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Introduction
Between-subjects ANOVA assumes independence of obser-

vations, normalitywithin groups, and homogeneity of vari-

ance. Repeated measures ANOVA has an additional as-

sumption called sphericity. Sphericity has been defined
both in terms of the variances of difference scores (Kim,

2015; Myers, Well, & Lorch, 2010; Phakiti, 2015; Warner,

2012; Weinfurt, 1995) and in terms of the variances and

covariances of orthogonal contrasts (Bijleveld et al., 1999;

Bock, 1975; Crowder & Hand, 1990; Stevens, 2000; Winer,

Brown, & Michaels, 1991). Although both definitions are

technically correct, the definition of sphericity in terms of

orthogonal contrasts is generally superior because it (a)

generalizes to multi-factor designs, (b) reveals why vio-

lating sphericity increases the Type I error rate, and (3)

makes clear why the univariate approach for correcting

for sphericity violations reduces the degrees of freedom.

It is noteworthy that matrix algebra is not used in any

of the above sources that defined sphericity in terms of

variances of difference scores but was used in all that de-

fined sphericity in terms of orthogonal contrasts. Although

matrix algebra provides a powerful and compact way to

present the formulas related to sphericity, it is not difficult

to explain sphericity in terms of orthogonal contrasts with-

out using matrix algebra. To make this article more acces-

sible to researchers not well versed in matrix algebra, the

few places in which matrix algebra is used can be skipped

without loss of continuity.

The first section of this article presents definitions of

sphericity in terms of both variances of difference scores

and variances and covariances of orthogonal contrasts.

As will be seen, the consequences of violating sphericity

are easy to deduce from the latter definition. The sec-

ond section describes procedures for correcting for viola-

tions of sphericity in repeated-measures ANOVA and the

third describes multivariate analyses that do not assume

sphericity. The final section provides guidance for choos-

ing among the methods presented in the second section.
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Table 1 Population Showing Sphericity.

T1 T2 T3 T3 − T2 T3 − T1 T2 − T1

9.102 7.821 9.174 1.353 0.072 -1.280

8.422 8.673 4.317 -4.356 -4.105 0.252

12.861 9.716 10.374 0.658 -2.488 -3.146

11.887 18.386 13.767 -4.620 1.880 6.500

11.083 9.788 10.858 1.069 -0.225 -1.295

7.782 8.711 13.017 4.306 5.235 0.929

8.416 10.495 7.073 -3.422 -1.342 2.080

12.509 12.304 14.653 2.349 2.144 -0.205

4.810 6.773 6.196 -0.577 1.386 1.963

8.210 7.940 8.180 0.240 -0.030 -0.270

16.808 12.038 12.194 0.156 -4.614 -4.770

8.110 7.353 10.198 2.845 2.087 -0.757

Variance 10.00 10.00 10.00 8.00 8.00 8.00

Definitions of Sphericity
As described in the introductory section, sphericity can

be defined in terms of variances of difference scores and

in terms of variances and covariances of orthogonal con-

trasts. The two definitions are identical in that if the

sphericity assumption is met for one definition it will be

met for the second. However, the definition in terms of

orthogonal contrasts is more general and more revealing

about the consequences of violating sphericity.

Sphericity as Equal Variances of Difference Scores

In a one-way within-subjects design with three treatments,

sphericity is met if the variances of the three pairwise dif-

ference scores (T3 − T2, T3 − T1, T2 − T1) are equal. To

see this concretely, consider the small population of 12

people with scores on three treatments shown in Table 1.

Note that the variances of all three pairwise differences are

equal so sphericity is met.

A limitation of this definition is that it does not gener-

alize to interactions in more complex designs such as in

an A(3) × B(3) design. From a pedagogical point of view,
this approach suffers from the fact that it does not pro-

vide an intuitive understanding of why sphericity must be

assumed or the consequences of not meeting this assump-

tion.

Sphericity in Terms of Orthogonal Contrasts

It is common to think of orthogonal contrasts as a method

to partition the sum of squares of an ANOVA into compo-

nents. Alternatively, but mathematically equivalent, one

can consider an ANOVA as a way to test a set of orthogonal

comparisons with a single test. This section shows how the

formulas for calculating ANOVA by combining orthogonal

contrasts clarifies why the assumption of sphericity is nec-

essary. Subsequently, it is shown that the population data

in Table 1 that meet the definition of sphericity in terms of

variances of differences also meet the definition in terms

of orthogonal contrasts.

The fictitious data in Table 2 are from a one-way

within-subjects design. An ANOVA on these data will be

done by computing the mean square numerator and mean

square denominator for two orthogonal contrasts and av-

eraging them to get the mean squares for the ANOVA.

Trend coefficients also known as polynomial trends are
used here but any set of orthogonal contrasts would give

the same final results.

The first step in computing a mean square for a con-

trast for a within-subjects variable is to create a new vari-

able by applying the coefficients for the contrast to the raw

data. This is done separately for each subject. This new

variable for Subject i on contrast c will be denoted by lic
where l stands for linear contrast. In Table 2, contrast c1
has coefficients -0.7071, 0, and 0.7071, which are the coeffi-

cients for the linear component of trend scaled so that their

sum of squares is 1. When coefficients are scaled so that

their sum of squares is 1, they are said to be normalized to
1. 1
The value of l11 is:

l11 = −0.7071×3+0.0000×5+0.7071×7 = 2.828. (1)

The value of li2 is calculated in like manner using the
contrast c2 with coefficients -1, 2, -1 normalized to 1 which
are -0.4083, 0.8165, and -0.4083. These coefficients for c2

1
Normalizing to 1 is done by dividing each element in a contrast by the square root of the sum of squared coefficients of that contrast. For example,

the coefficients for the linear component of trend for three levels in their typical integer form are -1, 0, and 1. The sum of these coefficients squared is

−12 + 02 + 12 = 2. Since the square root of 2 is 1.4142, the normalized coefficients are -1/1.4142, 0/1.4142, and 1/1.4142 which equal -.7071, 0 , .7071.
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Table 2 Fictitious Data for Three Treatments (T1, T2, and T3) from Five Subjects and Contrasts Representing the Linear

(l1) and Quadratic (l2) Components of Trend.

T1 T2 T3 l1 l2
3 5 7 2.828 0

2 4 4 1.414 -0.817

4 8 7 2.121 -2.041

6 5 9 2.121 2.041

4 3 5 0.707 1.225

Mean 3.8 5 6.4 1.838 0.082

Variance 2.2 3.5 3.8 0.65 2.617

are the coefficients for the quadratic component of trend.

Note that the two sets of coefficients are "orthogonal" in the

sense that the sum of cross products is 0. It will be shown

in a later section that the contrasts are not truly orthogonal

unless the assumption of sphericity is met.

More generally, letting Subject i’s score on trial j be de-
noted as Xij and the coefficient for contrast c on trial j as
wcj , Subject i’s score on contrast c, lic, can be expressed as:

lic =

t∑
j=1

wcjXij (2)

where t is the number of treatments.
Linear Contrasts in Matrix Notation (Optional). The follow-
ing description using matrix notation provides a compact

way of expressing formulas but can be skipped without

loss of continuity or understanding. LetX be theN×tma-
trix of raw scores andW be a t× (t− 1)matrix with each
column containing the t coefficients for a contrast. Then L
computed as:

L = XW (3)

is anN × (t− 1)matrix in which each row is a subject and
each column is a vector of scores on a contrast.

For the data in Table 2:

L =


3 5 7
2 4 4
4 8 7
6 5 9
4 3 5


 −0.7071 −0.4803

0.0000 0.8165
0.7071 −0.4803



=


2.828 0.000
1.414 −0.817
2.121 −2.041
2.121 2.041
0.707 1.225


(4)

Mean Squares and F. The means and variances of each
of the l’s are shown in the last two rows of the last two

columns of Table 2. The mean square numerator for con-

trast c (MSNc) is computed as:

MSNc = Nm2
c (5)

whereN is the number of subjects andmc is the mean for

all subjects on lc. If the null hypothesis that the popula-
tion mean of lc = 0 is true, thenMSNc is an estimate of

population variance of its associated lc with one degree of
freedom.

For the data in Table 2, the mean square numera-

tors for the two contrasts are 5 × 1.8382 = 16.891 and
5 × 0.0822 = 0.034. The mean square for treatments
(MStreatments) is the mean of these two mean squares and
is equal to 8.462. Since each of the two contrasts pro-

vides an estimate of variance based on 1 degree of free-

dom, dftreatments = 2.
The variance of each contrast is an estimate of popula-

tion variance of its associated lc withN − 1 = 4 degrees of
freedom. The mean square error (MSe) is the mean of the

two variances and is equal to (0.652 + 2.617)/2 = 1.633.
Since each of the two values ofMSe is an estimate of vari-

ance based onN − 1 = 4 degrees of freedom error, dfe for
the effect of treatments is 2 × 4 = 8. Therefore, F (2, 8) is
MStreatments/MSe = 8.462/1.633 = 5.18.
The astute reader will have noticed that two assump-

tions are necessary for the above calculations to be valid.

First, since the numerator is the mean of two estimates of

variance, it must be assumed that the two estimates are es-

timating the same population parameter. In other words,

it must be assumed that the population variance of l1 is
equal to the population variance of l2. This same assump-
tion must be made to average the two estimates for the de-

nominator. Second, the degrees of freedom for the esti-

mates are added in both the numerator and denominator.

Since the degrees of freedom is the number of indepen-

dent estimates, adding the degrees of freedom is only valid

if the contrasts l1 and l2 provide independent estimates.
This would be true only if the correlation between l1 and
l2 when computed for every subject in the population is 0.
Inmore general terms, a repeated-measures ANOVA as-

sumes that the variances of the orthogonal contrasts are all

equal and that the correlations (and therefore the covari-

ances) among the contrasts are 0. That is, if the coefficients
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for all t−1 contrasts were applied to the raw data to create
t− 1 new l’s, the variances of these l’s would be equal and
their covariances would be 0. This means that the covari-

ance matrix of all l’s is a diagonal matrix with the common
variance on the diagonal and 0’s off the diagonal. This as-

sumption is the assumption of sphericity.

The data in Table 1 are reproduced in Table 3 replacing

the pairwise differences with l1 and l2. The variances of l1
and l2 are both 4.00 and the covariance between them is

0.00. This indicates that the sphericity assumption is met.

Definition of Sphericity in Matrix Algebra (Optional). In
terms of matrix algebra, Σ∗, the covariance matrix among
the l’s can be computed as:

Σ∗ = W′ΣW (6)

where Σ is the covariance matrix among the raw scores.

For the data in Table 3,

Σ∗ =

(
−0.707 0.000 0.707
−0.408 0.816 −0.408

)10 6 6
6 10 6
6 6 10

−0.707 −0.480
0.000 0.816
0.707 −0.480

 =

(
4 0
0 4

)
(7)

SinceΣ∗ is a diagonal matrix with equal values on the
diagonal, the assumption of sphericity is met.

More Complex Designs. The definition of sphericity in

terms of orthogonal contrasts generalizes easily from one-

factor designs to multi-factor designs because, as in one-

way designs, sphericity for each effect is determined by the

orthogonal contrasts associated with the effect. Table 4 il-

lustrates how to define sphericity for the interaction in a

Days (3) x Treatments (3) within-subject design. The first

two columns are orthogonal contrasts among the levels of

Days, the next two are orthogonal contrasts among the lev-

els of Treatments, Columns 5-8 represent the interaction

and are formed by multiplying the associated columns for

days and treatments. Finally, the last four columns are

Columns 5-8 normalized to 1. Normalizing is done by di-

viding each element in a column by the square root of the

sum of squared coefficients in that column. For Column 5,

the sum of squared coefficients is 4 so Column 9 is com-

puted by dividing each element of Column 5 by the square

root of 4 = 2.

Sphericity for the interaction is determined by the vari-

ances and covariances among four contrasts computed by

applying the coefficients in the last four columns to the

raw data. If, in the population, all variances are equal and

all covariances are 0, then the assumption of sphericity is

met. Naturally, this method generalizes to designs with any

number of factors.

Violating Sphericity in ANOVA
If sphericity is violated, then, because the contrasts are cor-

related, the degrees of freedom used to calculate probabil-

ity values from F’s are too large. As a result, the p values

are too low and, depending on the degree to which spheric-

ity is violated, the Type I error rate can be severely inflated.

The parameter ε reflects the degree to which sphericity
is violated (Box, 1954). The worst case for a violation of

sphericity is that all contrasts are perfectly correlated. In

this case, the proper degrees of freedom is the degrees of

freedom for a single contrast since all the others are com-

pletely redundant. This occurs for the minimum possible

value of εwhich is 1/(t− 1). The value of ε is 1.0 when the
assumption of sphericity is met.

To correct for violations of sphericity, the degrees of

freedom for both the numerator and the denominator

should be reduced by multiplying by ε. Since the value of ε
is not known, it has to be estimated from sample data. Two

estimates of ε are commonly used: ε̂ Geisser and Green-
house (1958) and ε̃ (Huynh & Feldt, 1976). The former is
often referred to as the G-G correction and the latter as the
H-F correction. The estimate ε̂ is computed in a sample us-
ing the same formula as would be used in the population

and does a good job controlling the Type I error rate. How-

ever, it has a slight negative bias which makes it a conser-

vative correction. The negative bias can be seen in the case

in which sphericity is met, since in that case the population

value of ε is 1 but every sample value of ε̂ will be less than
1. The estimate ε̃ is less conservative and therefore has
greater power. However, when the violation of sphericity

is severe, ε̃ can result in a somewhat inflated Type I error
rate.

Quintana and Maxwell (1994) used simulations to in-

vestigate several approaches to estimating ε and recom-
mended using ε̃ if ε̃ is greater than 0.75 and ε̂ otherwise.
This procedure has more power than using ε̂ exclusively
while controlling the Type I error rate adequately.

It is important to be aware that the original formula

for ε̃ (Huynh & Feldt, 1976) has an error that affects the
calculation when there are two or more groups (Lecoutre,
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Table 3 Demonstrating Sphericity in terms of Orthogonal Contrasts on the Data From Table 1.

T1 T2 T3 l1 l2
9.102 7.821 9.174 0.051 -1.075

8.422 8.673 4.317 -2.903 1.881

12.861 9.716 10.374 -1.759 -1.553

11.887 18.386 13.767 1.329 4.539

11.083 9.788 10.858 -0.159 -0.966

7.782 8.711 13.017 3.702 -1.379

8.416 10.495 7.073 -0.950 2.246

12.509 12.304 14.653 1.516 -1.043

4.810 6.773 6.196 0.980 1.037

8.210 7.940 8.180 -0.021 -0.208

16.808 12.038 12.194 -3.263 -2.011

8.110 7.353 10.198 1.476 -1.471

Variance 10.00 10.00 10.00 4.00 4.00

Note. The covariances among T1, T2, and T3 are all 6 and the covariance between l1 and l2 is 0.

Table 4 Contrasts for a 2 × 3 Design

D1 D2 T1 T2 D1T1 D1T2 D2T1 D2T2 D1T1 D1T2 D2T1 D2T2

-1 -1 -1 -1 1 1 1 1 0.500 0.289 0.289 0.167

-1 -1 0 2 0 -2 0 -2 0.000 -0.577 0.000 -0.333

-1 -1 1 -1 -1 1 -1 1 -0.500 0.289 -0.289 0.167

0 2 -1 -1 0 0 -2 -2 0.000 0.000 -0.577 -0.333

0 2 0 2 0 0 0 4 0.000 0.000 0.000 0.667

0 2 1 -1 0 0 2 -2 0.000 0.000 0.577 -0.333

1 -1 -1 -1 -1 -1 1 1 -0.500 -0.289 0.289 0.167

1 -1 0 2 0 2 0 -2 0.000 0.577 0.000 -0.333

1 -1 1 -1 1 -1 -1 1 0.500 -0.289 -0.289 0.167

Note. D1 and T1 are linear contrasts; D2 and T2 are quadratic contrasts. The contrasts in the first eight columns are

not normalized to one whereas those in the last four are normalized to 1.

1991). The error leads to values of ε̃ that are too high and
therefore to an inflated Type I error rate (Chen & Dunlap,

1994; Quintana & Maxwell, 1994). Since even the major

statistical programs may be using the incorrect formula, it

is advisable to use the file sphericity.html associated with

this article to make sure that ε̃ is calculated correctly.

Multivariate Approach

The multivariate approach is an alternative to using an ε
correction. In short, the multivariate approach starts with

a set of t − 1 new variables created by contrasts among
the original variables. These contrasts can be orthogonal

contrasts, differences between treatments, or any other set

of contrasts as long as no contrast can be predicted per-

fectly from the other contrasts. The multivariate test is

then conducted by doing a multivariate analysis of vari-

ance (MANOVA) on these contrasts. In practice, all mod-

ern statistical analysis programs make up the contrasts im-

plicitly so there is no need to actually compute new vari-

ables. The multivariate approach makes no assumptions

about the form of the covariance matrix so there is no

assumption of sphericity. However, the multivariate ap-

proach does assume homogeneity of covariance matrices

for designs with between-subjects variables and that the

residuals are multivariate normal.

Choosing Between ANOVA and the Multivariate Ap-
proach
Both ANOVA using the ε correction and the multivariate
approach control the Type I error rate adequately. The

choice between these approaches, therefore, depends on

their relative power. The relative power is complexly de-

termined and is affected by sample size, the number of

variables, and the covariances among the measures. A dis-

cussion of how and why these factors affect relative power

follows.

Recall that in a repeated-measures ANOVA, each or-

thogonal contrast is counted equally. The multivariate ap-
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proach, on the other hand, uses the sample data to weight

the contrasts so as to maximize differences among condi-

tions. For example, the linear and quadratic contrasts for

the data in Table 2 would be weighted 0.633 and 0.069 re-

spectively. Creating a new variable using these weights

and testing whether it differs significantly from zero re-

sults in an F (1, 4) of 27.33 and a p of 0.006. However,
this is not a valid test since it does not account for the

fact that these coefficients were determined post hoc. The
multivariate test takes this into account and results in an

F (2, 3) of 10.25 and a p of 0.046. As noted previously, any
set of contrasts among conditions would result in the same

multivariate test result. For example, if difference-score

variables were created for differences between Variables 2

and 1 and between Variables 3 and 2, the weights would

be 0.419 and 0.476 respectively. Applying these weights

would result in the same variable as the one created by

applying the weights 0.633 and 0.069 to the linear and

quadratic trend variables.

Since the multivariate test involves post hoc weight-
ing, it is able to take advantage of chance. The larger the

sample size, the less opportunity for taking advantage of

chance and therefore the lower the penalty for choosing

the weights post hoc. As a result, the power of the mul-
tivariate approach relative to repeated measures ANOVA

increases with sample size. Similarly, the more repeated

measures variables, the more post hoc weighting can take
advantage of chance. Therefore, the power of the mul-

tivariate approach relative to repeated measures ANOVA

decreases as the number of repeated measures variables

increases. The pattern of the variances and covariances

of the repeated measures variables is a critical determi-

nant of relative power. As pointed out by Davidson (1972),

there are some patterns that lead to vastly more power

for the multivariate approach. As an example, consider

the data in Table 5. The univariate test using ε̃ (which
equals 0.86 for these data) results in an F (2.58, 23.20) =
2.86, p = 0.066. By contrast, the multivariate test results
in an F (3, 7) = 9.89, p = 0.007. The multivariate test has
such a low p value because it was able to locate a small

but very consistent difference between conditions. Specifi-

cally, although the difference between T3 and T1 is smaller

than the difference between either of the other two treat-

ments and T1, the difference is very consistent across sub-

jects. The variance of the differences between T3 and T1

is only 0.46 as compared to the variance of 5.73 for the dif-

ference between T2 and T1 and of 8.00 for the difference

between T4 and T1. Repeated-measures ANOVA is unable

to exploit this small but consistent difference because it

weights all differences equally. The consistency of the dif-

ference betweenT3 andT1 has little impact when averaged

with other sources of error.

When sphericity is met, the variances of all pairwise

difference scores are equal and therefore there is no ad-

vantage to weighting some differences more than others.

Therefore, when sphericity is met or nearly met, repeated-

measures ANOVA tends to be more powerful than the mul-

tivariate approach. Note that this relative power advan-

tage of ANOVA is not because ANOVA is more powerful

when sphericity is met but, rather, because the multivari-

ate approach is less powerful when sphericity is met.

Algina and Kesselman (1997) investigated the relative

power of repeated-measures ANOVA and the multivariate

approach over a range of sample sizes (N ), number of
repeated-measures variables (t), and values of ε . Sam-
ple size was defined relative to t such that sample sizes of
t + 10, t + 20, t + 30, and t + 40 were examined for each
combination of two values of t (4 and 8) and 5 values of ε
(0.57, 0.75, 0.85, 0.90, and 0.96). For each value of ε, they
examined a wide range of non-spherical covariance matri-

ces. Algina and Kesselman (1997) presented the minimum,

median, and maximum power advantage of the multivari-

ate approach for the various values of N, t, and ε across
covariance matrices for the relevant ε.
The power of the multivariate approach relative to

repeated-measures ANOVA increased as a function of N ,
decreased as a function of t, and decreased as ε increased.
Importantly, the relative power varied greatly among the

covariance matrices even with the other factors held con-

stant. Based on their results, Algina and Kesselman (1997)

concluded that the multivariate test should be used if ei-

ther (a) t ≤ 4, N ≥ t + 15, and ε̃ < 0.90 or (b) t ≥ 5, N ≥
t + 30, and ε̃ < 0.85.
Although this is sound advice and its simplicitymakes it

easy for a researcher to follow, the fact that it is a decision

model based on multiple cutoffs means that a very small

difference in one variable can result in a change in the rec-

ommendation method. For example, if t = 3, N = 35,
and ε = 0.91, repeated measures ANOVA would be rec-
ommended whereas if t = 4, N = 19, and ε = 0.89, the
multivariate approach would be recommended. Clearly a

smaller value of t together with a much larger N in the for-

mer example should compensate for the very small differ-

ence in ε̃ .

An Algorithm for Choosing the Statistical Method

In order to develop a compensatory decision system, a

multiple regression model was developed to predict the

median power advantage of the multivariate approach as

determined by Algina and Kesselman (1997). In the first

model, the 32 values of median power were predicted pre-

dicted by N, t, and ε. The model fit well, R2 = 0.95, but
a model that also included the crossproduct of t, and ε fit
even better, R2 = 0.97. Even with this high level of fit,

The Quantitative Methods for Psychology 1192

http://www.tqmp.org
http://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.12.2.p114


¦ 2016 Vol. 12 no. 2

Table 5 Fictitious Data Used to Compare Methods

T1 T2 T3 T4

4 8 5 9

3 5 5 7

5 9 6 8

4 7 6 6

3 4 5 8

5 7 6 7

4 4 5 8

5 8 7 3

4 7 5 4

5 1 5 2

there were a few instances in which the relative power of

the multivariate test was overestimated. The biggest over-

estimate was forN = 18, ε = 0.85, and t = 8 for which the
model predicted the power of the multivariate test would

be greater by 0.04 whereas the median power was lower

by 0.11. The second highest overestimate was forN = 18,
ε = 0.75, and t = 8 for which the model predicted the
power of the multivariate test would be greater by 0.06

whereas the median power was lower by 0.02. These two

values were based on the smallest difference between N

and t and suggest that the model may be less accurate

for small N. Moreover, Algina and Kesselman’s (1997) re-

sults were based on the population values of εwhereas re-
searchers have to depend on an estimated value and esti-

mated values will be relatively inaccurate with small sam-

ple sizes. To be prudent and following the recommenda-

tion of Algina and Kesselman (1997), it is recommended to

use repeated-measures ANOVA in any case in which N + t

is not greater than or equal to 15. Considering only these

cases,R2 = 0.98 and the regression equation is

Relative Power = 51.07 − 52.40 × ε̃ + 4.17 × t

+ 0.22 ×N − 6.75 × t× ε̃
(8)

where relative power is the power advantage of the multi-

variate test times 100. To account for cases in which there

is a between-subjects variable, g − 1 should be subtracted
fromN where g is the number of groups. Naturally, g = 1
if there are no between-subjects variables.

The multivariate test is recommended when the rela-

tive power is greater than zero. Figure 1 shows the appli-

cation of this formula for selected values ofN, t, and ε̃. The
extent to which the multivariate test becomes more pow-

erful asN increases, t decreases, and ε̃ decreases is appar-
ent.

The recommended decision tree is shown in Figure 2.

The file sphericity.html included with this article imple-

ments this decision tree. As previously noted, the rela-

tive power varied greatly among the covariance matrices

even with the other factors held constant. For example, Al-

gina and Kesselman (1997) found that for N = 19, t = 4,
and ε = 0.85, the power difference between the multivari-
ate approach and repeated-measures ANOVA ranged from

a power advantage of 0.20 for themultivariate approach to

a power advantage of 0.11 for repeated measures ANOVA

depending on the covariance matrix. Since the form of

the covariance matrix will, in general not be known in ad-

vance, the recommendation system presented here does

not guarantee that the more powerful method will be rec-

ommended.

Summary
The power of ANOVA with the ε̂ or the ε̃ correction relative
to the power of the multivariate test is complexly deter-

mined. Smaller sample sizes favor the ε corrections with
ε̃ being more powerful than ε̂. However, using ε̃ leads to
an inflated Type 1 error rate with low population values of

ε. Finally, low population values of ε are associated with
higher power for the multivariate test relative to ANOVA

with either of the ε corrections.
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Figure 2 Decision tree for deciding among analyses.
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