual skill profile Q3

# plot model parameters
par (mfrow=c(2,2))
plot (ecpe, pattern=data.ecpeS$datal[l,-1])

: # correlation between skills

skill.cor (ecpe) $cor.skills

# various fit criteria
fit.ecpe <- IRT.modelfit (ecpe)

# new Q-matrices

newqgl3 <-— newq23 <- data.ecpe$g.matrix
newql3[,4] <- newqgl3([,1]==1 | newqgl3[,3]==1)
newqg23[,4] <- newg23[,2]==1 | newg23[,3]==1)
newqg23 <- newqg23[,c(1l,4)]

# define, estimate and derive model fit of competing models
ecpel3 <- din(data.ecpeS$Sdatal,-1], newgl3)

fit.ecpel3 <- IRT.modelfit (ecpel3)

ecpe23 <- din(data.ecpe$datal,-1], newg23)

fit.ecpe23 <- IRT.modelfit (ecpe23)

# compare competing models

7 IRT.compareModels (fit.ecpe, fit.ecpel3, fit.ecpe23)
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Table 6 s Summary of item characteristics for DINA model on ECPE data.

Type Min Max Mean SD
item p-values 43 .90 72 13
guessing parameters g; .19 .82 .55 17
slipping parameters s; .04 37 .15 .09
item discrimination wy; =1-g;—-s; .12 .50 .29 .10
item easiness wy; = (gj + (1 —s;))/2 44 .88 .70 13

Table 7 m Skill distribution P(aj) and respective standard errors SE for DINA model on ECPE data, cf. Q1 in the second

section.

aq ao as
Play) 49 .61 .63
SE .02 .02 .01

Note. a1: morphosyntactic rules; a,: cohesive rules; as: lexical rules

students solving each of items: 43% of the students solved
the most difficult item, whereas 90% of the students solved
the easiest item. On average, 72% of the students solved
the items, hence the test seems not too difficult. As dis-
cussed in the third section, there exists a correspondence
between the item p-values and the item easiness parame-
ter wy;. The item guessing parameters range from .19 to .82
(SD =.17) and have a maximal standard error of .02. Note
again that the object p$Sguess includes the guessing pa-
rameters as well as their standard errors. The item slipping
parameters range from .04 to .37 (SD =.09) and have a max-
imal standard error of .01. The item discriminations w;
range from .12 to .50 with a mean value of .29. These values
indicate that the items do not separate very good between
examinees possessing the relevant skills and those who do
not.

Table 7 shows the skill probabilities P(ay) in the sense
of Q1 of the second section). We see that only 49% of
the students possess “morphosyntactic rules” (1), whereas
61% of the students obtain “cohesive rules” (a»), and 63% of
the students acquire “lexical rules” (as).

Table 8 shows the skill class distribution P(e;) (in the
sense of Q2 in the second section) and allows an anal-
ysis of skill combinations. We learn from the skill class
distribution that most students possess either all skills
(P([1,1,1]) = .45) or none of the skills (P([0,0,0]) = .31).
Furthermore, students possessing skill a; often also pos-
sess skill a3 (P([1,0,1]) + P([1,1,1]) = .02 + .45 = 47) in
contrast to students possessing skill a; but not skill as
(P([1,0,0) + P([1,1,0]) = .01 +.01 = .02). In the same
line, students possessing skill ay often also possess skill
as (P([0,1,1]) + P([1,1,1]) = .01 + .45 = .46) in contrast to
students possessing skill a; but not skill az (P([0,1,0]) +
P([1,1,0]) = .04 + .01 = .05). The results indicate that pos-
sessing “lexical rules” (a3) could be a prerequisite of acquir-

ing either “morphosyntactic rules” (a;) or “cohesive rules”
(a2).

Table 9 shows the individual skill profiles of the first five
respondents in the data set (cf. Listing 1, Line 21). Accord-
ing to MLE classification, respondent i = 2 possesses skills
1 and 3 (i. e. “morphosyntactic rules” (a1) and “lexical rules”
(a3), cf. Table 2), while the remaining four respondents
possess all three skills.

Graphical Repesentation

The CDM package allows plotting some of the parameter
values obtained above (Listing 1, Lines 24 and 25). The plot
in Figure 1 includes the item parameters (Figure 1, top left
hand side), the skill distribution (Figure 1, top right hand
side), the skill class distribution (Figure 1, bottom left hand
side) and, if specified in the plot command pattern, an
individual EAP skill profile (Figure 1, bottom right hand
side).

Correlations between Skills

We may further inspect the correlations between the skills
(Listing 1, Line 28), which are given in Table 10. From the
correlation matrix we can see that the correlations between
a1 and a3 (Cor(aq,a3) =.915) and a, and a3 (Cor(as, a3) =
.914) are large. These correlations are in line with the re-
sults we have inferred from the skill class distribution, i. e.
students who possess skill a; tend to possess skill as as
well.

Model Fit

As a criterion of absolute model fit (Listing 1, Line 31) the
item pairwise y?> measures of Chen, de la Torre, and Zhang
(2013) may be considered. Without going into statistical
details (cf. GroB3, Robitzsch, & George, 2015), we can reject
the adequacy of the model if the p-value of the maximal
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Table 8 m Skill classes resulting for the ECPE test incorporating K = 3 skills with according skill class probabilities P(e;)
and standard errors SE of skill class probabilities, cf. Q2 in the second section.

a a as ay as Qg a7 Qag

[0,0,0 [1,0,0] [O,1,0] [O,0,1] [1,1,0] [1,0,1] [O,1,1] [1,1,1]
P(ay) 31 .01 .04 .05 .01 .02 .01 A5
SE .02 .01 .01 .01 .01 .01 .01 .02

Table 9 m Individual skill profiles P(e;) for the first five respondents i = 1,...,5 in the ECPE data set, cf. Q3 in the second
section.

Respondenti a;1 ap2 a3
1 1 1 1
2 1 0 1
3 1 1 1
4 1 1 1
5 1 1 1

Note. a1: morphosyntactic rules; a: cohesive rules; as: lexical rules

Figure 1 = Plot for DINA model on ECPE data including item parameters (top left hand side), skill mastery probabilities
(top right hand side, cf. Q1 in the second section), skill class distribution (bottom left hand side, cf. Q2) and individual EAP
skill profile for student 1 (bottom right hand side, cf. Q3).
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Table 10 m Correlations between the k = 3 skills for DINA model on ECPE data.

aq a2 as
a1 1
a, .888 1

a3 915 914 1
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item pairwise y? measure falls short of the desired signifi-
cance level. Another criterion of absolute model fit is the
standardized root mean square residual (SRMSR; Maydeu-
Olivares, 2013). Maydeu-Olivares suggests that SRMSR val-
ues smaller than 0.05 indicate well-fitting models. Table
11 shows the results for the ecpe model, which are inter-
preted later on.

Because of the large correlations between the skills a;
and a3 or ay and as, respectively, one could argue for a
model including only two skills instead of three. Thus, in
the next step, we construct the Q-matrices of these two
models and then compare the resulting three models with
respect to their model fit. For the first model ecpel3 in-
cluding only two skills we subsume the two skills a; and a3
to one new skill ;3. That is, we assign each item requir-
ing either skill a; or skill a3 the new skill a;3 and end up
in a two column Q-matrix newqgl 3 (Listing 1, Lines 34, 35
and 37). Analogously, the second model ecpe?2 3 including
two skills is built by combining skills @, and a3 in a new Q-
matrix newg?2 3 (Listing 1, Lines 34, 36 and 38). After hav-
ing estimated the two models (Listing 1, Lines 41 and 43),
we calculate the model fit (Listing 1, Lines 42 and 44) and
compare all three models (Listing 1, Line 47). Tables 11 and
12 are automatically generated by the latter command and
yield the results of the model comparison.

Based on Table 11 the best model in terms of model
fit is the ecpe model including all three skills, which has
the highest loglike and the lowest AIC and BIC values of
all three models. As shown in Table 12 a likelihood ratio
test (for an introduction see Hélie, 2006) for the compari-
son of the ecpel3 and ecpe model or the ecpel3 and
ecpe model, respectively, assigns the ecpe model with
three skills a significantly better fit. However, the adequacy
of all three models is rejected by the maximal item pairwise
x? measure. In contrast, all models’ SRMSRs are smaller
than 0.05 indicating at least satisfactory model fit.

Considering all results (skill class distribution, correla-
tions, model comparisons) we found a strong coherence
between skills “cohesive rules” (a3) and “lexical rules” (a3)
and we have reasons to believe that students need to pos-
sess a3 before they can acquire a».

A Complex Example - A Multi-Group Model on TIMSS
Data

The second example illustrates the application of CDMs to
complex data structures, like those typically appearing in
large scale assessments.

Response Data

In this example we analyze students’ abilities in mathe-

matical sub-competences based on a part of the Austrian

TIMSS 2011 data. Working with a data set coming from a

large scale assessment study as TIMSS presents three chal-

lenges: (1) the data structure, (2) the weighting, and (3) the
estimation of the parameters standard errors.

(1) The data structure specific to large scale assessments
is called multiple matrix design and results from the
fact that only a subset of all items involved in the study
is presented to each of the students. The data we are
working on includes responses of 1010 Austrian fourth
grade students and a total of 47 items. The 47 items are
divided up into three blocks, so called booklets. Two
of the three booklets are presented to each student.
Hence, the response data involves items which were
not presented to the individual student (coded as miss-
ing NA), items, which the student had omitted or not
reached (coded as false 0), wrong item responses (also
coded as false 0) and correct item responses (coded as
right 1).

(2) The 1010 Austrian fourth graders constitute a sample
drawn from all Austrian fourth graders. However, for
cost reasons, students are drawn in a two-stage proce-
dure: firstly, schools are drawn from the population of
schools and secondly classes are drawn from all classes
in the sampled schools. Because larger schools (i.e.
their students) have a higher probability to be sampled,
the individual students have unequal probabilities to
be drawn. To compensate for these unequal selec-
tion probabilities and to compensate for non-response
occurring because of students being not able to take
part in the test (e.g. because of illness), the applica-
tion of sample weights is a commonly used technique
(cf. Technical Report on TIMSS; Martin & Mullis, 2013).

(3) For the complex data structures in large scale assess-
ments it is hard or sometimes impossible to find a
closed form (i. e. a formula) for determining the model
parameters’ standard errors. Because of that the stan-
dard errors are estimated using jackknife procedures
(e.g. Friedman, Hastie, & Tibshirani, 2001). The jack-
knife procedure implies repeatedly drawing subsam-
ples of schools, estimating the model for each sub-
sample and deriving the parameters variance between
the models (cf. Technical Report on TIMSS; Martin &
Mullis, 2013).

The CDM package supports all three aspects (1), (2) and

(3), which is shown in this example.
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Table 11 # Model comparisons for DINA models on ECPE data. This table has been generated with the command

IRT.compareModels (fitecpe, fitecpel3, fitecpe23).
Model Loglike Npars Nobs AIC BIC p (max()cz)) SRMSR
ecpe -42843 63 2922 85813 86190 <0.001 0.033
ecpel3 -42958 59 2922 86035 86387 <0.001 0.034
ecpe23 -42864 59 2922 85847 86200 <0.001 0.033

Table 12m Likelihood ratio tests for DINA models on ECPE data.

Modell Model2 y? df p
ecpel3 ecpe 22965 4 <0.001
ecpe23 ecpe 4181 4 <0.001

Q-Matrix

As we are interested in the students’ possession of math-
ematical sub-competences we rely on the TIMSS compe-
tence model. In this model educational experts subdivided
the overall ability of math in fourth grade into three content
skills and three cognitive skills (Table 13).

Mastering each of the TIMSS items requires the knowl-
edge of exactly one content and one cognitive skill, i.e. a
possible Q-matrix for this model would have exactly two
ones in each row (cf. Table 14). For example mastering the
first TIMSS item presumes students to possess the content
skill “numbers” (a ) and the cognitive skill “‘applying” (a ).

George and Robitzsch (2014) showed that applying
such Q-matrices including two facets (here content and
cognition) renders the model non-identified. Thus, George
and Robitzsch propose to apply an alternative matrix,
which includes each skill combination between the facets.
Table 15 includes the upper part of this Q-matrix.

Multiple-Group Model

Obviously, in this example we could perform the steps of
analysis shown in the first example), resulting in the per-
centages of students possessing the 9 skills (cf. Table 15)
and the combinations thereof. However now we focus on
comparing the abilities of boys and girls. Listing 2 contains
the R commands for the following analysis.

We start again with loading the required packages (List-
ing 2, Lines 1 and 2) and continue with loading the data
(Listing 2, Line 5) into a data frame t imss . info. This ob-
ject also yields additional information as e. g. student IDs,
school IDs, information on the student’s gender, sample
weights, jackknife zones and ability values. Hence, we ex-
tract the students’ response data in the object t imss (List-
ing 2, Line 11). This is done by the help of the item labels al-
ready defined in the Q-matrix t imssq (Listing 2, Line 8; cf.
Table 15). The response data is structured in a multiple ma-

trix design, compare aspect (1) in the subsection “response
data” of the second example.

Specifying a multiple group model for the compari-
son of boys and girls presumes the invariance of item pa-
rameters between the groups (i.e. boys and girls). Thus
we first estimate a G-DINA model® timss.all with all
students (Listing 2, Line 14). Note that the Q-matrix
timssqg again includes item IDs, which should be re-
moved for the model’s estimation. The desired mul-
tiple group model requires the models’ item parame-
ters coef (timss.all) Sest, which have to be struc-
tured item-wise and stored in a list param.all (List-
ing 2, Line 17). Beyond that list of fixed item parame-
ters param.all, the multiple group model timss.mg
requires several other arguments (Listing 2, Line 20):
The data timss, the Q-matrix timssq, the grouping
vector timss.info$female and the sampling weights
timss.info$TOTWGT (cf. aspect (2) in the subsection
“response data” of the second example). The grouping vec-
tor and the sampling weights are given as additional in-
formation in the timss.info data frame. Note that the
grouping vector of the multiple group models has to consist
of the entries one (for the first group) and two (for the sec-
ond group). The timss.info$female vector contains
zeros (for the first group; i. e. boys) and ones (for the second
group; i. e. girls), thus we have to calculate “+1” (Listing 2,
Line 20).

Standard Errors for Model Parameters

For determining the parameters’ standard errors we apply
a jackknife procedure (Listing 2, Lines 23 to 27), compare
aspect (3) in the subsection “response data” of the second
example. A discussion of jackknife procedures (or, more
generally, of replication methods) in the context of large
scale assessments goes far beyond the scope of this article.
For a general introduction, see George, Oberwimmer, and

2For Q-matrices involving only one entry per row DINA and G-DINA models are equivalent.
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Listing 2m R commands for analyzing TIMSS data.

library (CDM)
library (BIFIEsurvey)

# Data with additional information

s timss.info <- data.timssll.G4.AUT.part$data

7 # Q-matrix involving combinations between content and cognitive skills

™~
&

S

timssg <- data.timssll.G4.AUT.part$g.matrixl

# Response data
timss <- timss.info[,paste(timssg$Sitem) ]

# Model including all students for calibration of item parameters
timss.all <- gdina(timss, timssql[,-11)

s # listwise form of item parameters for input in multiple group model
; param.all <- split (coef(timss.all)S$est, coef(timss.all)S$itemno)

# Multigroup model with invariant item parameters between groups
timss.mg <- gdina (timss, timssqgl,-1], weights=timss.infoS$STOTWGT, group=timss.info$
female+l, delta.fixed=param.all)

# Generate replicate design for calculation of SEs (requires BIFIEsurvey)
repdes <- IRT.repDesign(data=timss.info, wgt="TOTWGT", Jktype="JK_TIMSS", Jjkzone="
JKCZONE", jkrep="JKCREP")

s # Calculate SEs and define object param including modelparameters
s jtimss.mg <- IRT.jackknife (timss.mg, repDesign=repdes)
; param.mg <- Jjtimss.mg$jpartable

s # Skill possession (Ql) of and between groups (groupl=boys, group2=girls)

skill.dist <- param.mg[which (param.mg$partype=="margprobs"), ]
skill.dist.boy <- skill.dist[grep("levl_groupl", skill.distS$Sparnames), ]
skill.dist.girl <- skill.dist[grep("levl_group2", skill.distS$Sparnames), ]
skill.dist.diff <- skill.dist.boy$value - skill.dist.girl$value

s # Define derived parameters (differences in skill possession between boys and girls

) for calculating their SEs

s dp <— list(

w7 "skilldiffDA" = ~ 0 + I(prob_skillCo_DA_levl_groupl - prob_skillCo_DA_levl_group2),
"skilldiffDK" = ~ 0 + I(prob_skillCo_DK_levl_groupl - prob_skillCo_DK_levl_group2),
"skilldiffNR" = ~ 0 + I(prob_skillCo_NR_1levl_groupl - prob_skillCo_NR_levl_group2)

)

# Calculate SEs of drived parameters (differences between groups)
jtimssmg_dp <- IRT.derivedParameters (jtimssmg, derived.parameters=dp)

5 diffs <- summary (jtimssmg_dp)

7 # Test differences for beeing significantly different from zero

diffs$t <- diffs$value / diffs $jkse
diffs$sig <= " "

—
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Table 13 m Sub-competencies underlying the TIMSS test for mathematical abilities. The upper part includes content spe-

cific skills, whereas the lower part involves cognitive skills.

Parameter  Skill Description

ap data display reading and interpreting displays of data; organizing data

aG geometric shapes and measures identifying properties of lines, angles, and a variety of (two- and
three-dimensional) geometric figures

an numbers understanding of place value, ways of representing numbers, rela-
tionships between numbers

aa applying application of mathematical tools in a range of contexts

ax knowing recall of mathematical language, basic facts and conventions of
number, symbolic representation, and spatial relations

ag reasoning capacity for logical, systematic thinking; intuitive and inductive

reasoning based on patterns and regularities

Table 14 = Original Q-matrix for TIMSS data. This Q-matrix would render the model unidentified and is therefore not apt

for analysis.

Item ap ag any aa agx ag
1 0 0 1 1 0 0
2 0 0 1 0 0 1
3 0 0 1 0 0 1

109 1 0 0 1 0 0

Note. ap data display; ag geometry; ay numbers; a 4 applying; ax knowing; a g reasoning

Itzlinger-Bruneforth (in press), technical details regarding
their application in the TIMSS technical report (Martin &
Mullis, 2013). Before we can apply the jackknife to our data,
we have to prepare a so-called replicate design (repdes).
For purpose of determining the replicate design, the CDM
package provides the function IRT.repDesign (based
on package BIFIEsurvey, BIFIE; 2015), which is called in
Line 23 of Listing 2. The option jktype="JK_TIMSS"
specifies that we use the standard method of TIMSS (oth-
ers are available, e.g. the Bootstrap). In the TIMSS con-
text the replicate design combines, roughly spoken, two
kinds of information: Firstly, a design how to draw sub-
samples of schools in order to get “good” estimates while
not determining all possible subsamples (this is structured
through the so-called jackknife zones). Secondly, a rule on
how to weight the schools in the subsamples (the replica-
tion weights). Usually, data sets of large scale studies de-
liver supplemental information (i. e. specific columns) re-
quired for the execution of the jackknife. In our case the
timss.info data frame contains the columns JKCZONE
and JKCREP which are used for defining the jackknife zones
and the replication weights. The jackknife method itself
is invoked with the function IRT. jackknife (Listing 2,
Lines 26), using the data set t imss .mg and the replicate
design repdes. Note that this function call may take a

while to finish for it comprises separate model estimation
runs for each jackknife sample. The entire results of the
jackknife procedure are stored in the jtimss.mg object,
from which we extract the parameter estimates along with
their estimated standard errors (param.mg) in Line 27.

We extract the marginal probabilities from param.mg
by choosing param.mg$partype=="margprobs”. By
that, we obtain the percentages of students possessing the
nine skills (cf. Table 15) with respect to Q1 (cf. the second
section) and store them in the data frame skill.dist
(Listing 2, Line 30). From the data frame skill.dist
we can now tag the percentages of skill possession for
boys (groupl) and for girls (group2). That step is con-
ducted with the grep command, which collects all in-
formation about levl (possession of skill; in contrast
lev0 non-possession) in groupl (Listing 2, Line 31) or
group?2 (Listing 2, Line 32), respectively. Based on the
skill possession of boys (skill.dist.boys) and girls
(skill.dist.girls), we can compute the differences
in skill possession skill.dist.diff (Listing 2, Line
33). Note that the result objects skill.dist .boys and
skill.dist.girls also contain the according stan-
dard errors, whereas the standard errors of the derived dif-
ferences have to be computed in a separate step (see next
subsection).
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Table 15m Final Q-matrix for TIMSS data.

Item «

DA @®DK @DpR (&GA OQGK QGR @&NA NK @®NR
1 0 0 0 0 0 0 1 0 0
2 0 0 0 0 0 0 0 0 1
3 0 0 0 0 0 0 0 0 1
109 1 0 0 0 0 0 0 0 0

Note. apy “data and applying”, apk ‘data and knowing”, apr “data and reasoning”, aca ‘geometry and applying’,
acgk ‘geometry and knowing”, agr “geometry and reasoning”, ana “numbers and applying”, a nx “numbers and know-

ing”, angr “numbers and reasoning”.

Table 16 holds the percentages of boys and girls pos-
sessing the nine skills (cf. Q1 in the second section) to-
gether with the associated standards errors. Boys succeed
best in mastering “geometry and applying” (aga = .60) and
worst in “numbers and knowing” (anx = .40). In con-
trast, girls show the highest abilities in “data and reasoning”
(apr = .58) and the lowest abilities in “geometry and rea-
soning” (agr = .36) and “numbers and reasoning” (angr =
.36).

t-Tests

In order to determine whether boys and girls differ signif-
icantly in their skill possession, we apply ¢-tests (Listing 2,
Lines 48 to 50). In the R commands first the ¢-values are
calculated and (Listing 2, Line 48) then the significance is
evaluated at the 5 percent level and stored in a new row of
the di ff£s object (Listing 2, Lines 49 and 50), where aster-
isks indicate significance.

Table 17 holds the derived differences in skill posses-
sion between boys and girls along with their standards er-
rors. In the significance row asterisks indicate significant
differences in skill possession.

Standard Errors for Derived Parameters

For determining the standard errors of the differences in
skill possession between the groups we need two futher
steps: First, we have to define a list dp of parame-
ters derived from the model parameters (Listing 2, Lines
36 to 41). In our case we define as derived param-
eters the differences in skill possession between boys
and girls (e.g. for ‘data and applying” the difference
ski11diffDA) based on the model parameters, i.e. the
skill possession in each group. For accessing the model
parameters we make use of their parameter names, which
can be found in the skill.dist data frame. Hence
prob_skillCo_DA_levl_groupl denotes the skill
mastery probability of boysin ap4 “data and applying” and
analogously prob_skillCo_DA_levl_group?2 stands
for the skill mastery probability of girls in @ps. Note that

the syntax for specifying the derived parameters follows the
R formula syntax, which is for example applied in the lin-
ear model 1m () function. In Lines 37 to 40, the differ-
ences in three of the nine skills are defined, the notation
of the remaining six differences appears by interchanging
the two letters defining the skill (e.g. DA or DK). After the
definition of the derived parameters their standard errors
can be calculated using the IRT.derivedParameters
method (Listing 2, Lines 44) and subsequently applying the
summary command (Listing 2, Lines 45).

On a descriptive level, we find some revealing tenden-
cies: With positive differences in skill possession indicating
advantages for boys, we see boys superior in six out of the
nine mathematical skills (apg, aga, @Gk, AGK, AN A, ANR)-
Specifically, boys outperform girls in all skills including ge-
ometry (@ga, @Gk, agk)- The skill “numbers and reason-
ing” (anr) holds the largest difference between boys and
girls: 47% of boys compared to only 36% of girls possess
this skill.

However, only the largest difference in the skill posses-
sion (in “numbers and reasoning”, a ng) is significantly dif-
ferent from zero. That means also that for all other skills
the hypothesis of equal differences between boys and girls
cannot be rejected from a statistical point of view.

Discussion

The two examples of the last section have shown that CDMs
provide a handy means to trace back complex processes to
basic features: A correct usage of the CDM framework leads
to very differentiated results about students’ skill posses-
sion. However we have to keep in mind that in any CDM
the quality of the output strongly relies on the quality of
the input, i.e. the experts’ qualitative specification of the
Q-matrix.

There might be cases in which fit measures indicate
good fit and skills are highly correlated. Then, the CDM ap-
proach, which is a multidimensional one, is not necessarily
the optimal one. One could rather think of applying a uni-
dimensional model, like the Rasch model (Rasch, 1960), for
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Table 16 m Population based skill distribution (in the sense of Q1 in the second section) for possession of TIMSS skills for
boys P(a|boys) and girls P(a|girls) with according standard errors SE.

apA @DK ADR AGA AGK QAGR ANA ANK ANR
P(aglboys) .44 .58 .52 .60 44 43 52 40 47
SE .04 .04 .04 .03 .03 .04 .04 .04 .04
P(aylgitls) 44 .56 .58 .56 42 .36 43 42 .36
SE .03 .04 .03 .03 .03 .04 .03 .04 .03

Note. See Table 15 for the variable descriptions.

Table 17 m Differences in skill possession between boys and girls. The differences’ standard errors SE are used for deter-
mining if boy and gitls differ significantly in skill possession (see row significance, significance level .05).

@pA ®pK  ®DPR GGA &GK QAGR G&NA @&NK QNR
P(ailboys) — P(aglgirls) —.01 .03 -.06 .03 .03 .07 .09 -.02 A1
SE .05 .05 .04 .04 .05 .05 .05 .05 .05

significance - - - -

- - - - *

Note. See Table 15 for the variable descriptions.

example. The simple example offers a good starting point
for such a discussion.

The present article referred to basic CDMs embedded
in two educational examples using dichotomous responses
and skills. More general CDMs allow for polytomous items
and polytomous skills as well (Chen & de la Torre, 2013;
von Davier, 2005). Furthermore, we presented all models
on the assumption that all 2X skill classes are represented
in the analysis. However there are situations in which we
only estimate a number of L < 2K skill classes: Firstly, one
may have prior information, that not all skill classes are
plausible. Secondly, the user wants to avoid ambiguous
skill classes (for details Gro & George, 2014), or thirdly,
the analysis involves too many skills for estimating all skill
classes given the sample size (George & Robitzsch, 2014;
Pan & Thompson, 2007).

More advanced methods for CDMs are available and
are implemented in the CDM package of R. For ex-
ample, based on the results of the ECPE example, one
could define CDM models including skill hierarchies
(Templin & Bradshaw, 2014) supported by the method
skillspace.hierarchy. Or, if the whole TIMSS data
should be analyzed analogously to the second example
methods of skill space reduction (Xu & von Davier, 2008)
asimplemented in skillspace. reductionmay prove
useful.

Beyond the application of CDMs, readers may be in-
terested in linking CDMs to other latent variable models:
As CDMs rely on both discrete manifest and discrete latent
variables, they can be considered as restricted latent class
models (Formann, 1985). If manifest indicators are dis-
crete and latent variables are continuous, one should ap-

ply item response models (for an introduction see e.g. de
Ayala, 2009); if, in contrast, both manifest indicators and
latent variable are continuous, structural equation mod-
els (for an introduction see e.g. Beaujean, 2014) are the
method of choice.
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