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Abstract Here we provide a description of the IRT estimation method known as Normal Ogive Harmonic Analysis Ro-
bust Method (NOHARM). Although in some ways this method has been superseded by new computer programs that also
adopt a specifically factor-analytic approach, its fundamental principles remain useful in certain applications, which in-
clude calculating the residual covariance matrix and rescaling the distribution of the common factor (latent trait). These
principles can be applied to parameter estimates obtained by any method.
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Introduction

Here we provide a description of the item response the-
ory (IRT) estimation method known as Normal Ogive Har-
monic Analysis Robust Method (NOHARM), which was im-
plemented in a pioneering computer program developed
by Fraser and McDonald (1988).

For some time NOHARM was the tool of choice for fit-
ting multidimensional IRT models. To our knowledge, no
other program until recently permitted the specification
of a confirmatory multidimensional model with correlated
factors or provided the residual covariance matrix in its
output. Programs released within just the last few years—
including IRTPRO (Cai, Du Toit, & Thissen, 2011) and the
mirt package for the R computing platform (Chalmers,
2012)—now supply at least the first of these two desider-
ata, but they tend to be more computationally burdensome
than NOHARM. Therefore it is important to weigh the rela-
tive advantages of the tools that are now available.

First, NOHARM does not allow the pseudo-guessing
parameter—the probability of passing an item by a very
low-ability examinee—to be estimated. In practice, a poor
choice of a fixed value can lead to what factor analysts
call a Heywood case (an estimated nonpositive residual
variance). In most applications this theoretical problem
is of little consequence, but it can be somewhat trouble-
some in analyses of differential item functioning. Second,
whereas NOHARM only uses factor-analytic limited infor-
mation (item pass rates and covariances) to estimate IRT
parameters, many other programs use full information (the

frequencies with which the possible zero-one strings of
item responses occur in the data) (Bolt, 2005). In principle,
this raises the possibility that NOHARM’s estimates are sta-
tistically inefficient. NOHARM has performed well, how-
ever, in simulation studies of cases where it can be com-
pared with other approaches. Moreover, there are useful
objects in certain empirical analyses that continue to be
most easily calculated using the principles of NOHARM,
even if the parameter estimates have been obtained by
some other method. In summary, whereas the latest gen-
eration of IRT programs is to be recommended, NOHARM
still appears to have a place in the analysis of datasets con-
taining hundreds of items (e.g., Flanagan et al., 1962). Such
analyses promise to contribute much to differential psy-
chology, and we anticipate that a greater recognition of the
link between factor analysis and IRT will motivate such re-
search.

Many critical pieces of information regarding NO-
HARM are not easy to obtain, as they are spread across arti-
cles, book chapters, and manuals published over a span of
decades (McDonald, 1967, 1982, 1985, 1997, 1999; Maydeu-
Olivares, 2001; McDonald & Fraser, 2003). Because the el-
egant principles of NOHARM continue to be enlightening
and useful, we will try to produce a largely self-contained
account of these principles that corrects the typographical
errors that have unfortunately accrued in the relevant liter-
ature.
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Function Approximation with Orthonormal Polynomials

The basic principle of NOHARM is the approximation of
the item characteristic curve (ICC)—the function giving the
probability of the correct response as a function of the com-
mon factor(s) θ—with a polynomial that is convenient for
computational purposes. It turns out that a linear combi-
nation of orthogonal polynomials serves this purpose; for
an elementary account of such polynomials, including reg-
ularity conditions that we omit, the reader may consult the
short monograph by Jackson (1941).

The sequence (Pk )∞k=0 of kth-degree orthonormal poly-
nomials, with respect to the interval (a,b) and the density
function g (x), is defined by∫ b

a
Pm(x)Pn(x)g (x)d x = δm,n , (1)

where δm,n is the Kronecker delta.
The polynomials Pk (x) can be used for the formal ex-

pansion of an arbitrary function

f (x) =
∞∑

k=0
ck Pk (x). (2)

Multiplication of the expansion by g (x)Pk (x) and integra-
tion from a to b gives

ck =
∫ b

a
f (x)Pk (x)g (x)d x, (3)

and in this way each coefficient can be obtained.
We now show that the best polynomial approximation

of an arbitrary function (“best” in the sense of least squares)
is the one given by Equation (2). Define the partial sum
sn(x) as the termination of (2) after n terms,

∑n
k=0 ck Pk (x).

Also define the remainder rn(x) = f (x)− sn(x). As a conse-
quence of the definitions,∫ b

a
sn(x)Pk (x)g (x)d x = ck ,∫ b

a
rn(x)Pk (x)g (x)d x = 0, k = 0,1, . . . ,n. (4)

Let πn(x) be an arbitrary polynomial of the nth degree at
most. Then define

πn(x)− sn(x) = δn(x) =
n∑

k=0
dk Pk (x),

so that
f (x)−πn(x) = rn(x)−δn(x).

The integral of the squared error in πn(x) as an approxima-
tion of f (x), weighted from point to point by the factor g (x),

is ∫ b

a
g (x)

[
f (x)−πn(x)

]2 d x

=
∫ b

a
g (x) [rn(x)−δn(x)]2 d x

=
∫ b

a
g (x) [rn(x)]2 d x −2

∫ b

a
g (x)rn(x)δn(x)d x

+
∫ b

a
g (x) [δn(x)]2 d x.

But by virtue of Equation (4) and the expression of δn(x) in
term of the Pk ,∫ b

a
g (x)rn(x)δn(x)d x = 0,

∫ b

a
g (x) [δn(x)]2 d x =

n∑
k=0

d 2
k .

As a result,∫ b

a
g (x)

[
f (x)−πn(x)

]2 d x ≥
∫ b

a
g (x) [rn(x)]2 d x.

Evidently, regardless of whether sn(x) ultimately converges
to f (x), no other polynomial of degree n or lower produces
a smaller weighted integral of squared errors. The rele-
vant implication for our purposes is that the appropriate
sequence of orthonormal polynomials constitutes the op-
timal basis for approximation of the ICC.

The Hermite Polynomials

The interval (a,b) and density function g (x) determine
the polynomials that satisfy the orthonormality condition
given by Equation (1). In the case where the interval is
the real line and the density function is associated with the
standard normal distribution, the polynomials are known
as the Hermite polynomials, which can be defined as

Pk (x) = (−1)k
p

2πp
k !

exp
(
x2/2

) d k

d xk
φ(x), (5)

where φ(x) is the standard normal density. The first ten
Hermite polynomials are

P0(x) = 1,

P1(x) = x,

P2(x) = (
x2 −1

)
/
p

2!,

P3(x) = (
x3 −3x

)
/
p

3!,

P4(x) = (
x4 −6x2 +3

)
/
p

4!,

P5(x) = (
x5 −10x3 +15x

)
/
p

5!,

P6(x) = (
x6 −15x4 +45x2 −15

)
/
p

6!,

P7(x) = (
x7 −21x5 +105x3 −105x

)
/
p

7!,

P8(x) = (
x8 −28x6 +210x4 −420x2 +105

)
/
p

8!,

P9(x) = (
x9 −36x7 +378x5 −1260x3 +945x

)
/
p

9!.
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Figure 1 The densities of 1,000 random draws from the bivariate normal distribution with zero means, unit variances, and
correlation equal to 0.70 were calculated with both the true density function and the ninth order of Mehler’s expansion.
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Other accounts may omit the normalizing constants 1/
p

k !
or give the polynomials in a slightly different form follow-
ing from the non-normalized density function exp

(−x2
)
.

Many texts provide an elementary proof that the Her-
mite polynomials satisfy the orthonormality property with
respect to the standard normal density over the real line
(e.g., Jackson, 1941). In any event a particular specific case
is readily verified upon recognizing that upon integration
Equation (1) becomes a linear combination of normal mo-
ments. Here we will set out a generalization of (1) that bears
specifically on parameter estimation with NOHARM and
the assessment of model fit: if x and y follow the bivariate
normal distribution with zero means, unit variances, and
correlation ρ, thenÏ

Pm(x)Pn(y)φ(x, y)d x d y = δm,nρ
m . (6)

where φ(x, y) is the joint density. This result is a conse-
quence of a remarkable identity known as Mehler’s expan-
sion,

φ(x, y) =φ(x)φ(y)
∞∑

k=0
ρk Pk (x)Pk (y). (7)

For small correlations Mehler’s expansion is highly accu-
rate even when truncated at a few terms. Figure 1 shows
that even a density associated with a correlation as high as
0.70 can be approximated quite closely by taking the ex-
pansion to ninth order.

We close this section by proving Equation (6). Multi-
ply both sides of Equation (7) by Pm(x)Pn(y) to bring the
left-hand side into conformity with the integrand of (6). In-
tegrating both sides over x eliminates all terms from the
right-hand side except for

Pn(y)φ(y)ρmPm(y),

which when integrated over y leads to (6).

The Expansion of the Normal-Ogive Item Response Func-
tion

Recall that the normal-ogive ICC is given by

ϕ j (θ) = E(Y j |θ) =
∫ α j +β j θ

−∞
1p
2π

exp

(
−1

2
t 2

)
d t . (8)

When the upper limit of the integrand is expressed in
this way—with an intercept and slope parameter—we call
Equation (8) the IRT parameterization of the ICC. The
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factor-analytic parameterization can be obtained by apply-
ing the transformation

τ j =
−α j√
1+β2

j

,

λ j =
β j√

1+β2
j

, (9)

whereupon the upper limit of integration in Equation (8)
becomes

λ jθ−τ j√
1−λ2

j

. (10)

The IRT parameterization derives its name from its sim-
ilarity to the well-known formulation of Lord and Novick
(1968). The factor-analytic parameterization, on the other
hand, has the following interpretation. Suppose that the
j th item is associated with an underlying quantitative re-
sponse tendency Y ∗

j and a threshold τ j such that the ob-

served item score

y j =
{

1 if y∗
j > τ j ,

0 if y∗
j ≤ τ j .

Now suppose that y∗ ∈ Rp , the vector of response tenden-
cies, fits the factor model

y∗ =Λθ+ε∗, (11)

where Λ ∈ Rp×q is a matrix of factor loadings. Then the
threshold and factor loading of item j in this model are in
fact given by Equation (9).

We wish to find the expansion of the normal-ogive ICC
in terms of the Hermite polynomials. For this purpose it is
convenient to use the transformation

α j =
−µ j

σ j
,

β j = 1

σ j
. (12)

We now drop the item subscript j until it is needed
again.

Case of c0

To obtain the first coefficient in the expansion, we must
evaluate the integral

c0 =
∫
ϕ(x)P0(x)φ(x)d x

=
∫ ∞

−∞
1p
2π

∫ (x−µ)/σ

−∞
exp

(
− z2

2

)
1p
2π

exp

(
−x2

2

)
d z d x.

Recall that the change-of-variables formula,∫
g (Ω)

f (x)dx =
∫
Ω

f (g (u))
∣∣det(D g )u

∣∣ du,

often simplifies the evaluation of an integral. In this in-
stance the appropriate change of variables is

(u, v) =
(
σx + zp

1+σ2
,
−x +σzp

1+σ2

)
,

which has the inverse

(x, z) =
(
σu − vp

1+σ2
,

u +σvp
1+σ2

)
.

Note that the Jacobian matrix of this transformation,

∂u

∂x

∂u

∂z
∂v

∂x

∂v

∂z

=


σp

1+σ2

1p
1+σ2

−1p
1+σ2

σp
1+σ2

 ,

has a determinant equal to unity.
In our case, the transformation converts the line z =

(x −µ)/σ into the line v =−µ/
p

1+σ2, and we have

c0 =
∫ ∞

u=−∞
1p
2π

∫ −µ/
p

1+σ2

v=−∞
exp

[
−1

2

(u +σv)2

1+σ2

]
1p
2π

exp

[
−1

2

(σu − v)2

1+σ2

]
du d v

=
∫ ∞

u=−∞

∫ −µ/
p

1+σ2

v=−∞
1p
2π

exp

(
−u2

2

)
du

1p
2π

exp

(
−v2

2

)
d v

= 1p
2π

∫ −µ/
p

1+σ2

v=−∞
exp

(
−v2

2

)
d v

=Φ
(
− µp

1+σ2

)
,
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where we now use Φ to denote the cumulative probability
function of the standard normal distribution. Using Equa-
tions (9) and (12), we see that

c0 =Φ (−τ) . (13)

Case of c1

Now we must evaluate the integral

c1 =
∫
ϕ(x)P1(x)φ(x)d x

=
∫ ∞

−∞
1p
2π

∫ (x−µ)/σ

−∞
exp

(
− z2

2

)
1p
2π

x exp

(
−x2

2

)
d z d x.

Employing the same change of variables used to obtain c0,
we get

c1 =
∫ ∞

u=−∞

∫ −µ/
p

1+σ2

v=−∞
σu − vp

1+σ2

1p
2π

exp

(
−u2

2

)
du

1p
2π

exp

(
−v2

2

)
d v

=
∫ ∞

u=−∞

∫ −µ/
p

1+σ2

v=−∞
− vp

1+σ2

1p
2π

exp

(
−u2

2

)
du

1p
2π

exp

(
−v2

2

)
d v

= 1p
1+σ2

∫ −µ/
p

1+σ2

v=−∞
− 1p

2π
v exp

(
−v2

2

)
d v.

Since the integrand has been reduced to the derivative of
the standard normal density function, we can now write

c1 = 1p
1+σ2

φ

(
− µp

1+σ2

)
,

where φ represents the standard normal density function.
By Equations (9) and (12), this can be rewritten as

c1 =λφ(τ). (14)

Case of c2

We have

c2 =
∫
ϕ(x)P2(x)φ(x)d x

=
∫ ∞

−∞
1p
2π

∫ (x−µ)/σ

−∞
exp

(
− z2

2

)
1p
2π

x2 −1p
2

exp

(
−x2

2

)
d z d x.

The same change of variables yields

c2 = 1p
2
(
1+σ2

)
×

∫ ∞

u=−∞

∫ −µ/
p

1+σ2

v=−∞
[
(σu − v)2 −1−σ2]φ(u)duφ(v)d v.

With the help of Mathematica, we can evaluate the inte-
gral to get

c2 = 1p
2
(
1+σ2

) µp
1+σ2

φ

(
− µp

1+σ2

)
= 1p

2
λ2τφ(τ).

(15)

Case of c3

Because the fit to the sample covariance matrix often can-
not be improved more than negligibly by taking the expan-
sion of each ICC beyond the third power, this is the last co-
efficient used by the NOHARM program to compute its pa-
rameter estimates. We have

c3 =
∫
ϕ(x)P2(x)φ(x)d x

=
∫ ∞

−∞
1p
2π

∫ (x−µ)/σ

−∞
exp

(
− z2

2

)
1p
2π

x3 −3xp
6

exp

(
−x2

2

)
d z d x.

With our change of variables and the help of
Mathematica, we get

c3 = 1p
6

1(
1+σ2

)3/2

(
µ2

1+σ2 −1

)
φ

(
− µp

1+σ2

)

= 1p
3
λ3 τ

2 −1p
2
φ(τ).

(16)

The General Expression for ck , k ≥ 1

Upon studying Equations (14), (15), and (16), we might
conjecture that the general expression is

ck = 1p
k
λk Pk−1(τ)φ(τ), k ≥ 1. (17)

McDonald (1967) gave a proof of Equation (17) using
Fourier transforms.
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Figure 2 Increasingly higher-order expansions in Hermite polynomials of a normal-ogive item characteristic curve cor-
responding to τ=−0.4, λ= 0.8, and c = 0.2.
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Figure 2 shows the quality of the ICC approximation for
odd values of k up to 9. As one should expect in the case
of a easy item, the linear approximation fails at high levels
of θ. The NOHARM program takes the expansion in Her-
mite polynomials to third order, which still does not closely
match the ICC at the extremes of the θ distribution. Nev-
ertheless third order seems sufficient for accurate parame-
ter estimation in the case of a pseudo-guessing parameter
equal to zero.

Generalization to Multiple Dimensions

We now treat multiple common factors (latent traits) col-
lected in the vector θ ∈ Rq . In the IRT parameterization
of the ICC, the discrimination parameters of a given item
are collected in the vector β ∈ Rq . It is convenient to find a
transformation of θ such that the multidimensional equiv-
alent of Equation (8)—where the upper limit of integration
becomes α+β′θ—is in fact a function of only one element

(say the first). Define

T = 1

δ


β′
β′

2
...
β′

q

 ,

where
δ=β′β

and the rows of T after the first are chosen so that the matrix
is orthonormal. Now define

θ∗ = δ

d
Tθ, (18)

where
d 2 =β′Ψβ, Ψ= Cov(θ).

In particular, the first element of θ∗ is

θ∗ = 1

d
β′θ.

The inverse of Equation (18) is

θ = d

δ
T′θ∗,

The Quantitative Methods for Psychology 6�
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which implies that

Φ(α+β′θ) =Φ
(
α+ d

δ
β′T′θ∗

)
.

Since, by construction,

β′T′ = [
δ 0 · · · 0

]
,

we thus have

Φ(α+β′θ) =Φ(
α+d ×θ∗)

.

This is a function of the single variable θ∗ and thus has the
same form as Equation (8). We can therefore approximate
the ICC with

ϕ(θ) ≈ c0 +
∑
k=1

ck Pk

(
β′θ√
β′Ψβ

)
,

replacingβ1 in our previous expressions with d . Consulting
Equation (9), we see that the replacement leads to

c0 =Ψ
(

α√
1+β′Ψβ

)
,

c1 =
√

β′Ψβ
1+β′Ψβ

×φ
(

α√
1+β′Ψβ

)
,

and so forth.

The Expected Covariance Between Two Items

We can write the response to item j as

Y j = c j + (1− c j )
[

c j 0P0

(
θ∗j

)
+ c j 1P1

(
θ∗j

)
+ c j 2P2

(
θ∗j

)
+·· ·

]
where we have introduced the pseudo-guessing parameter
with the symbol c j .

The response can then be rewritten as

Y j = b j 0P0

(
θ∗j

)
+b j 1P1

(
θ∗j

)
+b j 2P2

(
θ∗j

)
+·· · , (19)

where

b j 0 = c j + (1− c j )c j 0,

b j 1 = (1− c j )c j 1,

b j 2 = (1− c j )c j 2,

and so on.
We collect the linear combinations θ∗j into a single vec-

tor θ? ∈ Rp and assume that the transformation θ→ θ? is
one-to-one. Now consider the two items j and j ′. We have

E(Y j Y j ′ ) = Eθ?
[
E(Y j Y j ′ |θ?)

]
= Eθ?

[
E(Y j |θ?)E(Y j ′ |θ?)

]
= Eθ?

{[
b j 0P0

(
θ∗j

)
+b j 1P1

(
θ∗j

)
+·· ·

]
×

[
b j ′0P0

(
θ∗j ′

)
+b j ′1P1

(
θ∗j ′

)
+·· ·

]}
.

The argument in brackets resolves into terms of two types:
products of the form

b j k b j ′k Pk

(
θ∗j

)
Pk

(
θ∗j ′

)

and cross-products where the indices of the Hermite poly-
nomials do not agree. The multivariate normality of θ is
a sufficient condition for the use of Equation (6), which
upon integration leads the cross-products to vanish and
the products to become

b j k b j ′k
[

Corr
(
θ∗j ,θ∗j ′

)]k
,

and since the variance of each θ∗j remains unity if all ele-

ments of θ are standardized, we then have

E(Y j Y j ′ ) =
∑
k=0

b j k b j ′k

(
β′

jΨβ j ′

d j d j ′

)k

, (20)

from which the covariance is obtained by subtracting the
product of the marginal pass rates. With estimates of the
item parameters in hand, however obtained, one can use
Equation (20) to compute the residual covariance matrix as
part of assessing model-data fit.

Equation (20) is in fact used by NOHARM to obtain esti-
mates of the item parameters. Each τ j is estimated in close
form by equating item j ’s pass rate to Φ(−τ), and the item
parameters can in principle be estimated by choosing the
β̂ j and ĉ j to minimize

p∑
j=1

∑
j> j ′

[
y j y j ′ −En

(
Y j Y j ′

)]2 ,

where En
(
Y j Y j ′

)
is the truncation of (20) at nth order. In

the current implementation of NOHARM, n is set equal to
3. The c j must be fixed by the user because the triplets
(α j ,β j ,c j ) are nearly unidentified when this approach is
employed, but Figure 2 suggests that taking the expansion
to higher order might overcome this difficulty.

Authors’ note
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