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Abstract m The study of mental processes is at the forefront of research in cognitive psychology. However, the ability
to identify the architectures responsible for specific behaviors is often quite difficult. To alleviate this difficulty, recent
progress in mathematical psychology has brought forth Systems Factorial Technology (SFT; Townsend and Nozawa, 1995).
Encompassing a series of analyses, SFT can diagnose and discriminate between five types of information processing ar-
chitectures that possibly underlie a mental process. Despite the fact that SFT has led to new discoveries in cognitive
psychology, the methodology itself remains far from intuitive to newcomers. This article therefore seeks to provide read-
ers with a simple tutorial and a rudimentary introduction to SFT. This tutorial aims to encourage newcomers to read more
about SFT and also to add it to their repertoire of analyses.
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Introduction

A variety of cognitive processes allow us to treat our en-
vironment seamlessly and efficiently. Nevertheless, these
processes are hardly accessible to researchers and are not
without mystery. Because of the black box nature of the
brain, questions regarding information processing and de-
cision making are often left unanswered. While some re-
search regarding a specific mental process may show evi-
dence in favor of a particular architecture (the way infor-
mation is processed; processing architectures are explored
in detail in Section 2), said evidence remains mostly in-
direct. For example, researchers studying visual search
paradigms have shown evidence in favor of both serial
self-terminating processing (Treisman & Gelade, 1980) and
parallel exhaustive processing (Cousineau & Shiffrin, 2004,
e.g.), two completely different processing architectures.
This difficulty to pinpoint and associate a specific archi-
tecture to a cognitive process has been present since the
beginning of cognitive research, and a valid and complete
analytical approach was needed to resolve this issue.

If the brain is a factory, producing thoughts and actions
instead of products, Systems Factorial Technology (SFT;
Townsend and Nozawa, 1995) is a probe examining how
workstations are disposed. Expanding on Sternberg’s ad-
ditive method (Sternberg, 1969, 1998) and Donders’s sub-
tractive method (Donders, 1969), Townsend and Nozawa
(1995) SFT methodology is a monumental addition to cog-
nitive science that was brought forth to identify the under-
lying architecture of an information processing paradigm.

To do so, the stimuli are manipulated and presented to par-
ticipants in a Double Factorial Paradigm (which will be de-
fined later in the text). Following these manipulations, par-
ticipant response times (RT) are collected and their distri-
butions subsequently transformed into a specific curve. It
is this curve that is used to diagnose the processing archi-
tecture of the cognitive process. While SFT may appear
as particularly focalized, it has been utilized in a variety
of paradigms, such as visual search (Townsend & Nozawa,
1995; Fific, Townsed, & Eidels, 2008), local-global infor-
mation processing for people affected by autism (Johnson,
Blaha, Houpt, & Townsend, 2010), identification of differ-
ent strategies for different classification task variants (Fific,
Nosofsky, & Townsend, 2008), amongst others.

Despite its efficacy at identifying the processing archi-
tecture within the brain, this methodology and its applica-
tions can seem complex for newcomers. Although some
research briefly instructs users on how to use SFT (Gaiss-
maier, Fific, & Rieskamp, 2011; Townsend, Fific, & Neufeld,
2007), to the best of our knowledge, there are no simple
SFT tutorials for researchers to carry out the methodology
with their own data. Therefore, this tutorial aims to sim-
plify the SFT methodology and its various components by
taking a step back from the technical aspects usually found
in SFT articles and present a parsimonious step-by-step
approach. The tutorial is divided in four sections. The
first section elaborates an analogy between the brain and a
high-tech, super-secret car plant. The second section gives
the nomenclature and basic principles that any SFT user
must learn and get accustomed to. The third section out-
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lines the SFT methodology and how to interpret its results.
Finally, the last section briefly introduces the notion of ca-
pacity within an SFT analysis, a slightly more complex con-
cept that gives users additional diagnostic power. In addi-
tion, we provide in Appendix A and B the steps to perform
an SFT analysis and how to simulate RTs that correspond to
all five architectures. These simulations will be presented
using the Mathematica programming interface.

While reading this article, we encourage readers, espe-
cially newcomers to cognitive processing, to consult the
SFT Cheat Sheet presented in Table 1. This table can also
be used as a reference when consulting other SFT articles.

The nuts and bolts of SFT

Before hastily going deeper into the SFT methodology, con-
sider an analogous situation to our brain: a car assembly
plant. This plant is new, high-tech, under industrial se-
crecy, well-guarded, has unavailable blueprints, and it is
impossible to neither directly observe the workstations, nor
to question its employees. In short, it is incredibly diffi-
cult to gather any information on how the vehicles are built.
The only freely available information is the moment when
a chassis enters the plant and the moment the same chassis
exits the plant as a full car. Suppose that two workers, Alice
and Bob, are in charge of putting on the front wheel(s) of a
car and that we wish to know their working stations’ order.

Given the limited available information, the only way
to find out the plant’s setup is to indirectly influence Alice
and/or Bob’s productivity. For example, we could tamper
with their mental or physical state by keeping either one or
both of them up all night. Assuming that a tired employee
works at a slower pace than a rested worker, the plant’s
overall production is affected depending on the workers’
state of mind. Four plant operation-states are therefore
possible: one where both workers are well-rested, one
where both workers are tired, and two where one worker is
well rested and the other is tired. These four working con-
ditions are akin to those needed in an SFT analysis

Nomenclature and Basic Principles

Cognition can be viewed as a series of processes which
can themselves be divided into many individual and spe-
cialized sub-processes. For instance, in a visual search
task (the cognitive process), one sub-process could detect
the stimulus’ shape, another one could identify the color,
a third one could detect movements, etc. When a sub-
process’ task is completed, it fires a signal and the mo-
ment at which this occurs represents the sub-process’ over-
all completion time, RT.

Sub-processes can be paired and organized so that they
either process information simultaneously or sequentially
(processing order). The process they’re a part of is com-

pleted when one or both sub-processes are ready to fire
(stopping-rule). The combination of processing order and
stopping rule creates the information processing architec-
tures (Townsend & Ashby, 1983), which are precisely what
SFT aims to detect. While it is possible to combine more
than two sub-processes in a cognitive system (see Yang,
Fific, Townsend, 2013 for SFT applied to n number of sub-
processes), the current tutorial is limited to the standard
SFT methodology that detects the architecture between
pairs of sub-processes.

SFT can discriminate between the five following infor-
mation processing architectures.

1. Serial self-terminating: sub-processes are queued se-
quentially, but only one needs to be completed for the
process to fire. The order of sub-processes is unknown
and wholly random. In the car-plant, an analogous sit-
uation would be the installation of the front wheel of a
three-wheeled car; either Alice or Bob can install it, and
once installed, the car moves to the next workstation.

2. Serial exhaustive: sub-processes are queued sequen-
tially and the process fires when both sub-processes
have finished. The order of sub-processes is unknown
and SFT is unable to identify which one acted first. In
the car-plant analogy, it is a scenario where one worker
attaches their wheel before the other and the car only
moves on once both wheels have been attached.

3. Parallel self-terminating: both sub-processes work si-
multaneously and the process fires as soon as one sub-
process finishes. In the car-plant analogy, this could
represent a scenario where the car moves to the next
workstation as soon as one wheel is affixed (regardless
of which worker completed the task). Of course, this
scenario would result in poorly constructed automo-
biles in the car-plant analogy.

4. Parallel exhaustive: both sub-processes work simul-
taneously and the process fires only after both sub-
processes have finished. Therefore, the sub-process
with the slowest RT triggers the decision with the fastest
sub-process waiting idly for it to finish. In the car-plant
analogy, Alice and Bob work their own side of the car.
They begin working at the same time and the car leaves
when both wheels have been installed.

5. Coactive: both sub-processes work simultaneously and
collaborate towards achieving a common goal. The
sub-processes are broken into k sub-tasks that must all
be completed for the main process to fire. These sub-
tasks are shared amongst both sub-processes. In the
analogy, we can break the installation of the front wheel
of a three-wheeled car into screwing 10 lug nuts. It is
possible that each worker screws in 5 apiece, but if, for
any reason, Bob does poorly on a certain car, Alice can
compensate for him by screwing more than half of the
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lug nuts herself. Coactive is thus a form of collaborative

processing (Miller, 1982).

Figure 1 is a visual representation of the five processing
architectures. The sub-process’s completion is represented
by the circle and blue asymptote. The green arrow repre-
sents the moment at which the main process can fire, the
black arrow represents the input coming in, and the grey
arrow represents the transfer from one sub-process to an-
other.

The RT for a cognitive process follows a distribution
whose shape is different for each process. For example, in
the redundant target attribute task, in which participants
need to detect certain target dimensions of a stimulus, RT
distributions usually resemble a positively-skewed Weibull
distribution (Engmann & Cousineau, 2013). These RT dis-
tributions can be affected. Consider that an unimpaired
sub-process treating optimal stimulus constitutes the High
condition (or H) and that the same process working on a
stimulus that is harder to discern constitutes the Low con-
dition (or L). When the sub-process is in the L condition,
the completion time should be slower than in the H condi-
tion.

This simple reasoning stems from SFT’s core assump-
tion, selective influence (Townsend & Nozawa, 1995). This
assumption posits that it is possible to affect, or to selec-
tively influence but a single process within an endless ar-
ray of connections (Sternberg, 1969). It is therefore primor-
dial in an SFT analysis to tailor stimuli so that it only affects
the targeted process and sub-processes within. In addition,
even if only a single sub-process is targeted, the factor’s ef-
fect must be sufficiently large to yield an observable effect,
that is, an effect that cannot be explained by other random
factors alone. In short, the factor must sufficiently affect
the processing capability of a single sub-process without
affecting the other sub-processes (Dzhafarov & Schweick-
ert, 1995).

Additionally, SFT posits that sub-processes must, in
most cases, be stochastically independent for correct di-
agnoses (Townsend & Nozawa, 1995). This means that the
sub-processes’ processing times are not correlated; a corre-
lation between sub-processes could result in model mim-
icking (where completely different architectures show simi-
lar results making it impossible to discern the architectures
from one another). SFT will return misdiagnoses related
to stochastic dependence when selective influence is not
met (Eidels, Houpt, Altieri, Pei, & Townsend, 2011). How-
ever, if the stochastic dependence is the result of an exter-
nal variable (Houpt, Blaha, McIntire, Havig, & Townsend,
2014, such as attention, see ), SFT will return a correct di-
agnosis, as it still respects the assumption of selective influ-
ence.

Two possible operational states for two sub-processes

creates a Double Factorial Paradigm, where four working
conditions are possible: HH, where both sub-processes are
treating optimal stimuli, LL, where both sub-processes are
treating sub-optimal stimuli, and HL/LH, where one sub-
process is treating an optimal stimulus and the other is
treating a sub-optimal stimulus. In the analogy, a tired
worker represents the L condition and a normal, rested
worker represents the H condition. This experimental de-
sign allows us to measure the effect size of the change in
processing capability, or the interaction contrasts of the
four experimental conditions. Take for example a serial ex-
haustive architecture. The time taken by each sub-process
is additive, assuming that both sub-processes are separate
entities that have no overlap in individual RT (Sternberg,
1969). When a sub-process is in a Low condition, a cer-
tain amount of time is added to the overall processing time.
When both sub-processes are in a Low condition then the
additional time is counted twice. The overall completion
time is therefore a reflection of which working condition
each sub-process is in. There exists a variety of theories
that use interaction contrasts including Mulligan and Shaw
(1980), and more recently Cousineau, Donkin, and Dumes-
nil (2015).

SFT Methodology

As mentioned in the Nomenclature and Basic Principles
section above, affecting the processing ability of each sub-
process is mediated by the quality of the presented stimuli
as well as selective influence. Figure 2 presents an example
of the four conditions in an SFT analysis taken from an un-
published study of a same-different task designed specifi-
cally for an SFT analysis. A same-different task is one for
which an individual must judge as rapidly and as accurately
whether or not two successive stimuli are the same or dif-
ferent (Bamber, 1969).

As can be seen, stimuli from the L condition are harder
to discern than those from the H condition stimuli, and
thus, it can be assumed that the processing for each will
be different. Additionally, as the two stimuli are processed
by different sub-processes, the fact that one letter is in the L
condition has no effect on the other’s processing capability
(thereby respecting selective influence).

After gathering data for all four conditions, we can cal-
culate the Mean Interaction Contrast (MIC), the first tool
to determine the architecture between sub-processes. The
MIC is measured using the following equation:

MIC = (RT gy + RT11) — (RTp + RTp), (1)

where RT jy is the mean RT for the High-High condition,
RT; is the mean RT for the Low-Low condition, RT j, is
the mean RT for the High-Low condition, and RT .y is the
mean RT for the Low-High condition.
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Figure 1 m Schematics of the five different types of architectures that can be identified by SFT. a) serial self-terminating; b)
serial exhaustive; c) parallel self-terminating; d) parallel exhaustive; e) coactive
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If the MIC is about 0, the architecture is considered se-
rial. As stated earlier, this is related to the fact that the
effect of each L condition is additive. If the MIC is pos-
itive, it is either parallel self-terminating or coactive and
if the MIC is negative, then the architecture is parallel ex-
haustive. This relates to the fact that parallel architectures
do not have additive L conditions. While the MIC pro-
vides some information regarding the interaction between
sub-processes, the information provided is quite limited.
For example, MIC cannot discriminate between the differ-
ent stopping rules for serial architectures or detect differ-
ences between coactive and parallel self-terminating archi-
tectures. See Townsend and Nozawa (1995) for an in-depth
proof of these claims.

Fortunately, to correct MIC’s limitations, SFT expands
on the study of contrasting the means to contrasting the
entire distributions using the Survivor Interaction Contrast,
or SIC. SIC relies on survivor functions of the RT data distri-
butions. A survivor function (SF) is the opposite of the cu-
mulative density function (CDF), another way of present-
ing the usual probability density function (PDF). PDFs are

(b)

@—

@ Last to finish
@ triggers decision

(d)

commonly used to represent a data distribution. For exam-
ple the "bell-curve" line represents the PDF of the normal
distribution. In contrast, the CDF represents the probabil-
ity of sampling a score that is lower or equal than score t.
For example, the median of a PDF distribution (score t) is
represented as 0.50 in a CDF distribution, as there is a 50%
chance of finding the median or a score below it. Figure
3 shows a PDF distribution (panel a), its associated CDF
(panel b), survivor function (panel c), and cumulative haz-
ard function, which will be discussed in the final section of
the article (panel d; Luce, 1986).

As is seen, the survivor function simply shows the in-
verse of the CDE or S(t) = 1 — F(t), where F(f) represents
the cumulative function and S(¢) is the survivor function.
Therefore, the SF returns the probability of finding a RT, or
one greater than, at a certain time t. For example, the first
quartile of a PDF distribution has cumulative probability of
0.25 as there is a 25% chance of finding a score below it. The
SF of this quartile would then be 1 - 0.25 = 0.75; there is a
75% chance of finding a score that is higher than the first
quartile.
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Figure 2m Examples of stimuli that create the four possible conditions needed for an SFT analysis inspired from an unpub-
lished same-different task modified to be able to perform an SFT analysis on the results. a) High-High (HH) condition; b)
High-Low (HL) condition; ¢) Low-High (LH) condition; d) Low-Low (LL) condition

(a)

BC)

Once we have the survivor functions for each of the four
conditions, we can find the SIC using a formula based on
the MIC expressed in (1):

SIC(8) = (Spu(®) + S () = (Sur(2) + S u (1) (2)

where SIC(#) is the result from the SIC at a given time t,
Suu(t) is the score on the High-High survivor function at
time t, Sy7(¢) is the score on the Low-Low survivor func-
tion at time t, Sy (f) is the score on the High-Low survivor
function at time t, and Sy g () is the score on the Low-High
survivor function at time t. While SIC is similar to the MIC,
SIC is a function that measures the interaction contrast of
all t scores rather than a single summary value for the entire
process.

By plotting the series of results given by (2), we get a
curve that can have five distinct patterns corresponding
to the five processing architectures expressed above. The
comparison of this curve to the theoretical curves given in
Figure 3 pinpoints which processing architecture links two
sub-processes.

Figure 5 shows the four survivor functions from a simu-
lated dataset plotted together along with the associated SIC
curve. The green lines linking both plots signifies the point

(b)

()

for which (2) was performed on the survivor functions and
the result of the calculation on the SIC curve. In this case,
the SIC curve deems the architecture as being a serial ex-
haustive.

Even if the SIC curve offers a much clearer picture of
which architecture is present, it is prudent to not rely on
it alone. For example, consider a measured SIC curve that
has a negative area followed immediately by a positive area.
Following a comparison to the theoretical curves from Fig-
ure 4, one could conclude that the measured curve matches
the theoretical one associated to serial exhaustive. One
could also conclude that the measured curve somewhat re-
sembles coactive’s SIC curve. To quantitatively differentiate
between the two architectures we can measure the MIC for
both. If the MIC returns a non-null result, we can conclude
that the architecture is coactive. If the MIC returns null, or
near null, results we can conclude that the architecture is
serial exhaustive.

It is also possible to visually differentiate between
curves. Coactive’s negative area must be smaller than the
positive area. On the other hand, the positive and nega-
tive areas for the serial exhaustive curve are equal. Because
MIC is in a fact a measure of the area under the SIC curve
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Figure 3m Three different ways of showing the same data in different types of probability distributions. a) PDF distribution,
b) CDF distribution, d) SF distribution, d) CHF distribution
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(where areas below zero are negative), this visual approach
is the same as quantifying MIC.

Additionally, as introduced in Harding, Leblanc,
Goulet, and Cousineau (submitted), SIC’s centerline (mea-
sured as the median RT of all conditions pooled together)
allows for a visual discrimination between architectures.
The centerline of a plot always divides the two bumps at
the point (or near the point) of intersection whereas it al-
ways cuts through the bumps for parallel architectures.
Any centerline that does not follow these trends should
lead the researcher to further investigate the architecture
at play.

Table 2 synthesizes the possible results returned from
an SFT analysis, which are adapted from Townsend and
Nozawa (1995), Figure 2.

Using measures of capacity as an additional diagnostic
tool

While we have explored MIC, SIC, as well as briefly intro-
duce the SIC centerline, there exist other complementary
diagnostic tools, the capacity indices which have also been
used within a wide variety of applications (Yusuke, McCar-
ley, & Kramer, 2015; Heathcote et al., 2015). These indices
measure how and whether the addition of a second sub-
process affects the overall processing capability of the sys-
tem as a whole. Processing capacity can be interpreted
as the amount of resources required by sub-process(es).
Measuring capacity within the SFT framework therefore re-
quires the addition of two more experimental conditions:
where there is but a single sub-process that is working in
an H or an L condition with the other one being completely
neutral. For example, in the same-different task, it would
be the equivalent of having two extra experimental condi-
tions where a single letter is in the H condition with the
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other letter being completely absent (Houpt et al., 2014).
Capacity must be computed using distinct formulas for
self-terminating and exhaustive architectures, using Cor
and C4np measures respectively. In the standard Cogr mea-
sure presented in (3), one must use the cumulative hazard
function (CHF) of RT scores. The CHF represents the cu-
mulative of minus the Log of the survivor function.

(Hab(t))
C f)=—m@m8M8M 3
R = )+ Hy (1) ®)

where Cor(f) represents the capacity of the system, H,(¢)
represents the experimental condition at time t on the CHF
when only sub-process a is in the H condition, Hy(¢) rep-
resents the experimental condition at time t on the CHF
when only sub-process b is in the H condition, and Hj(f)
represents the experimental condition at time t on the CHF
when both sub-processes are in the H condition.

For the standard C4np measure presented in (4), one
must use the reverse cumulative hazard function (RCHF)
of RT scores.

(Ka () + Kp(1))

C )= —m88— 4
AND(F) Koy (D) (4)

where Conp(f) represents the capacity of the system at
time t, K, (#) represents the experimental condition at time
t on the RCHF when only sub-process a is in the H condi-
tion, K () represents the experimental condition at time t
on the RCHF when only sub-process b is in the H condi-
tion, and K, (#) represents the experimental condition at
time t on the RCHF when both sub-processes are in the H
condition.

In these measures of Cogr(t) and Canp(t), a score of 1
indicates that the addition of a second sub-process has no
effect whatsoever on the system as a whole (unlimited ca-
pacity). This means that the system has plenty of resources
for all the sub-processes to work at their respective optimal
rate. A score that is smaller than 1 indicates that the addi-
tion of a second sub-process hinders the overall processing
capability of the system (limited capacity). This means that
the system lacks resources and results in sub-processes not
working optimally. Finally, a score that is above 1 indi-
cates that the addition of a second sub-process improves
the processing capability of the system as a whole (super-
capacity). This signifies that both sub-processes help each
other thereby requiring fewer resources to perform the task
compared to a scenario where both sub-processes would
work individually. For a more in-depth review of these
capacity measures, see Townsend and Wenger, (2004), or
Houpt and Townsend (2012).

Alternatively, Houpt and al. (2014) propose the follow-
ing, non-standard, measures of capacity which makes simi-
lar predictions to those in (3) and (4). All values in the equa-

tions are equivalent to those presented in (3) and (4).
’OR(t) = (Hgp(1)) — (Hg (1) + Hp(1)) (5)

v () = (Kap(8)) = (Ka(£) + Kp (1) (6)

In these measures of Cy,,(#) and C/, (1), a score of 0
is indicative of unlimited capacity, a negative score indi-
cates limited capacity, and a positive score indicates super-
capacity. We encourage the use of these measures rather
than the ones proposed in Townsend and Nozawa (1995)
for two reasons. First, having an unlimited capacity refer-
ence point of 0 is more intuitive than a reference point of 1.
Second, as the capacity is not a ratio, there are no divisions
with zero.

Much like the SIC, the capacity measures are a function
of time and can be plotted. Each capacity curve has a pat-
tern that is characteristic of each processing architecture.
These capacity curves are shown in Figure 6. In the left
column we present the curves associated to the standard
capacity measure (Equations 3 and 4) and in the right col-
umn we present the curves associated to the non-standard
capacity measure (Equations 5 and 6).

Once plotted, the capacity curve of the architecture
should match up with whatever architecture is proposed
by the SIC. If, however, the SIC curve and capacity curves
point to different architectures, it could be that an assump-
tion of SFT (such as stochastic independence or selective
influence) is not met. For a more formal review of capacity
within an SFT analysis, see Houpt et al. (2014) where SFT
computations are done with the R programming interface.

Conclusion

While Systems Factorial Technology is a useful tool to find
the underlying architecture between two sub-processes in
a cognitive paradigm, the methodology itself is not neces-
sarily newcomer-friendly. In this article, we stripped down
SFT into key points and presented a straightforward ap-
proach to the methodology. We presented the basics and
nomenclature of a cognitive process and definitions of the
possible architectures in a cognitive paradigm. Annexed is
a Mathematica code that is ready to be implemented allow-
ing for a visual aid on how the methodology diagnoses ar-
chitectures. Table 3 presents and overview of the general
methodology used with SFT.

Although SFT is well established in the literature, there
is room for expansion. Most current SFT analyses fo-
cus on the 2 x 2 Double Factorial experimental design, yet
some work has been done to further push the methodol-
ogy to more complex experimental design with an arbitrary
amount of sub-processes (Yang, Fific, and Townsend, 2013
where SIC curves are generalized to n sub-processes; and
more recently Blaha and Houpt, 2015, where capacity mea-
sures are generalized to n sub-processes). While this article
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focuses solely on the simpler of the two, a review and tuto-
rial of the more complex designs could be warranted.

The SFT methodology also has certain limits. For
instance, model mimicking (and therefore SFT misdiag-
noses) is possible when certain model components are
altered. Eidels et al. (2011) showed that architectures
could be misconstrued with one another when stochas-
tic independence is altered. Harding, LeBlanc, Goulet,
and Cousineau (submitted) explored accumulator mod-
els with variable thresholds and showed that SFT mistak-
enly diagnoses coactive architectures as being parallel self-
terminating if the threshold’s variability is sufficiently large.
They further explore capacity coefficients as well as the SIC
centerline to obtain a more complete diagnosis.

Finally, Tremblay, Harding, Chartier, and Cousineau
(2014) recently applied the SFT methodology to the recall
process of an architecture that is not one of the five de-
tected by SFT, the Bidirectional Heteroassociative Memory,
or BHM (Chartier & Boukadoum, 2006). The BHM uses a
series of iterations of parallel units until activations stabi-
lize to select response units. While not fitting any of the
SFT’s detected architectures, the stimuli are processed in
an iterative fashion; the number of iterations is used as a
measure of RT. Tremblay et al. (2014) found that the SIC
curve resembles a serial exhaustive architecture, which is
not at all in line with the parallel architecture actually used.
This example allows us to observe the limits of SFT and
warn us to not venture outside of the scope of the method-
ology as it may return results that are untrue, especially in
the presence of atypical processes.

Although these limits add some uncertainty to the re-
sults of an SFT analysis, the methodology itself remains a
staple, and an important one, in experimental psychology.
SFT is an important step towards understanding the infor-
mation processing of our brain and the more accessible
SFT becomes the better.

Authors’ note

We would like to thank Denis Cousineau, Vincent Leblanc,
and Julien Lemay for their comments on the manuscript.

References

Bamber, D. (1969). Reaction times and error rates for
"same" and "different" judgments of multidimen-
sional stimuli. Perception & Psychophysics, 6(3), 169—
174. doi:10.3758/BF03210087

Blaha, L. & Houpt, J. W. (2015). An extension of workload ca-
pacity space for systems with more than two channels.
Journal of Mathematical Psychology, 66, 1-5. doi:10.
1016/j.jmp.2015.01.002

Chartier, S. & Boukadoum, M. (2006). A bidirectional het-
eroassociative memory for binary and grey-level pat-

terns. IEEE Transactions on Neural Networks, 17(2),
385-396. d0i:10.1109/TNN.2005.863420

Cousineau, D., Donkin, C., & Dumesnil, E. (2015). Uni-
tization of features following extended training in
a visual search task. In J. G. W. Raaijmakers, A. H.
Criss, R. L. Goldstone, R. M. Nosofsky, & M. Steyvers
(Eds.), Cognitive modeling in perception and mem-
ory: a festschrift for richard m. shiffrin (pp. 3-15). New
York: Psychology Press.

Cousineau, D. & Shiffrin, R. M. (2004). Termination of a vi-
sual search with large display size effects. Spatial Vi-
sion, 17(4), 237-352. doi:10.1163/1568568041920104

Donders, E C. (1969). On the speed of mental processes.
Acta Psychologica, 30, 412-431. doi:10.1016 / 0001 -
6918(69)90065-1

Dzhafarov, E. & Schweickert, R. (1995). Decomposition of
response times: an almost general theory. Journal
of Mathematical Psychology, 39(3), 285-314. doi:10.
1006/jmps.1995.1029

Eidels, A., Houpt, J. W., Altieri, N., Pei, L., & Townsend, J. T.
(2011). Nice guys finish fast and bad guys finish last:
facilitatory vs. inhibitory interaction in parallel sys-
tems. Journal of Mathematical Psychology, 55(2), 176—
190. doi:10.1016/§.jmp.2010.11.003

Engmann, S. & Cousineau, D. (2013). Triple redundant sig-
nals effect in the visual modality. Universitas Psycho-
logica, 12(5), 1473-1488. doi:10 . 11144 / Javeriana .
UPSY12-5.trse

Fific, M., Nosofsky, R. M., & Townsend, J. T. (2008).
Information-processing architectures in multidimen-
sional classification: a validation test of the systems
factorial technology. Journal of Experimental Psychol-
ogy: Human Perception and Performance, 34(2), 356~
375. d0i:10.1037/0096-1523.34.2.356

Fific, M., Townsed, J. T., & Eidels, A. (2008). Studying vi-
sual search using systems factorial methodology with
target-distractor similarity as the factor. Perception &
Psychophysics, 70(4), 583-603. doi:10.3758/PP.70.4.
583

Gaissmaier, W,, Fific, M., & Rieskamp, J. (2011). Analyz-
ing response times to understand decision processes.
In A. K. Schulte-Mecklenbeck & R. Ranyard (Eds.), M
(pp.- 141-163). A Handbook of Process Tracing Meth-
ods for Decision Making. New York: Taylor & Francis.

Harding, B., LeBlanc, V., Goulet, M.-A., & Cousineau, D.
(submitted). Applying systems factorial technology
to discrete accumulators with varying thresholds. In
D.R. Little, N. Altieri, M. Fific, & C.-T. Yang (Eds.), Sys-
tems factorial technology: A theory driven methodol-
ogy for the identification of perceptual and cognitive
mechanisms (pp. 1-43). San Diego, California: Elsevier
Publishing.

The @uantitative Methods for Psychology

46



http://dx.doi.org/10.3758/BF03210087
http://dx.doi.org/10.1016/j.jmp.2015.01.002
http://dx.doi.org/10.1016/j.jmp.2015.01.002
http://dx.doi.org/10.1109/TNN.2005.863420
http://dx.doi.org/10.1163/1568568041920104
http://dx.doi.org/10.1016/0001-6918(69)90065-1
http://dx.doi.org/10.1016/0001-6918(69)90065-1
http://dx.doi.org/10.1006/jmps.1995.1029
http://dx.doi.org/10.1006/jmps.1995.1029
http://dx.doi.org/10.1016/j.jmp.2010.11.003
http://dx.doi.org/10.11144/Javeriana.UPSY12-5.trse
http://dx.doi.org/10.11144/Javeriana.UPSY12-5.trse
http://dx.doi.org/10.1037/0096-1523.34.2.356
http://dx.doi.org/10.3758/PP.70.4.583
http://dx.doi.org/10.3758/PP.70.4.583

| 2016mVol. 12mno. 1

Heathcote, A., Coleman., J. R., Eidels, A., Watson, J. M.,
Houpt, J. W,, & Strayer, D. L. (2015). Working memory’s
workload capacity. Memory and Cognition, 43(7), 973—
989. doi:10.3758/513421-015-0526-2

Houpt, J. W,, Blaha, L. M., McIntire, J. P, Havig, P R, &
Townsend, J. T. (2014). Systems factorial technology
with r. Behavior Research Methods, 46(2), 307-330.
doi:10.3758/s13428-013-0377-3

Houpt, J. W. & Townsend, J. T. (2010). The statistical prop-
erties of the survivor interaction contrast. Journal
of Mathematical Psychology, 54(5), 446-463. doi:10.
1016/j.jmp.2010.06.006

Johnson, S. A., Blaha, L. M., Houpt, J. W.,, & Townsend,
J. T. (2010). Systems factorial technology provides
new insights on global-local information processing
in autism spectrum disorders. Journal of Mathemati-
cal Psychology, 54(1), 53-72. d0i:10.1016/j.jmp.2009.
06.006

Luce, D. (1986). Response times: their role in inferring ele-
mentary mental organization. New York: Oxford Uni-
versity Press.

Miller, J. (1982). Divided attention: evidence for coacti-
vation with redundant signals. Cognitive Psychology,
14(2), 247-279. doi:10.1016/0010-0285(82)90010-X

Mulligan, R. M. & Shaw, M. L. (1980). Multimodal signal de-
tection: independent decision vs. integration. Percep-
tion and Psychophysics, 28(5), 471-478. doi:10.3758/
BF03204892

Sternberg, S. (1969). Memory-scanning: mental processes
revealed by reaction-time experiments. American Sci-
entist, 57(4), 421-457.

Sternberg, S. (1998). Inferring mental operations from
reaction-time data: how we compare objects. In D. N.
Osherson, D. Scarborough, & S. Sternberg (Eds.), An
invitation to cognitive science, volume 4: methods,

models, and conceptual issues (pp. 365-454). Cam-
bridge, MA: MIT Press.

Townsend, J. T. & Ashby, E G. (1983). The stochastic model-
ing of elementary psychological processes. Cambridge,
MA: Cambridge University Press.

Townsend, J. T, Fific, M., & Neufeld, R. W. J. (2007). As-
sessment of mental architecture in clinical/cognitive
research. In T. A. Treat, R. R. Bootzin, & T. B. Baker
(Eds.), Psychological clinical science: papers in honor
of richard m. mcfall (pp. 223-258). New York: Psychol-
ogy Press.

Townsend, J. T. & Nozawa, G. (1995). Spatio-temporal prop-
erties of elementation perception an investigation of
parallel, serial, and coactive theories. Journal of Math-
ematical Psychology, 39(4), 321-359. doi:10 . 1006 /
jmps.1995.1033

Treisman, A. M. & Gelade, G. (1980). A feature-integration
theory of attention. Cognitive Psychology, 12(1), 97—
136. d0i:10.1016/0010-0285(80)90005-5

Tremblay, C., Harding, B., Chartier, S., & Cousineau, D.
(2014). System factorial technology applied to artifi-
cial neural network information processing. In O. B.
& S. a. L. (Eds.), Goertzel (pp. 258-261). Springer In-
ternational Publishing: Artificial General Intelligence.
doi:10.1007/978-3-319-09274-4_29

Yang, H., Fific, M., & Townsend, J. T. (2013). Survivor in-
teraction contrast wiggle predictions of parallel and
serial models for an arbitrary number of processes.
Journal of Mathematical Psychology, 58, 21-32. doi:10.
1016/j.jmp.2013.12.001

Yusuke, Y., McCarley, J. S., & Kramer, A. E (2015). Workload
capacity across visual field in young and older adults.
Archives of Scientific Psychology, 3(1), 62-73. doi:10.
1037/arc0000016

Appendix A: Appendix A: Visualize an SFT analysis using Mathematica

This section serves as an applied introduction and example of the System Factorial Technology methodology. Attached to
this article is a Mathematica notebook that has all of the code presented here. In this notebook each command is outlined
and described to allow new Mathematica users to get up to speed quickly.

Here, the four SFT experimental conditions’ RT will be represented by RThh, RThl, RTlh, RT11 (hrepresents
the H condition and I represents the L condition). Prior to any SFT analysis, erroneous responses and outliers should be
removed. In addition, analyses should be performed on a within-subject basis to see individual architectures participants
employ when doing the experiment.

The data we are working with

In this first section we plot all four conditions’ distributions in a single plot. We believe that this is an essential step to any
SFT analysis and should be done prior to anything else. Here we present the PDF (where distributions are drawn with a
line) of each distribution on a single plot, the bin sizes are set with Aut omatic.

SmoothHistogram|[ {RThh,RThl,RT1h,RT11},Automatic, "PDF",
AxesLabel->{"RT", "Frequency"}]
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If one wants to observe the distributions individually, it is possible using this alternative command, where a histogram
will be used instead of a line:

Histogram|[RThh, Automatic, "PDF"]

The Mean Interaction Contrast (MIC) and its statistical tests The MIC is obtained in Mathematica, by measuring the mean
for each condition using (1).

MIC= (Mean[RThh]+Mean[RT11l])- (Mean[RThl]+Mean[RT1lh])

For the purpose of statistical testing, MIC can be tested using the same tools as a single sample of RT; the standard error
however, is given by the four conditions’ standard errors with the following relation:

+ SE2

RThh %

1
_ 2 2 2
SEmic = 2 \/SERTII + SERTlh + SERThl

The test of the null hypothesis that MIC = 0 is therefore obtained with:

SE[data_] :=StandardDeviation[data]/Sqrt [Length[data]]
SEmic=1/2 Sqrt[SE[RT11]"2+SE[RT1h]"2+SE[RTh1]"2+SE[RThh]"2];
pmic=2 (1-CDF [NormalDistribution[],Abs [MIC/SEmic]])

where pmic returns a p value based on a z test.
The Survivor Interaction Contrast (SIC) Curves and the Kolmogorov-Smirnov test

To calculate the SIC, one must first transform the data into survivor functions. This is done by reprising the distribution
command above and replacing "PDF" with "SF". Again, it is important to visualize the curves to gather intuitions on
how the model is built. The survivor function of each experimental condition is named sXX, where X represents which
condition each sub-process is in (ex: the SF of RThh is shh). This must be repeated for each experimental condition.

shh=HistogramList [RThh,bins, "SF"][[2]];

ListPlot[{shh,shl,slh,sll},Joined->True, AxesLabel->{"RTs", "Frequency"}]

The HistogramlList function works identically as the Histogram function, except that it produces two lists instead of a
single plot. The first list is a vector of the bins’ limits; the second list is the survivor function’s value at those points. It
is necessary to use the same custom-defined bin sizes for all four conditions to make sure that four lines are properly
aligned. For this reason, custom bin sizes were specified manually rather than using the Automatic option; the simplest
specification is to use bins={1o, hi, step} where bins are of size "step" (often 1), and are evenly spaced between
"lo" and "hi". We found the best results were to specify lo as zero and step as 1 and use the maximal RT value across all
four conditions to compute the hi value:

hi=Max[Flatten[{{RThh,RThl,RT1h,RT11}}11];
bins={0,hi, 1};

Once the data are available and plotted, we can compute SIC using:
SIC=(shh+sll)—-(shl+slh);

This operation will automatically be performed for all times contained within the sXX lists. Once measured, we plot the
SIC using the following command:

ListPlot [SIC,Joined->True,PlotRange->{All, {-1,1}},
AxesLabel->{"t ","SIC(t)"},GridLines—>{{{centerline, {Red,Dashed}}}}]

As seen, we inserted a single vertical gridline at the "centerline". This refers to the SIC centerline measure proposed
by Harding et al. (submitted) that can be used as an additional diagnosis tool. The centerline is the median of all four
experimental conditions pooled together if all experimental conditions have the same amount of trials. The centerline is
computed with:
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centerline=Median[Flatten[{{RThh,RThl,RT1h,RT11}}]11];

Statistical test of a SIC curve can be accomplished using the Kolmogov-Smirnov test adapted to the present contrast
(Houpt & Townsend, 2010). To do so, we first measure the harmonic mean of the sample sizes:

hMean=HarmonicMean|[ {Length [RThh], Length[RT1lh],
Length[RThl], Length[RT11]}];

The Kolmogov-Smirnov test tests the null hypothesis that the SIC is never significantly different from zero; it returns a
D test statistic and p value. However, as SIC curves can be positive and negative on the same curve (as with the serial
exhaustive and coactive architectures), we must carry two different tests, one for positive portions of the SIC and one for
negative portions of the SIC. The positive portion of the SIC curve is tested with:

Dplus=Max [SIC]
Pplus=Exp[-2 hMean/4 (Dplus)"2]

whereas the following tests the null hypothesis that the SIC is never significantly below zero:

Dneg=Min[SIC]
Pneg=Exp[-2 hMean/4 (Dneg)"2]

Measuring and plotting the capacity indices

As mentioned in the text, capacity indices give additional diagnosis power to SFT. Capacity is measured using one of two
measures depending on which architecture is found using the MIC and SIC.

To plot the standard measures proposed in Townsend and Nozawa (1995), one must first have access to the RT of both
sub-processes working alone (RTh1 and RTh2) versus when they are working together (RThh). In the code presented here
we assume that users have gathered data from sub-processes working in the H condition.

When the diagnosis points to self-terminating architectures, the Cor measure must be used. As aforementioned, this
measure uses the cumulative hazard function of the RT scores which are calculated using the following code (CHF simply
replaces SF from the survivor functions code).

Hab=HistogramList [RThh,bins, "CHEF"] [[2]];

Here we only show the RThh condition but this measure needs to be repeated with RTh1 and RTh2. Cpg(t) is then
measured and plotted using Townsend and Nozawa (1995) measure of capacity:

CapOR=Hab/ (Ha+Hb) ;
ListPlot [CapOR, Joined->True,PlotRange->{All,All},
AxesLabel->{"t ","C_(OR)"}]

Alternatively, we can also measure and plot Houpt et al. (2014, ’s) non-standard measure of capacity using:

CapOR1=Hab- (Ha+HDb) ;
ListPlot [CapOR1l, Joined->True,PlotRange->{All,All},
AxesLabel->{"t ","C_(OR)"}]

When the diagnosis points to exhaustive architectures, the C4yp measure must be used. As this measure uses the reverse
cumulative hazard function and Mathematica does not have a specification for it, we must calculate it manually using the
following code.

Kab=HistogramList [RThh,bins, "CDF"] [ [
Ka=HistogramList [RThl,bins, "CDF"] [[2
Kb=HistogramList [RTh2,bins, "CDEF"] [[2
{Ka, Kb, Kab}={Ka, Kb,Kab}//Log;

1i

211;
]
11

The last line replaces all values of Ka, Kb, and Kab on the CDF with their Log values. C4np(#) is then measured and plotted
using:
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CapAND= (Ka+Kb) /Kab;
ListPlot [CapAND, Joined->True,PlotRange->{All,All},
AxesLabel->{"t ","C_(AND)"}]

Alternatively, we can also measure and plot Houpt et al. (2014)’s non-standard measure of capacity using:

CapAND1=Kab- (Ka+Kb) ;
ListPlot [CapANDl, Joined->True,PlotRange->{All,All},
AxesLabel->{"t ","C_(AND)"}]

Appendix B: Generating simulated RTs based on a given architecture

Here we define the distribution for each of the two sub-processes in each stimulus intensity condition. The commands
create simulated RT based on the normal distribution for convenience only. For more realistic simulations, other distribu-
tions should be used (for example, Houpt et al., 2014, , used Weibull distributions with shape parameter of 2). To simulate
real-world data, a sub-process in a Low intensity condition must have slower RT than in the High intensity condition.
Here, for parsimony’s sake, the standard deviation for each distribution is the same for all conditions but can be easily
changed to be different between all conditions if one would want.

D[m_,s_]:=NormalDistribution[m, s];
mhl1=20;

mll=36;

mh2=23;

ml2=40;

s=5;

n=50000;

In all the following simulations, we generated 50,000 simulated RTs to ensure clean curves and a reduced level of noise. If
one would want to replicate more realistic SFT results, we encourage lowering the n to more realistic sample sizes that are
in the hundreds rather than in the tens of thousands.

Model Simulations

The approach taken here is to first generate all of the sub-processes’ times separately, hence yielding a list of n processing
times for the two sub-processes involved. These lists are then combined using a specific aggregation function depending
on the processing architectures, which returns the time taken in a specific experimental condition. For example, in a HH
condition the individual times of each sub-process are simulated with:

timel=RandomVariate [D[mhl,s],n];
time2=RandomVariate [D[mh2,s],n];

The processing times of RThh can then be found with:
RThh=MapThread[Plus, {timel,time2}];

in which P1us is the aggregation function used to join all the entries of timel and time2. This aggregation represents a
serial exhaustive architecture as the time for both sub-processes to finish is added together for the total completion time.
With parallel models, simply replace P 1us with Max and Min for exhaustive and self-terminating models respectively.
Regarding serial self-terminating architecture, it is not known which sub-process performs the task, unless we have
access to information regarding which sub-process performs first. We must therefore assume that it is indeed random
between trials. The following aggregation functions choose randomly between both sub-processes, based on a probability
p:
ChooseOne[timel_,time2_,p_J]l:=If[Random|[]<p,timel,time2];

Because this function has three parameters, they must be explicitly given in the MapThread function of each of the four
experimental conditions. Individual times of each sub-process are simulated with:

timel=RandomVariate [D[mhl,s],n];
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time2=RandomVariate [D[mh2,s],n];

RThh=MapThread[ChooseOne [#1,#2,1/2]&, {timel,time2}];

in which # 1 and # 2 are placeholders for the entries of timel and time2 in that order.
For coactive processes, we must assume that sub-processes are not sending a single "completed" message, but se-
quentially many mini-activations, or sub-tasks, that are collected (pooled) until k of them have been received:

Coactive[timel_,time2_ ,k_]:=Sort[Join[Accumulate[timel],
Accumulate[time2]]] [[k]]

The threshold parameter is set with the following code. Indicates how many sub-tasks are needed, irrespective of which
process completed them. It is set with:

k=10;

Much like the rest of the architectures, coactive’s aggregation function takes two lists of k number of RT (here labeled timel
and time2), joins them together, and the kth fastest one is then sampled (the remaining k times are unneeded).

timel=RandomVariate[D[mhl],s], {n,k}];
time2=RandomVariate [D[mh2],s], {n,k}];
RThh=MapThread[Coactive [#1,#2,k]&, {timel,time2}];

For capacity measures, one must slightly vary the code to simulate a single sub-process working at a time. This is done by
sampling k times each sub-processes’ distributions and taking the last score that was sampled.

RThl=Table[Accumulate [RandomVariate[D[mhl,s], {k}]1]//Max, {n}];
RTh2=Table[Accumulate [RandomVariate [D[mh2,s],{k}]11//Max, {n}];

Citation
Harding, B., Goulet, M. A., Jolin, S., Tremblay, C. Villeneuve, S. -P,& Durand, G. (2016) Systems Factorial Technology Ex-
plained to Humans. The Quantitative Methods for Psychology, 12(1), 39-59.

Copyright

Received: 22/05/2014 ~ Accepted: 26/11/2015

Tables and Figures follows on next page

The @uantitative Methods for Psychology

51




Table 1 = SFT Cheat Sheet

| 2016mVol. 12mno. 1

Cognitive Process
Sub-process
Processing order

Stopping-rule

Architecture

Serial self-terminating

Serial Exhaustive

Parallel self-terminating

Parallel exhaustive

Coactive

Selective influence

Double Factorial Paradigm

Mean interaction contrast
(MIC)
Survival
trast (SIC)

interaction con-

SIC Curve

Capacity indices

Specialized aspect of the brain treating specific parts of our deep and complex cognitive
world, to make sense of it all.

Focalized part of a cognitive process specialized for specific tasks. Ex: detecting shapes,
sizes, movements.

Way for which both sub-processes are organized. They can fire sequentially (serial) or si-
multaneously (parallel) to trigger a decision.

The way for which a sub-process fires and decides when to trigger a decision. Can be when
both sub-processes have finished (exhaustive) or when a single sub-process finishes (self-
terminating).

Combination of processing order and stopping rule. There are five standard architectures
as detected by SFT.

Sequentially placed sub-processes triggering a decision when one has finished. Decision
is triggered by the first sub-process in line. The order of the sequence is inherently ran-
dom.

Sequentially placed sub-processes only triggering a decision once both sub-processes
have finished. The total time for this architecture is the individual time of each sub-
process added together. The individual times of each sub-process are inaccessible.
Sub-processes accumulating information simultaneously where a decision is triggered as
soon as one of the sub-processes finishes. Decision is based on the fastest of both sub-
processes. The identity of the sub-process that triggered the decision is inaccessible.
Sub-processes accumulating information simultaneously where a decision is triggered as
soon as both of the sub-processes finish. Decision is based on the slower of both sub-
processes. The identity of the sub-process that triggered the decision is inaccessible as is
the time of the sub-process that finished first.

Similar to the parallel self-terminating, the decision is made once a enough (k) mini-
activations are present. However, both sub-processes work towards a single goal. The
individual sub-processes’ times and contribution towards the decision making process is
inaccessible.

Key to SFT where one must select sub-processes and affect their processing rate without
affecting the rest of the cognitive process as a whole. The rest of the processes are then
considered as constants and cancelled out.

Experimental design where two operational states (H and L) are possible for two sub-
processes (A and B) which have been targetted using selective influence.

Simple equation measuring the effect size between means of the four conditions as re-
quired by SFT. It is measured with: MIC = (RTyu+RT1)— (RT L+ RTLy).

Equation similar to the MIC, where the interaction contrast is measured for each moment
in time (along the X-axis of the plot) between all four conditions. Plotting the result of the
function gives the SIC curve. It is measured with: SIC(#) = (Sgg(#) + Spr(8) — (Sgr(?) +
Sru(1).

Telltale curve for which each specific architecture has a distinct curve associated to it.
Matching of the measured SIC curve and theoretical SIC curve is how the detection of
an underlying architecture linking two sub-processes is made.

Measure of a system’s processing capability when sub-processes are working together ver-
sus when they are working seperately. Depending on the stopping-rule found in the SIC,
two different measures of capacity are used. When the architecture is self-terminating

use Cop(f) = % or Cl () = (Hap()) — (Ha(1) + Hy(1)). When the architecture is
exhaustive, use Canp(t) = W or Cy v (1) = (Kgp (1) — (Ka (1) + Kp (1)
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Figure 4m The five detected architectures by SFT. The red dotted line represents the SIC centerline. a) SIC curve for a serial
self-terminating architecture; b) SIC curve for a serial exhaustive architecture; ¢) SIC curve for a parallel self-terminating
architecture; d) SIC curve for a parallel exhaustive architecture; e) SIC curve for a coactive architecture.
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Table 2m Summary of results returned in a typical SFT analysis. Details have been adapted from Table 2 in Townsend and
Nozawa (1995).

Architecture MIC SIC curve trend

Serial Self-Terminating Null Flat Line on Null

Serial Exhaustive Null Negative Bump — Positive Bump (both areas are equal)
Parallel Self-Terminating  Positive  Positive Bump

Parallel Exhaustive Negative Negative Bump

Coactive Positive  Negative Bump — Positive Bump (Negative Bump is smaller)
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Figure 5 m Four survivor curves of each condition plotted together along with the associated SIC curve. The green lines
linking both plots are the points for which Equation (2) was performed on the survivor functions and the result of the
calculation on the SIC curve. In this case the curve represents a serial exhaustive architecture.
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Figure 6 m Capacity curves for each of the five architectures. Cog and C4yp measures were used depending on the archi-
tecture’s stopping-rule. The left column represents the standard capacity measure introduced in Townsend and Nozawa
(1995) and the right column represents the alternative, non-standard capacity measure presented in Houpt, Blaha, McIn-
tire, Havig, and Townsend (2014). a) serial self-terminating, b) serial exhaustive, c) parallel self-terminating, d) parallel
exhaustive, and e) coactive.
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Table 3w Abbreviated Methodology of SFT

To obtain SIC and MIC

1. Meet the selective influence assumption by picking a manipulation of the conditions that will only affect a
single sub-process at a time;

2. Affect the stimuli to create High and Low conditions for each of the two sub-processes;

3. Create the four experimental conditions using a 2 x 2 design;

4. Test and gather RT for each of these four conditions;

5. Gather the mean for each condition and measure the MIC;

6. Transform the PDF distributions into SF distributions;

7. Measure and plot the SIC(t);

8. Compare the measured SIC curves to the theoretical SIC curves to interpret the underlying architecture be-
tween the two sub-processes (consult Table 1);
To obtain capacity curves

1. Pick manipulations so that one sub-process is not operating;

2. Affect the stimuli to create Hx, xH, and HH conditions where x denotes a non-operational sub-process;

3. Combine stimuli in a 3 condition design;

4. Test and gather RT for each of these three conditions;

5. Transform the PDF into CHF or reverse-CHF depending on the stopping-rule found in the SIC;

6. Measure capacity from all 3 functions;

7. Plot the resulting capacity curve;

8. Interpret the architecture by comparing the measured capacity curves to the theoretical capactiy curves (con-

sult Table 1);
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