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Abstract An absence of measurement bias against distinct groups is a prerequisite for the use of a given psychologi-
cal instrument in scientific research or high-stakes assessment. Factor analysis is the framework explicitly adopted for the
identification of such bias when the instrument consists of a multi-test battery, whereas item response theory is employed
when the focus narrows to a single test composed of discrete items. Item response theory can be treated as a mild non-
linearization of the standard factor model, and thus the essential unity of bias detection at the two levels merits greater
recognition. Here we illustrate the benefits of a unified approach with a real-data example, which comes from a statewide
test of mathematics achievement where examinees diagnosed with dyscalculia were accommodated with calculators. We
found that items that can be solved by explicit arithmetical computation became easier for the accommodated examinees,
but the quantitative magnitude of this differential item functioning (measurement bias) was small.
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Introduction

A difference between populations in average test perfor-
mance cannot be safely interpreted unless the test provides
nearly unbiased measurements of the same attribute in
both populations. A battery of tests satisfying this property
to a good approximation is said to exhibit measurement in-
variance (Meredith, 1993; Millsap, 2007), and factor analy-
sis has been used to test the adequacy of this approxima-
tion in many applications. When the analysis focuses on
the individual items within a single test, rather than sev-
eral such tests within a larger battery, the corresponding
property of unbiased measurement is called absence of dif-
ferential item functioning (DIF). Many of the methods for
detecting DIF fit within the overall framework of item re-
sponse theory (IRT) (Holland & Wainer, 1993; Penfield &
Camilli, 2007).

IRT is a mild nonlinearization of standard factor analy-

sis, and indeed this connection has been recognized since
the initial formulation of IRT (Lord & Novick, 1968; Muthén
& Lehman, 1985; Takane & de Leeuw, 1987; McDonald,
1999; Kamata & Bauer, 2008; Bartholomew, Knott, & Mous-
taki, 2011). The mainstream of IRT, however, has tended
to develop without reference to this underlying unity. As a
result it is possible to find entire textbooks devoted to spe-
cialized some aspect of IRT with scarce acknowledgement
of earlier and entirely parallel developments in the linear
factor-analytic models implicitly underlying classical test
theory. Conversely, despite the efforts of many method-
ologists, the power and elegant insights of IRT have in-
fluenced mainstream psychological science very unevenly.
This mutual neglect has the potential to do harm if it hin-
ders the migration of well-justified procedures from one
level of analysis to the other.

In this article we provide an exposition of bias detec-
tion and highlight the benefits of the unified framework.1

1The term bias has accrued a number of meanings in various literatures. Here we use the term in a sense that should be acceptable to most psycholo-
gists: a group difference in the conditional expectation of performance, even when the comparison is restricted to individuals of the same “latent ability”
or “factor level” (e.g., Lubke, Dolan, Kelderman, & Mellenbergh, 2003). This sense of bias is often called measurement bias, as distinct from prediction
bias; the latter refers to a group difference in the conditional expectation of an external criterion when a test is used for purposes of prediction (Millsap,
2007). Furthermore, in the education literature, what we call “measurement bias” is often labeled by the more neutral term “differential functioning,”
until evidence of prediction bias or non-psychometric considerations are felt to justify the use of the stronger term. To repeat, for purposes of this article,
we feel that using the terms “differential functioning” and “measurement bias” interchangeably and neglecting the issue of prediction bias altogether
are reasonable compromises.
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Our presentation will tend to take linear factor analysis and
measurement invariance at the test level as starting points,
but the treatment of both test and item levels will be self-
contained. As a result the article can be read as an in-
troduction to IRT itself (cf. Waller, Tellegen, McDonald, &
Lykken, 1996). Although our intended audience consists
of psychologists who routinely use factor analysis in their
research, we believe that our approach should be illumi-
nating to practitioners working within either one of these
two psychometric traditions; on each side of the divide, we
highlight insights and practices that are applicable to the
analysis of datasets at any level.

Our real-data example comes from a statewide test of
mathematics achievement. Certain types of mathematics
items are thought to impose an unfair burden on students
diagnosed with dyscalculia—a condition characterized by
inordinate difficulties with learning simple numerical con-
cepts, attaining an intuitive grasp of numbers, and apply-
ing routine arithmetical procedures (Butterworth, 2010).
Such students were allowed to use calculators during the
administration of the test. The Standards for Educational
and Psychological Testing emphasize that issues of validity
are critical whenever accommodations are offered (Ameri-
can Education Research Association, American Psychologi-
cal Association, & National Council on Measurement in Ed-
ucation, 2014). It seems especially important to investigate
the possibility of measurement bias in this particular case,
where both the disability and its remedy seem to be inti-
mately related to the measured trait itself.

The Linear Common Factor Model and Measurement Bias
in Quantitative Tests

We can write the standard linear model of factor analysis as

y =µ+Λθ+ε, (1)

where y ∈ Rp is a vector of test scores, µ ∈ Rp is a vector of
intercepts, Λ ∈ Rp×q is a matrix of factor loadings, θ ∈Rq is
a vector of scores on common factors, and ε ∈Rp is a vector
of regression residuals. We have deliberately departed from
convention in the use of θ, the usual symbol for latent traits
in IRT, to denote factor scores; our purpose is to emphasize
the virtual identity of these two concepts. The first appli-
cation of linear factor analysis was Spearman’s original g
model, in which various tests of mental ability are regarded
as measurements of a single general factor.

Equation 1 has the falsifiable consequence that

E
(
yy′

)=ΛΨΛ′+Θ, (2)

where Ψ ∈ Rq×q is the covariance matrix of the common
factors andΘ ∈Rp×p is the diagonal matrix of residual vari-
ances. The diagonality of Θ should be regarded as a defi-
nition rather than an assumption (McDonald, 1981); by the

principle of local independence, each pair of tests should
be measuring uncorrelated noise in a subpopulation with
a fixed value of θ and hence no variation in the traits to be
measured. The discrepancy between the covariance ma-
trix implied by Equation 2 and the actual sample covari-
ance matrix provides the basis for parameter estimation
and testing the adequacy of a hypothesis restricting the di-
mensionality of the factor space (q), the pattern of nonzero
loadings in Λ, and the form of the factor covariance matrix
Ψ.

Distinct groups of examinees can exhibit distributions
of observed test scores that differ in critical ways from the
distribution characterizing a traditionally more privileged
group. Here we adopt the terminology of focal and refer-
ence groups to label these two types of examinee popula-
tions. To obtain some assurance that the collection of tests
measures the same traits and provides an unbiased esti-
mate of relative standing regardless of group membership,
we can determine whether the same factor model holds in
both groups to a satisfactory approximation. With two or
more groups, the implication of Equation 1 for the mean
structure,

E(y) =µ+Λκ, where E(θ) =κ, (3)

can be empirically tested by fixing one group’s mean to the
zero vector.

Table 1 outlines a nested sequence of increasingly com-
prehensive models testing measurement invariance. No-
tice that no model imposes the restriction κ(R) = κ(F ) or
Ψ(R) =Ψ(F ). Indeed, the purpose of an invariance analysis
is to determine whether an observed group difference can
safely be attributed to a generalizable difference in the dis-
tribution of the traits targeted for measurement (common
factors) rather than a bias or idiosyncratic property of the
particular test.

One can use the likelihood ratio test to assess the sta-
tistical significance of a less stringent invariance model’s
improved fit to the observed means and covariances. How-
ever, because psychometric models are highly idealized ap-
proximations, a more restrictive model will almost always
be rejected if the two samples are sufficiently large. We
are thus forced to consider whether the statistically signifi-
cant discrepancies between groups are quantitatively large
enough to merit the exclusion of the offending tests or per-
haps even the entire battery. For instance, whereas a differ-
ence in standardized factor loadings of 0.05 might be con-
sidered negligible, we would certainly be concerned by an
intercept difference amounting to several items correct.

A popular approach to such numerical assessment of
model adequacy is to summarize the discrepancies with
a scalar index and compare its realized value with rec-
ommended benchmarks for “poor,” “fair,” or “good” fit.
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Table 1 Some Models of Measurement Invariance

Model Description

configural invariance Λ(R) andΛ(F ) have the same number of columns
and pattern of nonzero elements

weak factorial or metric invariance Λ(R) =Λ(F )

strong factorial or scalar invariance Λ(R) =Λ(F ), µ(R) =µ(F )

strict factorial invariance Λ(R) =Λ(F ), µ(R) =µ(F ),Θ(R) =Θ(F )

Note. Superscripts are used to denote the group (reference or focal) described by each parameter. Millsap (2011) pro-
vides a more complete tabulation of invariance models.

This approach has been criticized for forcing the inherently
multifaceted aspects of model-data fit into a single number
(McDonald, 2010). Here we accept this criticism and em-
phasize methods for assessing fit at the level of individual
indicators rather than the model as a whole. In our imple-
mentation of this approach, prominence is given to numer-
ical indices with straightforward interpretations and graph-
ical methods that compactly convey many pieces of infor-
mation at once. In this way we aim to dispel the notion
that “for purposes of publication, graphical displays are of-
ten limited to illustrative examples” (Steinberg & Thissen,
2006, p. 406).

Nonlinear Factor Analysis of Binary Items and Item Re-
sponse Theory

Factor analysis has long been applied to individual items,
which can be regarded as tests yielding just two possible
scores: zero (wrong) and one (right). It has also been rec-
ognized that the linear factor model, strictly speaking, can-
not be appropriate for this purpose (e.g., Carroll, 1945). In
the case of a single common factor (q = 1), the expected
item score becomes inadmissible once the straight regres-
sion line either sinks below zero or rises above one for ex-
aminees with extreme values of θ. In fact, this kind of prob-
lem also arises in the factor analysis of entire tests, each of
which yields integer-valued scores bounded between zero
and the number of items. The failure of the linear model
at the extremes, however, is more pressing when the units
of analysis are individual items that are very easy or diffi-
cult. In this case the “extremes” are no longer so far from
the typical examinee.

A nonlinearization of factor analysis addressing this
difficulty must bound the expected item score (probabil-
ity of giving the correct response) between zero and one,
and the simplest such extension seems to be the following
(Christoffersson, 1975; Muthén, 1978). Suppose that the
j th item is associated with an underlying quantitative re-
sponse tendency Y ∗

j and a threshold τ j such that the ob-

served item score

y j =
{

1 if y∗
j > τ j ,

0 if y∗
j ≤ τ j .

Now suppose that y∗ ∈ Rp , the vector of response tenden-
cies, fits the factor model

y∗ =Λθ+ε∗. (4)

Equation 4 lacks the intercept term because we may stan-
dardize each Y ∗

j so that its mean is zero and its variance

unity. If we let λ j stand for the j th row of Λ (the j th item’s
loadings on the q common factors), then we can write the
variance of the residual ε∗j as

Var
(
ε∗j

)
= Var

(
Y ∗

j

)
−Var

(
λ′

jθ
)
= 1−λ′

jΨλ j .

Now let us assume that each ε∗j follows the normal distri-

bution in the examinee population. Then

E(Y j |θ) =P
(
λ′

jθ+ε∗j > τ j

)
=P

(
ε∗j > τ j −λ′

jθ
)

=P
(
−ε∗j ≤λ′

jθ−τ j

)
=P

Z ≤
λ′

jθ−τ j√
1−λ′

jΨλ j

 ,

where Z is the standard normal random variable (which
has a symmetrical probability distribution). The nonlinear
regression of the item score on θ can thus be written as

E(Y j |θ) =Φ

 λ′
jθ−τ j√

1−λ′
jΨλ j

 , (5)

where Φ is the cumulative distribution function (CDF) of
the standard normal distribution. This normal-ogive re-
gression function is monotonically increasing in each ele-
ment of θ and bounded between zero and one. The graph
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of the item regression function is known as the item char-
acteristic curve (ICC), and henceforth we use this term to
refer to any item regression function.

For obvious reasons we call Equation 5 the factor-
analytic parameterization of the ICC. It is sometimes con-
venient to use the alternative parameterization

E(Y j |θ) =Φ
(
α j +β′

jθ
)

,

τ j =
−α j√

1+β′
jΨβ j

,

λ j =
β j√

1+β′
jΨβ j

, (6)

which we call the IRT parameterization for reasons that we
now give. IRT, as formulated by Lord and Novick (1968), is
based on the model

E(Y j |θ) =Φ[
a j (θ−b j )

]
≈ 1

1+exp
[−1.701a j (θ−b j )

] . (7)

The logistic form of Equation 7 proves to be mathematically
convenient for computing errors of measurement. In the
case of a single factor, if we equate the normal-ogive ex-
pression for E(Y j |θ) in Equation 6 to Lord’s normal-ogive
form of Equation 7, then we find that β j is equivalent to
a j (the discrimination parameter) and α j to −a j b j (where
b j is called the difficulty or location parameter). This step
shows that there is a sufficiently close correspondence be-
tween (α j ,β j ) and Lord’s (b j , a j ) to justify the term “IRT pa-
rameterization” for Equation 6. And in fact, it does more;
we have now demonstrated the complete equivalence of
parametric IRT and the factor analysis of binary measure-
ments.

The θ in Equation 4 satisfy the principle of local
independence—the same principle that serves as a defin-
ing property of the θ in Equation 1. For Y ∗

j must be uncor-

related with Y ∗
j ′ for each pair j and j ′, in a subpopulation

with no variation in θ, and therefore the fact that an exam-
inee in this subpopulation passed item j (y j = 1 implying
y∗

j > τ j ) provides no information as to whether the exam-

ine also passed item j ′ (since the event y∗
j ′ > τ j ′ to yield

y j ′ = 1 retains its conditional probability given θ alone).
It follows that the adequacy of a given IRT model can be
tested by determining whether the off-diagonal elements
of the residual covariance matrix tend to vanish (Stout,
1990; McDonald & Mok, 1995). A Bayesian model-checking
method along these lines has been given by Levy, Mislevy,
and Sinharay (2009). It also follows that the RMSR and GFI

carry over as global fit indices from the factor analysis of
tests to the IRT analysis of items. Furthermore, Maydeu-
Olivares and Joe (2005) have shown that the RMSEA and re-
lated indices can be calculated from the fit of the IRT model
to the item covariances in a manner analogous to the long-
standing practice of factor analysis.2

McDonald (1981, 1999, 2013) has forcefully emphasized
the close connection between IRT and traditional factor
analysis, pointing to the principle of local independence
as a unifying theme. However, when other writers have
noted this connection, they have done so in passing and
without employing it in their further treatment of IRT. This
reticence may be owed in part to the different ways in
which these two tools have been used and conceptualized
throughout their histories.

For the most part, the pioneers of factor analysis re-
garded the technique as an exploratory tool of natural sci-
ence and hoped that its judicious application would un-
cover objective taxonomies of behavioral variation. Ever
since the work of Thurstone (1938), many psychologists
have embraced the application of multidimensional mod-
els (q ≥ 2) to batteries of instruments that are deliberately
heterogeneous in content. Such heterogeneity is perceived
as a virtue, since Nature is expected to be complex. Now
compare this outlook with the one adopted by the typi-
cal IRT practitioner in an applied setting. The object of
analysis is usually a single test designed for a narrow ed-
ucational purpose, and this invites the treatment of tests
as parochial artifices rather than measurements of natu-
ral kinds. Unidimensionality (q = 1) often does hold to a
good approximation in IRT applications, which is an un-
surprising consequence of testing a narrow range of con-
tent. Confinement to one dimension—and the high ac-
curacy with which a long test can place individuals along
that dimension—eliminates at one stroke the controver-
sies over underfactoring, overfactoring, rotational indeter-
minacy, and score indeterminacy that have bestrewn the
history of factor analysis without any parallels in the devel-
opment of IRT.

Some writers have sketched a middle way between
these two attitudes (McDonald, 1985, 2003; J. J. Lee, 2012a,
2012b). Briefly, even if factor analysis is limited in its po-
tential for unsupervised discovery, it may still prove to be
a useful tool of pure research for those who are willing to
accept that a priori low-dimensional trait domains have a
legitimate place in scientific models. If widely and explic-
itly adopted, this position may narrow the cultural divide
between test-based factor analysis and IRT, thereby remov-
ing a hindrance to the use of their formal parallelism.

Purely technical points are sometimes raised against

2Because we wish to deprecate exclusive reliance on these scalar fit indices (RMSR, GFI, RMSEA), we do not explain them in detail here. Explications
of these indices can be found elsewhere (e.g., Millsap, 2011).
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the unification of factor analysis and IRT. For instance, Mill-
sap (2011) points out that a generalization of the IRT model
in Equation 7 that allows a nonzero lower asymptote,

E(Y j |θ) = c j + (1− c j )Φ
(
α j +β′

jθ
)

, (8)

is no longer in correspondence with a factor-analytic
model of the form assumed by Equations 1 and 4. The
pseudo-guessing parameter, c j , is often used to model a
multiple-choice item to which low-ability examinees have
a greater-than-zero probability of giving the correct re-
sponse. This argument against placing the analysis of tests
and items within a common framework seems rather weak
because, as pointed out earlier, the linear factor model also
requires care when applied in the presence of floor and
ceiling effects.

Description of the Dataset

Here we describe the dataset used to illustrate the manner
in which a unified factor-analytic framework encompass-
ing IRT can inform the detection of both item- and test-
level measurement bias. Note that we are unable to release
this dataset; a simulated dataset based on the inferred pa-
rameters and R code implementing the described analyses
can be downloaded from the journal website.

Data from a statewide mathematics achievement test
were gathered from roughly 70,000 examinees. Approxi-
mately 8 percent were allowed to use their calculators dur-
ing the administration of the test. There was no limitation
on the types of calculators that could be used (e.g., graph-
ing calculators were permitted). We will refer to the accom-
modated students as the focal group. We have not been
able to determine whether a standardized diagnostic pro-
cedure was used in all cases of claimed disability.

The test consisted of 34 binary items falling into five
content categories: Algebra (11 items), Number Sense (10
items), Measurement (3 items), Geometry (3 items), and
Statistics (7 items). We have renumbered the items so that
those within the same content category are adjacent. The
summary statistics are as follows: reference group (no cal-
culator), M = 22.9, SD = 8.0; focal group (calculator), M =
13.4, SD = 6.0. It appears that the test as a whole was
markedly more difficult for members of the focal group,
despite their access to calculators. Broadly speaking, the
purpose of our DIF analysis is to determine whether the
observed group difference reflects a difference in mastery
of the entire content domain (mathematics achievement)
rather than an artifact of any biased items that may have
been included in this test.

Figure 1 presents an exploratory plot that the analyst
should always examine in some detail. Each panel contains
the empirical regression of the item score on the total score
obtained on all other items. The independent variable thus

excludes the focal item. In some cases there are subtle rea-
sons for including the focal item in the total (Lewis, 1993),
but for our purposes it is better to exclude the focal item
in order to prevent spurious agreement between groups at
the test floor and ceiling. The item-test regressions can be
an aid in detecting errors in the scoring key or the absence
of a single unambiguously correct answer; items afflicted
by such problems will tend to exhibit regressions that fail
to be monotonically increasing. The regressions also give
a global impression of what to expect in the subsequent
model-based analysis. In the case of a single factor, the to-
tal score approaches a monotonic transformation of θ as
the number of items increases, and thus each item-test re-
gression should approximate the corresponding ICC up to
a monotonic transformation of the independent variable.
The regressions of the reference and focal groups do not
appear to differ dramatically, which might lead us to expect
that any measurement bias in this test is small.

Testing the Dimensionality of the IRT Model

A prerequisite of DIF analysis is a close fit of the IRT model
to the reference group’s data, and perhaps the most im-
portant aspect of a factor-analytic model at any level is
whether its specified dimensionality (number of factors)
satisfies the principle of local independence to a good ap-
proximation. If two indicators are strong measures of a sec-
ond factor in addition to the general factor, then an average
group difference in the second factor may lead to the mis-
leading appearance of measurement bias afflicting these
two indicators in a model specifying one factor only.

We used the mirt package for the R computing plat-
form (Chalmers, 2012). We first fit a unidimensional IRT
model to the item-level data by marginal maximum likeli-
hood. Following the recommendation of Lord (1980), we
constrained each c j to be equal between groups; the item-
test regressions in Figure 1 do not reveal any group differ-
ences in lower asymptotes that would suggest a severe vio-
lation of this constraint. All other parameters were uncon-
strained, and each group was referred to its own standard-
ized metric. The resulting estimates of the parameters are
given in Table 2.

The global fit indices suggest that the unidimensional
model fits the data well, χ2(1020) = 18,539.54, RMSEA =
0.022, RMSR(R) = 0.0038, RMSR(F ) = 0.0051, GFI(R) = 0.9961,
GFI(F ) = 0.9889. The RMSEA in the focal group alone was
0.021. But global fit indices can only be a supplement at
best to the necessary granular view of model-data fit pro-
vided by Figure 2, which gives the matrix of residual covari-
ances (differences between sample and model-predicted
covariances). Here the residual covariances have been di-
vided by the sample covariances themselves to aid inter-
pretation.
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Table 2 Item Parameter Estimates: Nonlinear Factor-Analytic Parameterization

Item c τ(R) τ(F ) λ(R) λ(F ) τ(F∗) λ(F∗)

Algebra
1 0.434 −0.740 0.233 0.718 0.651 −0.780 0.744
2 0.124 0.302 1.454 0.768 0.699 0.364 0.800
3 0.218 −0.090 1.132 0.840 0.754 −0.042 0.862
4 0.116 −0.590 0.629 0.818 0.705 −0.469 0.806
5 0.229 −0.162 0.911 0.733 0.642 −0.089 0.734
6 0.002 −1.122 −0.157 0.732 0.697 −1.243 0.797
7 0.024 −0.906 −0.178 0.611 0.565 −1.059 0.646
8 0.291 −0.138 1.124 0.801 0.739 −0.027 0.845
9 0.184 −0.548 0.497 0.770 0.584 −0.414 0.669
10 0.335 −0.183 0.697 0.661 0.502 −0.086 0.575
11 0.338 −0.431 0.722 0.762 0.677 −0.333 0.774

Number Sense
12 0.196 −0.263 0.241 0.808 0.629 −0.738 0.719
13 0.122 −0.056 0.691 0.543 0.464 −0.032 0.531
14 0.197 −0.129 0.967 0.711 0.666 −0.071 0.762
15 0.296 −0.404 0.337 0.555 0.352 −0.212 0.403
16 0.217 0.049 0.897 0.761 0.662 −0.136 0.758
17 0.202 −0.261 0.522 0.684 0.602 −0.416 0.689
18 0.114 −0.129 0.399 0.717 0.472 −0.335 0.539
19 0.043 0.274 1.277 0.801 0.626 0.303 0.716
20 0.211 −0.431 0.673 0.743 0.690 −0.402 0.789
21 0.241 −0.571 0.660 0.836 0.774 −0.546 0.885

Measurement
22 0.104 −0.627 0.358 0.689 0.601 −0.579 0.687
23 0.002 0.153 0.906 0.643 0.588 −0.011 0.673
24 0.009 −0.348 0.592 0.732 0.675 −0.461 0.773

Geometry
25 0.380 0.477 1.457 0.760 0.675 0.406 0.771
26 0.002 −0.426 0.502 0.693 0.653 −0.515 0.747
27 0.185 −0.723 0.125 0.628 0.532 −0.703 0.608

Statistics
28 0.004 −0.544 0.218 0.539 0.501 −0.563 0.573
29 0.102 −0.584 0.205 0.564 0.482 −0.546 0.552
30 0.078 −0.253 0.966 0.827 0.759 −0.217 0.868
31 0.316 −0.070 0.611 0.469 0.325 0.105 0.371
32 0.043 −0.439 0.654 0.695 0.554 −0.210 0.634
33 0.119 0.576 1.915 0.768 0.742 0.758 0.849
34 0.005 −0.481 0.322 0.578 0.475 −0.418 0.543

Note. Superscripts are used to denote the group (reference or focal) described by each parameter.
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Figure 1 Each panel displays the proportion of examinees giving the correct response as a function of the total score on
all other items. The LOESS curve is also plotted. Green (light shading) corresponds to the reference group (no calculator),
whereas blue (dark shading) corresponds to the focal group (calculator). The content strands are Algebra (items 1 to 11),
Number Sense (12 to 21), Measurement (22 to 24), Geometry (25 to 27), and Statistics (28 to 34).
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Despite the recognized usefulness of residual covari-
ances in assessing factor-analytic models applied to test
data, they are less often used in assessing IRT models ap-
plied to item data—perhaps because the covariance be-
tween binary items predicted by their model parameters
is no more readily computed from those parameters than
other measures of residual dependence that have been ex-
plored. J. J. Lee and Lee (2016) review a method for approx-
imating the normal-ogive ICC that allows the expected co-
variance between items to be readily computed. Although
this computation is based on the principles underlying the
NOHARM program (Fraser & McDonald, 1988), it can be
applied to items whose parameters have been estimated by
any method. We used this approach here to calculate the
residual covariance between each pair of items.

The lower off-diagonal elements of the residual covari-
ance matrix constitute a nearly uniform sea of green (inter-
mediate shading), which shows that the model fits the ref-
erence group’s data extraordinarily well. Over 50 percent of
the reference group’s normalized residual covariances are
between −0.053 and 0.032, and about 90 percent are be-
tween −0.133 and 0.130. The smallest and largest normal-
ized residuals are −0.197 and 0.281 respectively; in other
words, not one of the 561 positive covariances is missed
by as much as 30 percent, and most of the misses are far
smaller.

The vast majority of the focal group’s residuals are also
negligible (green or intermediate shading), but there are
noticeably more residuals that are large as a percentage of
their target covariances. There are several reasons, how-
ever, not to take these relatively large residuals as evidence
for a substantial violation of configural invariance (Ta-
ble 1). The focal group is plausibly characterized by smaller
variance in θ, and smaller variance in the dominant factor
has the effect of magnifying any “nuisance” factors whose
variances are not similarly diminished. How well the ap-
proximation of unidimensionality holds is thus somewhat
dependent on the population even in the absence of mea-
surement bias (Reckase, 2009). When the goal is to refer
all examinees to the metric of a highly variable population,
the greater prominence of nuisance factors in a less vari-
able subgroup is not necessarily a cause for concern.

The term “nuisance” implies a lack of systematicity—
that the content of the items departing from local indepen-
dence provides no guidance as to how we might write ad-
ditional items that deliberately measure or avoid the addi-
tional factors. This criterion is obviously violated if items
tend to exhibit large residual covariances with other items
in their content category. Because we have numbered the
items so that those within the same content category are
contiguous, substantively meaningful violations of unidi-
mensionality attributable to content categories should lead

to a clustering of the larger positive residuals near the diag-
onal of the focal group’s matrix in Figure 2. Any such clus-
tering, however, is not visually obvious.

As a further check, we fit an exploratory two-factor
model (Promax rotation) by the Metropolis-Hastings
Robbins-Monro algorithm (Cai, 2010). Even after fixing the
pseudo-guessing parameters to zero in order to alleviate a
convergence problem, the fit indices specific to the focal
group did improve, RMSR(F ) = 0.004, GFI(F ) = 0.9932. There
was no discernible pattern in the factor loadings, however,
as items within the same content category did not tend
to exhibit stronger loadings on one factor rather than the
other. The estimated correlation between the factors in the
focal group was 0.72, which should probably be regarded
as a lower bound; typically, fixing the non-salient loadings
to zero in a confirmatory model leads to an increase in
the estimated factor correlation with negligible loss of fit.
The non-generalizable nature of these two factors and their
high correlation both weigh strongly in favor of accepting a
unidimensional model and proceeding to an examination
of measurement bias.

Rescaling of Focal Parameters to the Reference Metric

At this point many factor analysts might expect a proce-
dure that has become somewhat de rigeur in the psycho-
logical literature: the imposition of each successive con-
straint in the middle two rows of Table 1, substituting the
thresholds τ for the intercepts µ, and the determination
of whether model fit deteriorates substantially. (The resid-
ual variance is no longer independent of the conditional
expectation in the case of a binary variable. Strict facto-
rial invariance is thus no longer distinct from strong in-
variance and need not be tested.) Since even trivial group
differences in model parameters will be significant in large
enough samples, changes in fit indices such as the RMSEA
are used in practice to aid the judgment of whether sub-
stantial bias is present.

This procedure is perhaps useful in some cases, and its
application to our dataset will later be illustrated. But first
we will demonstrate a different approach, set out in part by
Lord (1980) and McDonald (1999), that is more in line with
this article’s emphasis on graphics and granularity.

The parameter estimates will differ between groups as
a result of their different distributions of θ, since in each
group θ is standardized with respect to its own mean and
standard deviation. We require a transformation of the fo-
cal group’s parameters that—in the absence of measure-
ment bias—will bring them into agreement with those of
the reference group. The scales of the two groups are re-
lated by the transformation

θ(F ) = u + vθ(R), (9)
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Figure 2 The residual covariance matrix, where each element is proportional to the difference between the sample covari-
ance and the covariance predicted by the best-fitting IRT parameters. The difference is divided by the sample covariance
itself to aid interpretation. The reference group (no calculator) is represented by the lower triangle, while the focal group
(calculator) is represented by the upper triangle. The progression of the color scale from blue (dark shading) to peach
(light shading) corresponds to the progression from −1 to +1. The diagonal has been set to white for clarity. Any absolute
normalized residual covariance exceeding 100 percent has also been set to white.
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which has the inverse

θ(R) = 1

v
θ(F ) − u

v
. (10)

The denominator of the argument in Equation 5 is the

residual standard deviation, the square root of Var
(
ε∗j

)
,

whose equality between groups is assured by the equiva-
lent of scalar invariance. Group invariance of the function
in Equation 5 thus implies the equality of the numerator.
Express the numerator in focal units,

λ(F )
j θ(F )

j −τ(F )
j ,

and then note that the conversion of θ to reference units
using Equation 10 requires the substitutions of

λ(F∗)
j = vλ(F )

j

τ(F∗)
j = τ(F )

j −λ(F )
j u, (11)

for λ(F )
j and τ(F )

j if the numerator is to retain its numerical

value. Equation 11 thus gives the required transformations

of the focal parameters, which are equal to λ(R)
j and τ(R)

j in

the absence of DIF.
We seek the values of u and v that bring the reference

and rescaled focal parameters as close together as possible.
It is straightforward to show that∑

j

(
τ(R)

j −τ(F∗)
j

)2 =∑
j

[
τ(R)

j −
(
τ(F )

j −λ(F )
j u

)]2

attains its minimum when

u =
∑

j

(
τ(F )

j −τ(R)
j

)
λ(F )

j∑
j

(
λ(F )

j

)2 . (12)

Similarly, ∑
j

(
λ(R)

j −λ(F∗)
j

)2 =∑
j

(
λ(R)

j − vλ(F )
j

)2

attains its minimum when

v =
∑

j λ
(R)
j λ(F )

j∑
j

(
λ(F )

j

)2 . (13)
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Figure 3 In each panel the line of zero intercept and unit slope is superimposed. The parameters of the focal group (cal-
culator) have been rescaled to the origin and metric of the reference group (no calculator). The coordinates of each point
can be found in Table 2. (a) The scatterplot of the thresholds (τ) in the two groups when the pseudo-guessing parameters
are constrained to be equal between groups but otherwise are freely estimated. (b) The corresponding scatterplot of the
factor loadings (λ).
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These estimates of u and v can be obtained by summing
only over items believed to be free from DIF, although
in practice this precaution will often scarcely affect the
results. For simplicity, the entries in the rightmost two
columns of Table 2 were calculated using all items to es-
timate u and v .3

Figure 3 plots the estimates given in Table 2. In each
panel the x-axis corresponds to the parameters of the ref-
erence group and the y-axis to the rescaled parameters o
the focal group. In the absence of DIF, the points in each
panel should lie close to the line of zero intercept and unit
slope; the graph of this line is superimposed on each panel.
Items 12 through 21 are in the Number Sense category, and
several of them are among the items with threshold param-
eters deviating downward from the line in Figure 3a. If we
were to discount these items, then the line would indeed
pass very close to most of the remaining data points. Turn-

ing to the factor loadings in Figure 3b, we see several items
(many from the Number Sense category again) lying well
below the line. Discounting these items would also bring
the line close to the majority of the data points.

It may be possible to refine the rescaling of the focal
group’s items parameters by using the entries in the right-
most two columns of Table 2 as starting values for an it-
erative minimization procedure (Stocking & Lord, 1983).
We can see from the nearness of the data points to the
straight lines in Figure 3, however, that the rescaling al-
ready appears to be quite successful. It has been known
for some time that applying close analogues of the rescal-
ing procedure employed here to the IRT parameterization
often fails to yield satisfactory results (e.g., Kolen & Bren-
nan, 2014). The factor-analytic parameterization appears
to support numerically stable rescaling because a factor
loading is bound between zero and one (whereas Lord’s a

3For brevity, we omit all standard errors from our tabulated results. They are available upon request. We calculated the standard errors of the param-
eter estimates in Table 2 using two methods: (1) inverting the information matrix, which was based on the variance of the Fisher scores, and (2) using
500 replicates of the delete-(20

p
n) jackknife (Efron & Tibshirani, 1993). The first method returned much larger estimates of the errors in the estimation

of the pseudo-guessing parameters. In the case of such a discrepancy, we recommend non-parametric resampling methods such as the jackknife. We
used our jackknife-based standard errors to calculate the significance of the differences in Table 3.
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Table 3 Quantification of Differential Item Functioning

τ(R) −τ(F∗) λ(R) −λ(F∗) I1 I2Item
Algebra

1 0.040 −0.026 0.000 0.007
2 −0.062∗ −0.032 0.014 0.014
3 −0.048 −0.022 0.014 0.014
4 −0.121∗ 0.012 0.033 0.033
5 −0.073∗ −0.001 0.016 0.016
6 0.120∗ −0.064∗ −0.016 0.034
7 0.153∗ −0.036 −0.044 0.044
8 −0.111∗ −0.043 0.030 0.030
9 −0.134∗ 0.101 −0.007 0.032
10 −0.098∗ 0.086 −0.008 0.017
11 −0.097∗ −0.013 0.027 0.027

Number Sense
12 0.476∗ 0.089∗ −0.183 0.183
13 −0.024 0.012 0.002 0.003
14 −0.058∗ −0.051 0.031 0.031
15 −0.192∗ 0.152∗ −0.007 0.032
16 0.185∗ 0.003 −0.036 0.036
17 0.156∗ −0.005 −0.042 0.042
18 0.206∗ 0.178∗ −0.146 0.146
19 −0.029 0.085 −0.018 0.021
20 −0.029 −0.046 0.029 0.029
21 −0.025 −0.049 0.029 0.032

Measurement
22 −0.048 0.002 0.017 0.017
23 0.163∗ −0.030 −0.028 0.028
24 0.112∗ −0.040 −0.017 0.021

Geometry
25 0.071∗ −0.011 −0.003 0.003
26 0.089∗ −0.054 −0.002 0.021
27 −0.020 0.019 −0.002 0.006

Statistics
28 0.020 −0.034 0.012 0.015
29 −0.038 0.012 0.008 0.008
30 −0.035 −0.042 0.026 0.027
31 −0.175∗ 0.098 0.007 0.017
32 −0.230∗ 0.061 0.047 0.047
33 −0.183∗ −0.080 0.018 0.018
34 −0.063∗ 0.036 0.005 0.012

Total −0.197 1.066

Note. An asterisk indicates p < .001. We calculated p-values on the assumptions of exact rescaling and normal sam-
pling distributions.
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Table 4 Fit Measures of Item-Based Invariance Models

Model df M2 ∆df ∆M2 p RMSEA AIC
configural 1,020 18,539 0.0216 2,552,336
metric 1,052 18,582 32 42 > .100 0.0213 2,552,525
scalar 1,086 18,796 34 214 < .001 0.0211 2,554,067
partial (free 12, 15, 18) 1,080 18,599 −6 −197 < .001 0.0210 2,552,840
partial (free 12, 15, 18, 31–34) 1,072 18,559 −8 −40 < .001 0.0211 2,552,745

Note. The Akaike information criterion (AIC) is another commonly used index that, like the RMSEA, attempts to bal-
ance model-data fit and parsimony. Smaller values are supposed to correspond to better fit. Whereas the other fit in-
dices are derived from the M2 statistic of Maydeu-Olivares and Joe (2005), the values of the AIC are derived from the
full-information likelihood.

parameter is potentially unbounded) and a threshold is a
simple transformation of the pass rate.

Rescaling of the Focal Distribution to the Reference Met-
ric

Figure 3 highlights a number of items departing far from
the straight lines. But can we conclude that these items
are functioning differentially? Theorists have pointed out
that an unbiased item can nevertheless present a spurious
appearance of DIF if multiple triplets of parameter values
are able to model an ICC well over a small part of its range.
For this reason some of these theorists recommend turn-
ing to non-IRT tools for bias detection such as logistic re-
gression (e.g., Hambleton, Swaminathan, & Rogers, 1991).
In our view, however, the rapidity of plotting and numer-
ical integration enabled by modern computing power al-
lows practitioners to address the possible unstable estima-
tion of group-invariant IRT parameters and thus continue
to study bias within a unified factor-analytic framework.
We will now substantiate this claim.

If a particular item’s bias is spurious in the sense just de-
scribed, then the graphs of the reference and focal ICCs will
be globally discrepant but coincide reasonably well over
the interval of θ where the bulk of the focal examinees re-
side. Drawing these graphs requires expressing the focal
distribution of θ in terms of the reference metric. According
to Equation 10, the focal value of zero is mapped to −(u/v),
and this is therefore the focal mean when the origin and
unit are given by the reference mean and standard devia-
tion respectively.

If we were working with a linear factor model, we would
apply Equation 12 and 13 to the intercepts and loadings in
Equation 1. We could then compute the focal variance in
terms of the reference metric as follows. Consider that a
focal factor loading in a linear model gives the ratio

number correct

focal SD(θ)

and that multiplication of this by v must give the ratio

number correct

reference SD(θ)
.

It follows that v must be the ratio of the reference and focal
standard deviations.

The straightforward estimate 1/v of the focal standard
deviation does not apply in a parametric IRT model be-
cause a focal factor loading now gives the ratio

focal SD(Y ∗)

focal SD(θ)
,

the numerator of which does not appear in the rescaled
loading, and thus v can no longer be the ratio of the refer-
ence and focal standard deviations with respect to the com-
mon factor θ.

J. J. Lee and Lee (2016) show that a least-squares linear
approximation of item j ’s ICC is given by

E(Y j |θ) ≈ γ j +δ jθ,

γ j = c j + (1− c j )Φ(−τ j ),

δ j = (1− c j )λ jφ(τ j ), (14)

where Φ and φ respectively denote the cumulative proba-
bility and density functions of the standard normal distri-
bution. Equation 14 is thus the linear factor model that best
approximates the nonlinear model represented by Equa-
tion 8. If each ICC closely followed this approximation,
we could estimate the focal mean and variance using the
values of u and v obtained from the application of Equa-
tions 12 and 13 to the intercepts (γ j ) and loadings (δ j ).

Applying this procedure to our dataset, we estimated
the focal group’s mean to be −1.36 and its standard devi-
ation to be 0.80. We used these estimates to plot the refer-
ence and focal ICCs in Figure 4. More specifically, we plot-
ted the focal ICC over the interval −1.36±2(0.80) and com-
pared this segment to the reference ICC over the same in-
terval. We are particularly interested in whether the items
that appear to be afflicted by DIF in Figure 3 exhibit truly
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discrepant ICCs over this interval. Failure of the ICCs to
agree outside of this interval may simply reflect the inabil-
ity of the focal group’s responses to reflect the nonlinear be-
havior of the ICC far from where the focal distribution allo-
cates the most probability.

We admit that this graphical method does not yet pos-
sess a convenient multidimensional generalization. An
important numerical complement to visual comparison is
thus to compute the total impact on the average score of fo-
cal examinees. For this purpose Wainer (1993) introduced
two indices of impact,

I1 =
∫ [

E(R)(Y j |θ)−E(F )(Y j |θ)
]

g (θ)dθ (15)

and

I2 =
∫ ∣∣E(R)(Y j |θ)−E(F )(Y j |θ)

∣∣g (θ)dθ, (16)

where g (θ) is an estimate of the focal density function. I1 is
the reduction in the mean score obtained by the focal group
as a result of any bias in the item; a negative value indicates
that the focal group actually benefits from the differential
functioning. A problem with this numerical measure of im-
pact is that it can assume a small value even in the case of
substantial nonuniform bias: an intersection of ICCs that
favors the focal group on one side of the crossover point
and the reference group on the other. To avoid this cancel-
lation of opposing biases, the I2 measure integrates the ab-
solute value of the difference between reference and focal
ICCs over the focal distribution of θ.

To calculate I1 and I2 in our own application, we as-
sumed that the focal distribution is normal. Table 3 gives
the group differences in factor-analytic item parameters
and also the two measures of impact.

With all of this machinery in place and its products dis-
played in tabular and graphical form, we are now ready to
single out items for excessive DIF. It is perhaps worth noting
at the outset that the sum of I1 over all items—a measure of
the test-wide signed bias favoring the reference group—is
actually negative and roughly equal in magnitude to a fifth
of a point (Table 3). Differential functioning within this test
does not seem to hinder members of the focal group and
may actually favor them very slightly.

Items in the Number Sense Content Category

Figure 3a suggests that item 12 exhibits threshold bias fa-
voring the focal group, and this impression is affirmed by
the graphs of the ICCs in Figure 4. The value of I1 indicates
that the bias has brought the mean test score of the focal
group closer to that of the reference group by nearly a fifth
of a point.

Figure 3b suggests that item 18 exhibits slope bias such
that it is a worse indicator of the common factor in the focal

group, and the loading difference of 0.178 is large by tradi-
tional factor-analytic standards. The graphs of the ICCs in
Figure 4 show that this bias is a nearly uniform one favor-
ing the focal group; since the region where the item dis-
criminates best is to the right of most focal examinees, a
flatter slope effectively raises the focal ICC above the refer-
ence ICC. The value of I1 indicates that the DIF of item 18
has brought the mean test score of the focal group closer to
that of the reference group by about a seventh of a point.

Figure 3b suggests that the next most problematic in-
stance of slope bias is exhibited by item 15. The graphs
of the ICCs in Figure 4 show that this bias is nonuniform;
this conclusion can also be drawn from the fact that I2 is
much greater than I1. To the eye, however, the total impact
of this bias seems rather small. We can also see in Table 3
that items 12 and 18 exert far more of an impact (indexed
by either I1 or I2) than any other in the entire test.

Item 12 asks the examinee for the integers that boundp
14 on the number line. Item 18 asks the examinee for

the value of the expression 11 × 2 +p
25. It seems quite

plausible that a calculator will make these items easier. In
ability and achievement testing, the causes of DIF are of-
ten difficult to discern (O’Neill & McPeek, 1993), and it is
thus gratifying that in our application we can find a rea-
sonably clear connection between the content of the most
differentially functioning items and the nature of the dis-
tinction between the examinee populations. Whether the
bias favoring the focal group amounts to an unfair advan-
tage depends on the motivation of the state in providing
calculators to these examinees and the purposes to which
it puts the test scores. Sinharay and Haberman (2014) pro-
vide a sophisticated analysis of how the latter consideration
can affect judgments regarding the usability of the suspect
items or the test as a whole.

Items in the Statistics Content Category

Figure 3b suggests that item 31 might suffer from substan-
tial slope bias reducing its discriminatory power in the fo-
cal group. The graphs of the ICCs in Figure 4 show that this
bias is a nonuniform one. The impact of this item, as in-
dexed by I2, is smaller because its factor loading is already
rather low in the reference group.

So far we have looked for graphical evidence of DIF in
Figure 3 and used Figure 4 to check that such evidence is
not a spurious result of the difficulty in estimating a non-
linear ICC from a limited range of θ. Now we will study the
numerical evidence in Table 3 and check that our graph-
ical approach has not missed any important patterns. It
appears that item 31 is one of several items in the Statis-
tics content category that exhibits threshold bias disfavor-
ing the focal group. The final few panels of Figure 4 sug-
gest that the bias may be practically negligible, but its con-
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centration within this content category may be of substan-
tive interest. The Statistics items requires the understand-
ing of concepts such as probability, mean, and median, and
there is no obvious reason why the provision of calculators
would have hindered the focal examinees here. Psycholo-
gists studying dyscalculia may consider whether a dispro-
portionate difficulty with such concepts accords with the
current understanding of this disability or suggests new av-
enues of research.

Global Testing of Nested Models

For completeness we now illustrate the fitting of the nested
models in Table 1—a common practice in the examination
of test-level bias—to the item-level data that we have been
analyzing so far. Table 4 shows that the RMSEA and AIC do
not agree on the tenability of metric invariance. However,
since forcing just one set of parameters to be equal between
groups may merely relocate genuine DIF to the other set, it
may be sensible to ignore this ambiguity and proceed to a
test of scalar invariance (no DIF).

A limited-information test of significance yields a mi-
nuscule p-value against the null hypothesis of scalar in-
variance. The increase in the AIC also points toward a re-
jection of scalar invariance. But the RMSEA continues to
decline and thus suggests that scalar invariance should be
accepted. There is perhaps a sense in which this latter con-
clusion has some merit. Considered as a whole, the test
does display relatively little measurement bias. But remain-
ing content with this global characterization would lead
one to miss the rich implications of our more thorough-
going analysis. The sole reliance on sequential molar tests
of model-data fit therefore cannot be recommended; this
procedure should be regarded as complementary to our
item-level approach.

Partial invariance refers to a model where a minority of
the indicators are allowed to function differentially. To yield
such a model, we freed the thresholds and factor loadings
of the three Number Sense items singled out in the previ-
ous section. This led to further decreases in both the RM-
SEA and AIC. We specified an even less restrictive model
of partial invariance by freeing the Statistics items singled
out in the previous section, but this time the RMSEA and
AIC were discordant. Some ambiguity is perhaps to be ex-
pected in light of the fact that the differential functioning of
the last four items is visually discernible in Figure 4 but still
quite small.

Of course, the choice of items to be freed was made on
the basis of our earlier analysis. How might the choice be
made otherwise? A given parameter’s modification index
(MI) is the extent to which the formal test statistic decreases
if its value is permitted to vary between groups, and fac-
tor analysts often resort to repeatedly freeing the parameter

with the largest MI until they reach a model which which
they are satisfied. However, without the guidance of the
fine-grained results displayed and tabulated in our earlier
analysis, there do not seem to be any compelling criteria
for whether this greedy procedure has reached a sensible
endpoint.

Incidentally, our final model of partial invariance led to
an estimate of the focal mean equaling −1.32 and an esti-
mate of the focal standard deviation equaling 0.83. These
estimates are in excellent agreement with those obtained
by our rescaling procedure.

Implications for Bias Detection at the Test Level

At this point the reader might be wondering whether our
broadly negative evaluation of single-valued fit indices is
even more applicable to the studies of test-level bias where
they are commonly used. After all, the smaller number of
indicators should make our alternative approach easier to
implement at the test level. This is in fact precisely the po-
sition that we adopt: unless accompanied by the indicator-
based approach emphasized in this article, the global test-
ing of nested models is an inadequate procedure regardless
of whether the indicators are single items or entire tests.

Since the global approach is well entrenched in factor-
analytic investigations of test-level bias, a demonstration
of our indicator-based approach to a battery of tests may
be required to convince users of its viability in this context.
For this purpose we will treat each content category as a
distinct test and step through a multiple-group factor anal-
ysis of the test battery formed (artificially) in this way. Mea-
surement bias at the test level can be called differential test
functioning. Although this term is seldom used in the lit-
erature, it is useful because it highlights the close parallel
between analyses at the item and test levels.

As expected from our item-level dimensionality analy-
sis, the fit of a single-factor model is outstanding in both
the reference and focal groups, χ2(10) = 261.05, RMSEA(R) =
0.027, RMSEA(F ) = 0.019, RMSR(R) = 0.007, RMSR(F ) = 0.009,
GFI(R) = 0.9999, GFI(F ) = 0.9998. Note that we used the
correlation matrices of the tests to calculate the RMSR and
GFI. No element of either group’s residual correlation ma-
trix exceeds 0.02 in absolute magnitude.

Equations 12 and 13 can be applied to express the fo-
cal parameters in terms of the reference origin and unit
in exactly the same manner as in the item-level analysis,
and the results of this rescaling are given in the fifth and
sixth columns of Table 5. The reference and rescaled fo-
cal parameters are also plotted in Figure 5, the test-level
equivalent of Figure 3. As in the item-level analysis, in-
dicators suffering from relatively large measurement bias
will lie far from the superimposed straight lines. Figure 5a
shows the pattern of intercept bias expected from the item-

The Quantitative Methods for Psychology 22�



¦ 2016 Vol. 12 no. 1

Table 5 Test Parameter Estimates: Linear Factor-Analytic Parameterization

Test µ(R) µ(F ) λ(R) λ(F ) µ(F∗) λ(F∗) ∑
j γ j

∑
j δ j

Algebra 8.028 4.836 2.244 1.710 7.909 2.373 8.017 2.215
Number Sense 6.450 3.947 2.302 1.546 6.725 2.145 6.478 2.232
Measurement 1.846 0.893 0.743 0.594 1.961 0.824 1.842 0.728
Geometry 2.055 1.287 0.583 0.474 2.134 0.658 2.051 0.577
Statistics 4.517 2.436 1.472 1.017 4.263 1.411 4.503 1.451

Note. Superscripts are used to denote the group (reference or focal) described by each parameter. For brevity the focal
group’s

∑
j γ j and

∑
j δ j are not shown.

level analysis: Number Sense is characterized by bias favor-
ing the focal group and Statistics by bias favoring the refer-
ence group. The quantitative magnitudes of these biases,
however, seem to be quite small.

The quantities u and v can be used immediately to cal-
culate the focal mean and standard deviation; we estimated
these to be−1.29 and 0.72 respectively. The agreement with
the estimates derived from the item-level analysis is rea-
sonably good.

Each entry in the second rightmost column of Table 5
is the sum, over all items in the given test, of the constant
terms γ j in the linear approximations of the reference ICCs
(Equation 14). Similarly, each entry in the rightmost col-
umn is the sum of the coefficients δ j in the approxima-
tions. Note the very close agreement between these sums,
which are derived from an IRT analysis, and the standard
test-level factor-analytic intercepts and loadings. The sum
of the ICCs over the items in a particular test is called the
test characteristic curve (TCC) in the IRT literature; it pro-
vides the expected number of items answered correctly as
a function of the common factor (θ). The results in Table 5
thus remind us of a point rarely made in the factor-analytic
literature: a test’s intercept and factor loading parameterize
an approximation of its TCC.

Figure 6, the test-level equivalent of Figure 4, more
clearly depicts the close relationship between the IRT-
based and factor-analytic forms of the TCC. The solid lines
represent the latter, and they confirm our earlier observa-
tions regarding the absence of serious measurement bias.
For the reasons given in our item-based analysis, each fo-
cal line is plotted only over −1.29±2(0.72). Number Sense
shows the largest discrepancy between the reference and
focal TCCs, and the discrepancy favors the focal group. Also
plotted in each panel are the TCCs formed from summing,
not the linearized ICCs given by Equation 14, but the stan-
dard normal-ogive ICCs prescribed by parametric IRT and
studied at length in our earlier item-based analysis. These
nonlinear TCCs also agree very closely with their linear
factor-analytic counterparts over the interval of θ where the

majority of the focal examinees are located.
Notice that the linear TCC fails at high values of θ be-

cause of a ceiling effect: each test is predicted to yield im-
possibly high scores in the high-θ region. In principle, such
a failure can lead to the spurious appearance of measure-
ment bias, although in our case the failure is inconsequen-
tial because most focal examinees are located in the low-θ
region where the linear model approximates the TCC well.
But an application where there is a floor rather than ceil-
ing effect and the focal group is again less able on aver-
age might well produce the misleading appearance of dif-
ferential test functioning. If the analyst lacks the item-
level data needed to provide a direct check of this possibil-
ity, another option is to conduct a nonlinear factor anal-
ysis of the test-level data (McDonald, 1967). In fact, the
normal-ogive form with a lower asymptote seems to model
each TCC well over the entire depicted range of θ, and one
could adapt the least-squares procedure described in J. J.
Lee and Lee (2016) to fit covariances between whole tests
after each one’s scores are multiplied by the reciprocal of
the test length in items.

Once we realize that item and test characteristic curves
are the same type of object, it is easy to appreciate test-level
equivalents of I1 and I2 as useful indicator-based measures
of impact or effect size. We used Equations 15 and 16 to
calculate the difference between the reference and focal
factor-analytic TCCs and obtained results in harmony with
our item-level analysis: Number Sense shows a signed bias
favoring the focal group by over 0.40 items correct, whereas
Statistics shows a signed bias favoring the reference group
by nearly 0.20 items correct.

Summary and Conclusion

In this article we set out an account that unifies linear factor
analysis (typically applied to a battery composed of several
tests) and item response theory (typically applied to a test
composed of several items), placing the detection of mea-
surement bias at both levels in a common framework. We
then demonstrated several ways in which this important
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application of test theory benefits from theoretical parsi-
mony.

Long-established factor-analytic criteria—based on
whether residual covariances tend to vanish as prescribed
by the principle of local independence—can readily be ap-
plied to judge how well a model of fixed dimensionality
fits item-level data. It is becoming more common for pa-
pers containing linear factor analyses or structural equa-
tion models to print the entire residual covariance (corre-
lation) matrix, and our graphical displays show that this
practice can be extended to the large matrices typical of
item-level data. It also follows that factor-analytic scalar fit
indices can be used to asses model-data fit in the IRT set-
ting, although we do not endorse relying solely on such in-
dices in either type of analysis. Once the model has been fit
and accepted, the factor-analytic parameterization of IRT
is valuable because its properties facilitate interpretative
standards inherited from test-level analysis and numeri-
cally stable rescaling of the focal group’s parameters.

The study of differential test functioning may actually
stand to gain more from the unified framework than that of
differential item functioning. While our graphical methods
permit an even more comprehensive indicator-based ap-
proach, a focus on single items has consistently been em-
phasized in the IRT literature. By analyzing the same item
data (except coarsened to test-level resolution) in exactly
the same fashion and reaching essentially the same con-
clusions, we have highlighted the fact that our approach is
general enough to cover test-based analyses. Our recom-
mendation to psychologists studying measurement bias
with factor analysis is therefore to supplement the standard
global testing of nested invariance models with our graph-
ical and indicator-based methods.

Ignoring the item-level nature of psychological mea-
surements is obviously somewhat artificial and in this ar-
ticle was done mostly for pedagogy. Does this mean that
the linear factor analysis of whole tests is an outmoded ap-
proach to the detection of measurement bias? Not nec-
essarily. First, in many datasets the item-level scores are
unrecorded, and here the linear factor model will be the
first tool to which the analyst turns. Second, it may be the
case that unsystematic biases and model misfits that are
nevertheless large enough to be evident at the item level
substantially cancel each other when aggregates neglect-
ing the item-level structure are analyzed. This appears to
have happened in the transition from item to test level in
our real-data example. Whereas Figure 2 shows a some-
what worse fit of the unidimensional IRT model in the focal
group, the test-level fit indices suggest that the single-factor
model fits the data from both groups extremely well. In a
more extreme situation of this kind, it may be preferable to
work at the level of testlets or whole tests if no clear conclu-

sions emerge from the item-level analysis (Wainer, Sireci, &
Thissen, 1991).

The problem of quantifying measurement bias is both
practically important and didactically useful because of the
many points where it directs attention to the unity of linear
factor analysis and IRT. We expect that further considera-
tion of the subtle differences between these two variants
of the same unified model will shed light on other psycho-
metric problems, some of a more foundational character
(Guttman, 1955; McDonald, 2003).
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Figure 4 Each panel displays both the reference (no calculator) and focal (calculator) item characteristic curves, which
give the probability of the correct response as a function of the common factor (θ). Green (light shading) corresponds
to the reference group, whereas blue (dark shading) corresponding to the focal group. The item parameters are listed in
Table 2. The content strands are Algebra (items 1 to 11), Number Sense (12 to 21), Measurement (22 to 24), Geometry (25
to 27), and Statistics (28 to 34).
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Figure 5 In each panel the line of zero intercept and unit slope is superimposed. The parameters of the focal group (cal-
culator) have been rescaled to the origin and metric of the reference group (no calculator). The coordinates of each point
can be found in Table 5. (a) The scatterplot of the intercepts (µ) in the two groups. (b) The corresponding scatterplot of
the factor loadings (λ). G, Geometry; M, Measurement; S, Statistics; NS, Number Sense; A, Algebra.
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Figure 6 Each panel displays both the reference (no calculator) and focal (calculator) test characteristic curves, which
give the expected number of correct responses as a function of the common factor (θ). The dashed curves are the sums
of the relevant nonlinear ICCs. Green (light shading) corresponds to the reference group, whereas blue (dark shading)
corresponding to the focal group. The linear factor-analytic parameters characterizing the solid lines are listed in Table 5.
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