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Abstract The scientific treatment of missing data has been the subject of research for nearly a century. Strangely, interest
in missing data is quite new in the fields of educational science and psychology (Peugh & Enders, 2004; Schafer & Graham,
2002). It is now important to better understand how various common methods for dealing with missing data can affect
widely-used psychometric coefficients. The purpose of this study is to compare the impact of ten common fill-in methods
on Cronbach’s α (Cronbach, 1951). We use simulation studies to investigate the behavior of α in various situations. Our
results show that multiple imputation is the most effective method. Furthermore, simple imputation methods like Winer
imputation, item mean, and total mean are interesting alternatives for specific situations. These methods can be easily
used by non-statisticians such as teachers and school psychologists.
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Introduction

Have you smoked marijuana during the last month? Do
you know if your partner is HIV positive? Do you believe
God created the world? Do you think homosexuality is
wrong? Do you think President Obama is a socialist? These
kinds of questions could be of interest in psychology, polit-
ical science, criminology, and sexology. However, they can
make some examinees so uncomfortable that they would
be unwilling to answer them.

In the context of educational testing, the problem of
missing data is also an important issue. Explanations for
nonresponse can include fatigue (e.g., absence of answers
for the last items of a long questionnaire), distraction (e.g.,
a student forgot to answer the back side of a copy, which
was left blank), and item difficulty (the student skipped or
ignored some items).

The scientific treatment of missing data has been the
subject of research for nearly a century. Strangely, interest
in missing data is quite new in the fields of educational sci-
ence and psychology (Peugh & Enders, 2004; Schafer & Gra-
ham, 2002). Many reasons can explain this apparent disin-
terest. One reason can be related to lack of statistical train-
ing (Giguère, Hélie, & Cousineau, 2004; Lazaraton, Riggen-
bach, & Ediger, 1987; Schmidtke, Spino, & Lavolette, 2012;
Yang, 2010). Sharpe (2013) invoked resistance to statisti-
cal innovation to describe that phenomenon. Another ar-

gument refers to the fact that providing information about
participant exclusion based on their missing data can raise
too many questions and decrease the chance of being ac-
cepted in a peer-reviewed journal (Pichette, Béland, Jolani,
& Les̀niewska, 2015). There also remains the issue of the
effect these nonresponses can have on the psychometric
properties of tests.

Effect of missing data on the psychometric properties of
tests

According to Huisman (2000), "in the presence of item
nonresponse, (. . . ) the measurement task is much harder
and the quality of measurement can be seriously affected
(p. 332)". For example, Finch (2008) and Huisman and
Molenaar (2001) have shown that missing data can cre-
ate problems when estimating parameters from item re-
sponse models. Similar conclusions emerge from Rose,
Von Davier, and Xu (2010), who used the PISA 2006 data
set to show that missing data do have an impact on the es-
timation of multidimensional item response models.

Other studies show the effectiveness of various meth-
ods. For example, Bernaards and Sijtsma (1999) demon-
strated that the EM algorithm was the most effective treat-
ment of missing data if one wishes to use factor analy-
sis. Huisman (2000) used simple methods to illustrate that
the amount and type of missing data, as well as the char-
acteristics of the analysed matrix (sample size and num-
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ber of items) have an effect on Cronbach’s α. He also
demonstrated that procedures which involve relationships
between items tend to perform best. In another study, (Si-
jtsma & Van der Ark, 2003) showed that response-function
methods are superior to Person mean, Two-way imputa-
tion, and Mean response-function in recovering several
statistical properties of the original complete data from in-
complete data sets.

Finally, Pichette et al. (2015) studied Cronbach’s α and
discovered that replacing a nonresponse by the mean for
that item is a better alternative than simple methods like
leaving the square empty, or filling in with zero, as for an
incorrect answer. However, that study had certain limita-
tions, such as not including advanced methods like multi-
ple imputation.

The treatment of missing data

The previous section argued that missing data can affect
the psychometric properties of tests. The fact that missing
data are a test validity issue underscores the need to inves-
tigate this problem. At this moment, two major elements
must be discussed: the type of missing data, and possible
treatments methods.

Missing data mechanisms

Rubin (1976) classified missing data into three broad cate-
gories that reflect their most probable cause: missing com-
pletely at random (MCAR), missing at random (MAR) and
missing not at random (MNAR). The MCAR mechanism is
when missingness happens totally by chance, for exam-
ple when a participant forgets to answer the back side of
a questionnaire. MAR occurs when the cause of missing-
ness does not depend on the missing data themselves, but
can be explained by the observed data. Consider a group of
foreign students who might not answer specific historical
questions, for example, because they are unfamiliar with
the history of their country of residence. In such a case,
the missing items can be explained by factors related to the
students’ background. The last type of missing data mech-
anism is MNAR, when the cause of missingness depends on
the missing data themselves. For example, some students
might not answer questions regarding sexual orientation or
criminal activities, due to their sensitive nature.

It is worth noting that deletion methods are only valid
(i.e., they yield unbiased results) if the missing data mech-
anism is MCAR. However, this assumption is very hard to
justify in practice. The specific missing data mechanism in
presence is usually difficult to identify, first because all the
participants would have to be interviewed on their reasons
for not providing answers, and they would have to know
and remember those reasons. Second, defending any sin-

gle mechanism for a data matrix supposes that all partici-
pants failed to provide answers for the same reason, while
in reality one may have found items too difficult while an-
other may have simply run out of time, sometimes for the
same items across participants. Finally, even for a specific
item for a single individual, a combination of mechanisms
might concur to explain the missing answer. For example,
the participant may have skipped a difficult item (MNAR)
in the hope of answering it later, but never found the time
to get back to it (MAR). For those reasons, researchers
should consider other options in addition to MCAR, such
as MAR and MNAR. However, because the MNAR mecha-
nism involves highly complex issues, we only consider in
this paper the possibility of MCAR and MAR.

Methods

Many methods have been recommended to deal with miss-
ing data. In this paper, we will focus on three categories:
deletion methods, simple imputation methods, and ad-
vanced methods . 1

There are two types of deletion methods: Complete
case (or listwise deletion) and Available case (or pairwise
deletion). Complete-case deletion (C.C.) consists of remov-
ing the data for any participant that has at least one missing
value. This is sometimes what researchers refer to when
they mention the exclusion of their participants. In other
words, if a participant declines to answer only one question
or item, the whole questionnaire will be discarded for that
person. Obviously, this method results in considerable loss
of information and proves inefficient. The other method-
Available case (A.C.)- consists of mitigating the loss of in-
formation by eliminating missing data on a case-by-case
analysis. More specifically, with this method the researcher
only discards the missing answers in a questionnaire, while
keeping all the other answers obtained on that same ques-
tionnaire.

Regarding simple imputation techniques, those may
produce biased results even for an ideal situation of MCAR.
For example, one could think of replacing missing data by
"0" without any explicit proof the student knows the an-
swer. Another example is in a true/false questionnaire: the
choice "true" is generally coded as "0".

There are other simple imputation methods, some of
which are listed here. One approach consists of substitut-
ing the item’s mean for all participants with missing val-
ues on that item; In this case, the item mean (It. mean) of
the observed cases is imputed for every missing value of an
item:

I t . mean = ∑
i∈obs( j)

Xi j /#obs
(

j
)

(1)

where obs( j ) denotes the items for which an answer is

1The interested reader can read Enders (2010) or Allison (2001) for more information.
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Figure 1 Steps of the multiple imputation methods (van Buuren, 2012)

available. A second example is Participant mean (Part.
mean) substitution. In this case, the mean score obtained
by each participant on the rest of the items is used to im-
pute the missing values of that participant:

Par t . mean = ∑
j∈obs(i )

Xi j /#obs (i ) . (2)

Here, obs(i ) denotes respondents who answered a specific
question.

Winer (1971) proposed an alternative - here called
Winer Imputation (W.I.)- that combines It. mean and Part.
Mean and imputes the missing values by:

W.I . = I t . mean +Par t . mean

2
. (3)

Bernaards and Sijtsma (1999) have proposed Two-way im-
putation (T.-W.I.) where

T.−W.I . = Par t .mean + I t . mean −Tot .mean (4)

where Tot. mean is the total mean of the test:

Tot . mean = ∑
j∈obs

∑
i∈obs

Xi j /#obs. (5)

It is worth mentioning that Van Ginkel, Van der Ark, Si-
jtsma, and Vermunt (2007) focused on a Bayesian version of
the Two-way imputation, but this method will not be cov-
ered in this paper due to our focus on simple techniques.

Modern techniques include multiple imputation. Ac-
cording to van Buuren (2012, p.17), multiple imputation
consists of three main steps: imputation, analysis and
pooling. As seen in Figure 1, the first step consists of im-
puting the missing data from an incomplete data set to pro-
duce several completed (imputed) data sets. Note that all

the imputed data sets are different in order to represent the
uncertainty about which value to impute.

In general, the imputation step leads to three to five
complete data sets, although more imputations can be gen-
erated (e.g., 20 or 50). The next step is to perform the de-
sired statistical analysis on each imputed data set. For ex-
ample, we can compute the Cronbach’sα for each imputed
data set. Finally, the results are pooled to obtain a single
statistics for inference, which is Cronbach’s α in this ex-
ample. Following Rubin (1987), the pooled estimate of the
Cronbach’s α (over imputations) is simply the arithmetic
average of M replications

ᾱ= 1

M

∑
i
αk , (6)

and its standard error (S.E.) is defined as

S.E . (ᾱ) =
√

1

M

∑
k

s2
k +

(
1+ 1

M

)(
1

M −1

)∑
k

(αk − ᾱ)2 (7)

where M is the number of replications,αk is the Cronbach’s
α value in replication k, sk is the standard error estimate of
αk , , and ᾱ is the mean of all Cronbach’s α estimates.

Purpose of this study

The purpose of this study is to compare the impact on
Cronbach’s α of ten common fill-in methods of handling
missing data for normal-size matrices in educational test-
ing, using simulated data. The next sections will explain
every step of our methodology.

Method

We examined the impact of missing data on Cronbach’s α
coefficients of the methods we described above. Note that
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we will present the results in this specific order:
(i) multiple imputation (M.I.);

(ii) Winer imputation (W.I.);
(iii) Two-way imputation (T.-W.I.);
(iv) replacement by the participant’s mean (Part. mean);
(v) replacement by the item’s mean (It. mean);

(vi) replacement by the total mean (Tot. mean);
(vii) replacement by "0";

(viii) replacement by "1";
(ix) only complete cases (C.C.); and
(x) all available cases (A.C.).
In addition we will add the empirical mean of α (αEmpirical)
obtained over all replications (1,000 in this study) before in-
troducing missing data. Finally note that the M.I. method
is added to this analysis following a recommendation by Si-
jtsma and Van der Ark (2003), who claimed that any inves-
tigation into missing data should include multiple imputa-
tion.

Cronbach’s α coefficient

In language research and educational science, the Cron-
bach’s α coefficient (Cronbach, 1951) has long been one
of the most commonly used measure for assessing the in-
ternal consistency of tests and questionnaires. According
to Sijtsma (2009), "probably no other statistic has been re-
ported more often as a quality indicator of test scores than
Cronbach (1951, ’s) α coefficient (p. 107)". Peterson (1994)
adds that "Not only is coefficient alpha the most widely
used estimator of reliability, but also it has been the subject
of considerable methodological and analytical attention"
(p.382). Today, the use ofα in research cannot be ignored: it
is the best known coefficient to assess internal consistency,
and that coefficient is widely available in popular software
like SPSS, SAS, and R. Mathematically, this coefficient can
be represented as

α= j

j −1

(
1−

∑
s2

i

s2
T

)
(8)

where j is the number of items on the test, s2
i is the variance

of the i th items and s2
T is the total variance on all items.

Consequently, in a case where α= 1 , all items are perfectly
related to one another. On the contrary, ifα= 0 , there is no
link between items in the test. It is very important to un-
derstand that α quantifies the level of interrelatedness in a
series of items, and that a high coefficient does not neces-
sarily imply unidimensionality. Furthermore, the interpre-
tation of Cronbach’s α is relatively easy: Bland and Altman
(1997) and Nunnally and Bernstein (1994) mention that an
acceptable value for α is above 0.70. In a meta-analysis
about this coefficient, Peterson (1994) analyzed 4,286 alpha
coefficients, from 1,030 samples, and found a meanα coef-
ficient of 0.77.

The simulation study details

Our procedure was based on the collection and analysis of
dichotomous data, e.g., in the form of true/false questions
or good/bad appraisals. We generated data sets for 20, 50,
250 and 500 participants and for 20 and 60 items. For this
study, we chose two percentages of missing answers: 5%
and 20%. Missing values were then created under MCAR
and MAR mechanisms. For MCAR, missing values were
randomly created in the data set. In the case of the MAR
mechanism, we adopted a methodology (explained in full
details in van Buuren, Brand, Groothuis-Oudshoorn, and
Rubin, 2006) for creating intermittent missing values under
MAR. This procedure ensures that, for each participant, the
probability for an item to be missing only depends on the
observed items of that participant. Finally, for each com-
bination (item × participant × percentage), 1,000 matrices
were generated. We will systematically report the Cron-
bach’s αmean and the Cronbach’s α standard deviation.

A didactic example of our R code

The R software was used for every analysis in this paper.
Here is a short didactic example of how our analyses were
performed. First, the user needs to load the R code pro-
vided in Listing 1 to 6 at the end of this article. Second, the
estimated Cronbach’s α can be obtained using the follow-
ing function:

FUN(k1 = k1, k2 = k2, mech = mech, rate
= rate)

where k1 is the number of participants, k2 is the number
of items, mech is the missing data mechanism (with only
two possibilities, "mar" and "mcar"), and rate is the rate
of missing data. As an example, the following code gives
Cronbach’s alpha coefficient for a data matrix with 100 re-
sponse patterns, 20 items, MAR mechanism, and 10% miss-
ing data:

FUN(k1 = 100, k2 = 20, mech = "mar",
rate = 0.1).

Results

In this section, results will be presented for the MCAR and
MAR mechanisms respectively.

Results for the MCAR condition

Table 1 shows the results for a hypothetical 20-item ques-
tionnaire with 5% missing data. For sample sizes of 20
and 50, our results show that the empirical means com-
puted with It. mean and Tot. mean are very close to the
αEmpirical. M.I. presents a mean slightly below the αEmpirical

value. All the other methods present a mean higher than
the αEmpirical. When the sample size increases to 250 and
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Figure 2 Standard deviation for 20 items, a nonresponse rate of 0.05, and MCAR

Table 1 Cronbach’s α mean for 20 items, a nonresponse
rate of 0.05, and MCAR

N = 20 N = 50 N = 250 N = 500
M.I. 0.413 0.458 0.490 0.495

T.-W.I. 0.485 0.522 0.542 0.545
W.I. 0.452 0.489 0.511 0.514

Part. mean 0.485 0.522 0.542 0.545
It. mean 0.422 0.460 0.484 0.488

Tot. mean 0.421 0.460 0.484 0.488
0 0.541 0.563 0.578 0.580
1 0.544 0.566 0.577 0.581

C.C. 0.544 0.565 0.576 0.580
A.C. 0.544 0.565 0.576 0.579

αEmpirical 0.427 0.469 0.492 0.495

500 response patterns, M.I. presented the empirical mean
that was closest to the αEmpirical.

Figure 2 shows the results for the standard deviation,
which was obtained from the estimated Cronbach’s α over
all replications. For every sample size, we see that Tot.
mean, It. mean, M.I. and W.I. present the closest standard
deviation to theαEmpirical value (i.e., the empirical standard
deviation before inducing missing data). Furthermore, the
dispersion of the standard deviation becomes less impor-
tant as the sample size increases progressively to 500 re-

Table 2 Cronbach’s α mean for 60 items, a nonresponse
rate of 0.05, and MCAR

N = 20 N = 50 N = 250 N = 500
M.I. 0.744 0.756 0.774 0.777

T.-W. I. 0.768 0.786 0.793 0.794
W.I. 0.755 0.774 0.781 0.783

Part. mean 0.768 0.786 0.793 0.794
It. mean 0.743 0.764 0.772 0.773

Tot. mean 0.743 0.764 0.772 0.773
0 0.814 0.822 0.825 0.826
1 0.812 0.822 0.826 0.826

C.C. 0.812 0.822 0.825 0.826
A.C. 0.812 0.822 0.825 0.826

αEmpirical 0.751 0.769 0.777 0.778

sponse patterns.
Table 2 shows the results for 60-item data matrices with

5% missing data. For small sample sizes (N = 20 and N =
50), we notice that W.I., It. mean, Tot. mean, and M.I.
presents the closest estimate to αEmpirical. When the sam-
ple size increases to 250 and 500, It. mean, Tot. mean, M.I.
and W.I. are the methods who yield empirical means clos-
est to the αEmpirical. Again, we see that A.C., C.C., "0", "1",
Part. mean, and T.-W.I have the strongest impact on α.

Figure 3 shows the results for the standard deviation.
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Figure 3 Standard deviation for 60 items, a nonresponse rate of 0.05, and MCAR

Table 3 Cronbach’s α mean for 20 items, a nonresponse
rate of 0.20, and MCAR

N = 20 N = 50 N = 250 N = 500
M.I. 0.329 0.421 0.483 0.491

T.-W. I. 0.624 0.653 0.667 0.669
W.I. 0.515 0.554 0.571 0.574

Part. mean 0.624 0.653 0.667 0.669
It. mean 0.368 0.430 0.455 0.459

Tot. mean 0.367 0.429 0.455 0.459
0 0.637 0.663 0.666 0.667
1 0.644 0.652 0.665 0.667

C.C. 0.627 0.636 0.649 0.651
A.C. 0.627 0.636 0.649 0.651

αEmpirical 0.425 0.470 0.492 0.495

For N = 20, N = 50, and N = 250, W. I. yields the closest
value to the αEmpirical. For N = 500, we see that Tot.mean,
It. mean, M.I. and W.I. present the closets standard devia-
tion with the αEmpirical. As was the case with figure 2, we
see that the dispersion of the standard deviation becomes
less important as the sample size increases.

Table 3 displays results for 20 items with 20% missing
data. For a sample size of 20 and 50 participants, the meth-
ods with the value closest to the αEmpirical are Tot. mean,

Table 4 Cronbach’s α mean for 60 items, a nonresponse
rate of 0.20, and MCAR

N = 20 N = 50 N = 250 N = 500
M.I. 0.724 0.705 0.759 0.769

T.-W. I. 0.819 0.831 0.837 0.837
W.I. 0.773 0.789 0.797 0.796

Part. mean 0.819 0.831 0.837 0.837
It. mean 0.714 0.738 0.751 0.751

Tot. mean 0.713 0.738 0.751 0.751
0 0.863 0.868 0.871 0.87
1 0.865 0.868 0.87 0.871

C.C. 0.859 0.862 0.864 0.864
A.C. 0.859 0.862 0.864 0.864

αEmpirical 0.752 0.769 0.777 0.777

It. mean, and M.I. When the sample size increases to 250
and 500 participants, M.I. is systematically the most pre-
cise method.

Figure 4 presents the results for the standard deviation.
Tot.mean, It. mean, M.I. and W.I. present, in every situa-
tion, the standard deviation closest to theαEmpirical. Finally,
the dispersion of the standard deviation shrinks consider-
ably when the sample size increases.

The results for 60 items with 20% of missing data are
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Figure 4 Standard deviation for 20 items, a nonresponse rate of 0.20, and MCAR

Table 5 Cronbach’s α mean for 20 items, a nonresponse
rate of 0.05, and MAR

N = 20 N = 50 N = 250 N = 500
M.I. 0.401 0.460 0.489 0.494

T.-W. I. 0.495 0.531 0.550 0.553
W.I. 0.453 0.493 0.512 0.516

Part. mean 0.495 0.531 0.550 0.553
It. mean 0.409 0.458 0.480 0.483

Tot. mean 0.409 0.458 0.480 0.483
0 0.519 0.550 0.567 0.569
1 0.539 0.567 0.582 0.586

C.C. 0.537 0.566 0.581 0.585
A.C. 0.537 0.566 0.581 0.585

αEmpirical 0.428 0.471 0.491 0.495

presents in the next table. We only report the results for
the two best methods for each situation. For N = 20 the
best methods are respectively W.I. and M.I. For N = 50, W.I.
is again the best method, followed by It. mean and Tot.
mean. When the sample size rises to 250 participants, W.I.
and M.I. are the methods that yield means closest values
to the αEmpirical. Finally, W.I. and M.I. are the most precise

Table 6 Cronbach’s α mean for 60 items, a nonresponse
rate of 0.05, and MAR

N = 20 N = 50 N = 250 N = 500
M.I. 0.746 0.751 0.772 0.775

T.-W. I. 0.773 0.787 0.794 0.795
W.I. 0.757 0.772 0.780 0.781

Part. mean 0.773 0.787 0.794 0.795
It. mean 0.741 0.759 0.768 0.769

Tot. mean 0.741 0.759 0.768 0.769
0 0.802 0.815 0.821 0.821
1 0.807 0.819 0.825 0.826

C.C. 0.806 0.818 0.825 0.825
A.C. 0.806 0.818 0.825 0.825

αEmpirical 0.752 0.768 0.776 0.778

methods for N = 500.
Figure 5 shows that for every sample size, W.I. present

the standard deviation closest to theαEmpirical. Without any
surprise, the dispersion of the standard deviation becomes
less important when the sample size increases to N = 500.
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Figure 5 Standard deviation for 60 items, a nonresponse rate of 0.20, and MCAR

Table 7 Cronbach’s α mean for 20 items, a nonresponse
rate of 0.20, and MAR

N = 20 N = 50 N = 250 N = 500
M.I. 0.330 0.413 0.479 0.490

T.-W. I. 0.642 0.666 0.679 0.680
W.I. 0.530 0.559 0.575 0.577

Part. mean 0.642 0.666 0.679 0.680
It. mean 0.365 0.416 0.441 0.446

Tot. mean 0.365 0.415 0.441 0.446
0 0.598 0.614 0.628 0.631
1 0.668 0.685 0.690 0.690

C.C. 0.647 0.667 0.674 0.675
A.C. 0.647 0.668 0.674 0.675

αEmpirical 0.428 0.473 0.492 0.495

Results for the MAR condition

This section presents the results for the MAR condition. Ta-
ble 5 reports the results for a 20-item test with 5% of missing
data. For sample sizes comprising 20 and 50 participants,
our results show that W.I., It. mean and Tot. mean provide
the closest α means to αEmpirical. When the sample size in-
creases, it is M.I. that yields means that are closest to the

Table 8 Cronbach’s α mean for 60 items, a nonresponse
rate of 0.20, and MAR

N = 20 N = 50 N = 250 N = 500
M.I. 0.722 0.698 0.755 0.768

T.-W. I. 0.824 0.834 0.840 0.840
W.I. 0.773 0.788 0.794 0.795

Part. mean 0.824 0.834 0.840 0.840
It. mean 0.701 0.729 0.739 0.741

Tot. mean 0.701 0.729 0.739 0.741
0 0.844 0.854 0.857 0.857
1 0.871 0.875 0.877 0.878

C.C. 0.864 0.869 0.871 0.872
A.C. 0.864 0.869 0.871 0.872

αEmpirical 0.752 0.770 0.776 0.778

αEmpirical.
Figure 6 illustrates the results for the standard devia-

tion. For every sample size, we see that Tot.mean, It. mean,
M.I. and W.I. present the standard deviations closest to the
αEmpirical. Furthermore, the dispersion of the standard de-
viation becomes smaller when the sample size becomes
larger.
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Figure 6 Standard deviation for 20 items, a nonresponse rate of 0.05, and MAR

Table 9 Mean estimated as a function of sample size (N =
20,50,250 or 500) across number of items (20 or 60), across
nonresponse rate (.05 or .20) and across type of missing-
ness (MCAR or MAR)

N = 20 N = 50 N = 250 N = 500
M.I. 0.551 0.583 0.625 0.632

T.-W. I. 0.679 0.701 0.713 0.714
W.I. 0.626 0.652 0.665 0.667

Part. mean 0.679 0.701 0.713 0.714
It. mean 0.558 0.594 0.611 0.614

Tot. mean 0.558 0.594 0.611 0.614
0 0.702 0.719 0.727 0.728
1 0.719 0.732 0.739 0.741

C.C. 0.712 0.726 0.733 0.735
A.C. 0.712 0.726 0.733 0.735

αEmpirical 0.589 0.62 0.634 0.636

Table 6 shows the results for 60 items with 5% miss-
ing data. For 20 participants, the α mean obtained from

M.I., W.I., Tot. mean, and It. Mean yield results close to
αEmpirical. Every other method presents a value above the
αEmpirical. Finally, when the sample size increases, M.I. is
the methods which yield the closest values to αEmpirical.

As we can read in Figure 7, M.I. presents the smallest
standard deviation for N = 20. For N = 50, the best meth-
ods becomes W.I. In the case of a sample size equal to 250,
Tot. mean, It. mean, Part. mean, M.I. and W.I. present
the standard deviations closest to the αEmpirical. Finally, for
N = 500, M. I. and W.I. are very close to the αEmpirical.

Table 7 shows the results for 20 items with 20% miss-
ing data. For a sample size of 20 and 50 response patterns,
the methods with the values closest to the αEmpirical are It.
mean, Tot. mean, and M.I.. When the sample size increases
to 250 and 500 response patterns, M.I. is systematically the
most precise method.

The next figure shows the standard deviations. For
every sample size, we see that Tot.mean, It. mean, M.I.
and W.I. present the standard deviations closest to the
αEmpirical. In addition, we see that the dispersion of the
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Figure 7 Standard deviation for 60 items, a nonresponse rate of 0.05, and MAR

standard deviation becomes smaller with larger sample
sizes.

The results for 60 items with 20% of missing data are
presented in Table 8. We report once again the results for
the two best methods for each situation. Except for N = 50,
M.I. is the most precise method to estimate the αEmpirical.

The analysis of standard deviations shows us that W.I.
presents the closest proximity to the αEmpirical. Again, we
see that the dispersion of the standard deviation becomes
smaller with larger sample sizes.

Summary of the results

We further provide a synthesis table that summarizes all
simulation results presented in Tables 1-8. Table 9 shows
the mean estimated α for every sample size across a num-
ber of items, nonresponse rates, and types of missingness.

Next, Table 10 shows the mean bias (i.e., the estimate
minus αEmpirical) per sample size. We see that most tech-
niques improve slowly as N increases. The exception is
M.I., which rapidly outperforms the other techniques when
the sample size is large enough (the improvement is negli-
gible when N ≤ 50).

Finally, our results show that under all simulation con-
ditions M.I., W.I., It. mean, and Tot. mean are the most

precise methods. In the last column of Table 10, we can
distinguish that M.I, It.mean, Tot.Mean, and W.I are in the
cluster of the best method. All other methods are in an-
other cluster of methods presenting the worst estimates for
αEmpirical.

Discussion

The most common ways used by researchers to deal with
missing data (replacing by zero, deleting the data, or ex-
cluding the participant) happen to be among the meth-
ods that have the strongest impact on Cronbach’s α coef-
ficients. As highlighted by Little (1988), it is important to
understand the effect of naive imputations, because their
effect can be worse than not doing anything about missing
data.

Like Huisman (2000), our results show that the amount
and type of missing data, and the characteristics of the ma-
trix (sample size and number of items) have an effect on
Cronbach’sα. Sijtsma and Van der Ark (2003) also show that
T.-W.I. overestimates Cronbach’s α. These authors demon-
strate that the bias in Cronbach α is slightly higher for Part.
mean than for T.-W.I.

Many authors have shown and pleaded for the efficacy
of M.I. (Schafer & Graham, 2002; van Buuren, 2012). Our
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Figure 8 Standard deviation for 20 items, a nonresponse rate of 0.20, and MAR

Table 10 Mean bias as a function of sample size (N =
20,50,250 or 500) across the number of items (20 or 60),
across nonresponse rate (.05 or .20) and across types of
missingness (MCAR or MAR). The last column is the mean
across sample size as well.

20 50 250 500 Mean
M.I. -0.038 -0.037 -0.009 -0.004 -0.022

T.-W. I. 0.089 0.081 0.079 0.078 0.082
W.I. 0.037 0.032 0.031 0.031 0.033

Part. mean 0.089 0.081 0.079 0.078 0.082
It. mean -0.032 -0.026 -0.023 -0.023 -0.026

Tot. mean -0.032 -0.026 -0.023 -0.023 -0.026
0 0.113 0.099 0.092 0.091 0.099
1 0.129 0.112 0.105 0.104 0.112

C.C. 0.123 0.106 0.099 0.098 0.106
A.C. 0.123 0.106 0.099 0.098 0.106

results also showed that M.I. generally yields Cronbach co-
efficients that are close to theαEmpirical, especially when the
sample is greater than 250 participants.

Finally, simple imputation methods based on arith-
metic means, such as W.I., Tot. mean and It. mean are

very interesting options because they present results rela-
tively close to theαEmpirical. Like many statisticians, Enders
(2010) is not enthusiastic about using mean imputation:

simulation studies suggest that mean imputa-
tion [herein called Tot.mean, It. mean, and
Part. mean] is possibly the worst missing data
handling method available. Consequently, in
no situation is mean imputation defensible,
and you should absolutely avoid this approach
(p. 43).

Our results seem promising. Furthermore, these sim-
ple imputation strategies can be easily used by non-
statisticians like teachers and school psychologists.

Conclusion

This simulation study analyzed the effect on Cronbach’s
α of ten methods for handling missing data. Our simu-
lation allowed us to discover two different categories for
those strategies. Based on how little they impact Cron-
bach’s alpha coefficient and how little they distort the in-
strument’s internal consistency, the four best methods for
dealing with missing data are It. mean, Tot. mean, W.I. and
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Figure 9 Standard deviation for 60 items, a nonresponse rate of 0.20, and MAR

M.I. These methods also present the smallest standard de-
viation across every simulation scenario.

Based on the study of their mean α, Tot. mean and It.
mean provide more interesting results with small sample
sizes. However, their standard deviations are not system-
atically the lowest. When the sample size increases, M.I. is
the most precise method, followed by W.I. These methods
also present low standard deviations.

Many people without statistical training do not know
what to do with missing data. The first reflex is to ignore
them or to insert a zero as if grading an exam. This strategy
is not a good option because it provides a distorted view of
the effectiveness of the test. Our results suggest that if we
have few participants and items, Tot. mean, It. Mean, W.I.,
and M.I. should be adopted, and if we have a lot of items
(60 and above) and participants (e.g., more than 200), M.I.
is the best method.

This study presents some limitations, and further re-
search is warranted to better understand the effect of miss-
ing data handling on Cronbach’s α coefficients. First, we
only investigated dichotomous data. It would be of inter-
est to perform the same kind of analysis on polytomous
data sets and investigate the impact of deletion and var-
ious replacement methods with such data. Furthermore,

although Cronbach’s α is the dominant reliability measure
found in language research publications, other measures
also exist. Cronbach’s α has been criticized (see Sijtsma,
2009) because other approaches seem to be better at mea-
suring single concepts (e.g., Revelle and Zinbarg, 2009).
From this perspective, similar research could be conducted
using the ωt coefficient (McDonald, 1978, 1999), which
could allow for similar comparisons of impact between
deletion and imputation methods. Lastly, the results of this
simulation study need to be compared with results stem-
ming from real data matrices.
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Listing 1 R code used for the simulations

# Main program

FUN <- function(re = 1, ...){
resu <- matrix(NA, nrow = re, ncol = 11) # the number of methods investigated
for (t in 1:re){

com.data <- DATA.GEN(...)
# complete data (no missing data)
tr.alpha <- CRON(com.data)
# generate missing data
mis.data <- MISSING.GEN(com.data,...)
# cronbach’s alpha
est.alpha <- COMPU(mis.data)
resu[t,] <- c(tr.alpha, est.alpha)

}
result <- apply(resu, 2, mean)
names(result) <- c("True", "AC", "CC", "Zero.I", "One.I",

"ToMean.I", "Item.I", "Part.I", "Winer.I", "Two-way.I", "MI"
)

#list(result = result, resu = resu)
return(result)

}

Listing 2 R code used in the simulations (continued)

# Generate data
##################################
# k1: the number of participants #
# k2: the number of items #
##################################
DATA.GEN <- function(k1 = 20, k2 = 20, ...){
# load a package to generate data
require(psych)
data <- as.matrix(sim.dichot(nsub = k1, nvar = k2, gloading = 0.3))
return(data)

}
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Listing 3 R code used in the simulations (continued)

# Generate missing data
#############################00######################################
# y (n * m): data set #
# rate (1 * 1): fraction of missing data #
# pat (k * m): missing data patterns #
# a (k * m): coefficients #
# f (1 * k): relative frequencies of patterns with respect to sum 1 #
# quant (k * M): quantiles #
# g (k * M): arbitrarily chosen weights #
#####################################################################
MISSING.GEN <- function (y, rate = 0.1, alpha = .5, mech = "mcar", ...){
n <- nrow(y)
m <- ncol(y)
# alpha is percentage missing values in a row (alpha=.25 implies 25% missing)
# the number of incomplete rows is n*rate/alpha
box <- c(rep(0, m*alpha), rep(1, (m - m*alpha)))
incomp <- n*rate/alpha
pat <- matrix(NA, ncol = m, nrow = incomp)
for (i in 1:incomp) pat[i, ] <- sample(box, m)
if(mech == "mcar"){
# candidate rows for being incomplete
cand <- sample(1:n, incomp)
y[cand,][pattern == 0] <- NA

}
if(mech == "mar"){

quant <- matrix(c(.33,.66), nrow = incomp, ncol = 2, byrow = TRUE)
g <- matrix(c(.25, 1), nrow = incomp, ncol = 2, byrow = TRUE)
u <- runif(n)
cand <- rep(1,n)
fc <- 0
for (i in 1:incomp){

fc <- fc + 1/incomp
ct <- as.numeric(u > fc)
cand <- cand + ct
ct <- 0

}
s <- y%*%t(pat)
p <- rep(0, n)
for (i in 1:incomp){

c <- quantile(s[,i][cand == i], probs =quant[i,], type=1)
si <- s[cand == i,i]
cl <- rep(1, length(si))

for (j in 1:length(c)){
fl <- rep(c[j], length(si))
bl <- as.numeric(si > fl)
cl <- cl + bl
fl <- bl <- 0

}
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Listing 4 R code used in the simulations (continued)

pi <- rep(0, length(si))
gi <- c(1, g[i,])
qi <- c(0, quant[i,], 1)
sum <- 0
for (k1 in 1:length(gi)){ sum <- sum + (qi[k1+1] - qi[k1])*gi[k1] }
for (k2 in 1:(length(c) + 1)){ pi[cl == k2] <- 2*rate*gi[k2]/sum }
p[cand == i] <- pi

}
u2 <- runif(n)
incompl <- as.numeric(u2 <= p)
cand1 <- cand*incompl
r <- matrix(0, nrow = n, ncol = m)
r[cand1 == 0,] <- 1
for (i in 1:incomp){

for (j in 1:n){
if (cand1[j] == i) r[j,] <- pat[i,]

}
}
for (i in 1:n){

for (j in 1:m){
if (r[i,j] == 0) y[i,j] <- NA

}
}

}
return(y)

}

Listing 5 R code used in the simulations (continued)

# Compute cronbach’s alpha
CRON <- function(y, mis = FALSE, met = FALSE){
y <- as.matrix(y)
m <- ncol(y)
alpha <- if (!met){

vitem <- sum(diag(var(y, na.rm = mis)))
vtot <- var(rowSums(y, na.rm = mis))
(m/(m - 1)) * (1 - (vitem/vtot))

}
else {

vitem <- sum(diag(cov(y, use = "pairwise.complete.obs")))
vtot <- var(rowSums(y, na.rm = mis))
(m/(m - 1)) * (1 - (vitem/vtot))

}
return(alpha)

}
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Listing 6 R code used in the simulations (continued)

# Computation of cronbach’s alpha for various imputation and deletion methods
COMPU <- function(y){
out <- vector()
# DELETION METHODS
# available case (A.C.)
out[1] <- CRON(y, mis = TRUE)
# complete case (C.C.)
out[2] <- CRON(y, mis = TRUE, met = TRUE)
# SINGLE IMPUTATION METHOD
temp1 <- temp <- y
# zero replacement
temp[is.na(y)] <- 0
out[3] <- CRON(temp)
# one replacement
temp[is.na(y)] <- 1
out[4] <- CRON(temp)
# overall mean imputation (Tot. mean)
temp[is.na(y)] <- mean(y, na.rm = T)
out[5] <- CRON(temp)
# item’s mean imputation (It. mean)
i.mean <- colMeans(y, na.rm = T)
for (j in 1:ncol(y)){ temp[,j][is.na(y[,j])] <- i.mean[j] }
out[6] <- CRON(temp)
# participant’s mean imputation (Part. Mean)
p.mean <- rowMeans(y, na.rm = T)
for (i in 1:nrow(y)){ temp[i,][is.na(y[i,])] <- p.mean[i] }
out[7] <- CRON(temp)
# other single imputation methods
for (i in 1:nrow(y)){

for (j in 1:ncol(y)){
temp[i,j][is.na(y[i,j])] <- (p.mean[i] + i.mean[j])/2
temp1[i,j][is.na(y[i,j])] <- p.mean[i] + i.mean[j] - mean(y, na.rm = T)

}
}
# average of item and participant’s mean (W.I.)
out[8] <- CRON(temp)
# Two-way imputation method (T.-W.I.); PM + IM - OM
out[9] <- CRON(temp1)
# MULTIPLE IMPUTATION (M.I.)
mires <- vector()
imp <- mice(y, print = F)
# see van Buuren & Groothuis-Oudshoorn (2011)
for (i in 1:imp$m) mires[i] <- CRON(complete(imp, i), mis = TRUE)
out[10] <- mean(mires)

return(out)
}
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